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Pinning of domain walls in thin ferromagnetic films
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We present a quantitative investigation of magnetic domain-wall pinning in thin magnets with perpendicular
anisotropy. A self-consistent description exploiting the universal features of the depinning and thermally activated
subthreshold creep regimes observed in the field-driven domain-wall velocity is used to determine the effective
pinning parameters controlling the domain-wall dynamics: The effective height of pinning barriers, the depinning
threshold, and the velocity at depinning. Within this framework, the analysis of results published in the literature
allows for a quantitative comparison of pinning properties for a set of magnetic materials in a wide temperature
range. On the basis of scaling arguments, the microscopic parameters controlling the pinning: The correlation
length of pinning, the collectively pinned domain-wall length (Larkin length), and the strength of pinning disorder
are estimated from the effective pinning and the micromagnetic parameters. The analysis of thermal effects reveals
a crossover between different pinning length scales and strengths at low reduced temperatures.
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I. INTRODUCTION

A major source of hysteresis in ferromagnets [1] is the
pinning of magnetic domain walls (DWs), which impedes their
free motion when driven by an applied magnetic field or a
spin current. For a strong pinning, the DWs follow the shape
of material defects, and magnetization reversal results from
percolation processes of magnetic domains [2]. Weak random
pinning also results in important effects: The competition with
DW elasticity and thermal activation produces stochasticity
[3], domain-wall roughness [4,5], and dramatically modifies
the driven dynamics at small fields and currents [4,6,7].

Weak pinning may result from spatial fluctuations of
domain-wall energy associated with inhomogeneous thickness
in ultrathin metallic films [4] or the concentration of magnetic
atoms in ferromagnetic semiconductors [8]. As pinning im-
pedes reaching the high velocity flow regimes, several attempts
have been proposed to reduce the pinning strength finding low
pinning materials [9] and to engineer the pinning properties
using light-ion irradiation [9–13] in ultrathin films or coupling
with another magnetic layer [14].

Interestingly, the engineering of pinning is also important
for superconducting materials [15,16], and a large variety of
methods was developed to enhance the pinning strength on vor-
tices. Understanding of the pinning of elastic objects, among
which domain walls in thin ferromagnets is a paradigmatic
example, is thus of broad interest.
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How weak pinning and thermal fluctuations affect the glassy
dynamics of domain walls is a critical issue for potential
applications based on the controlled motion of domain walls
[17,18] and for understanding the physics of phenomena as
the interaction of spin current with the DW or the contribution
of the Dzyaloshinskii-Moriya interaction to DW dynamics
[19]. However, going beyond qualitative comparisons between
pinning properties of different materials remains challenging.
A quantitative framework would be particularly welcomed for
a better understanding of DW pinning in thin ferromagnetic
films.

The pinning-dependent DW dynamics combines both
universal and material-dependent behaviors, which are not
straightforward to disentangle. A depinning magnetic-field
threshold Hd separates the pinning-dependent thermally ac-
tivated so-called creep regime (H < Hd ) from the depinning
transition (H � Hd ) and the flow regime (H � Hd ). Until
now, almost all the analyses of experiments on DW dynamics
in the creep regime have been based on the seminal work
of Lemerle et al. [4]. In this paper, it was shown that the
magnetic-field-driven DW dynamics can be modeled by the
motion of an elastic line in a weakly disordered medium [20].
More precisely, the measured and the predicted creep exponent
μ, deduced from the velocity law v ∼ exp(H−μ) and the
roughness exponent ζ = 2/3 asμ = (2ζ − 1)/(2 − ζ ) = 1/4,
respectively, were found in good agreement thus attesting the
universal nature of DW creep motion. However, those predic-
tions are only valid in the limit H → 0, which restricts the
analysis of domain-wall motion to the low drive creep regime.

Recently, the glassy domain-wall dynamics was investi-
gated beyond the zero drive limit, and it was shown that the
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universal creep regime extends up to the depinning threshold
[21]. The depinning transition was also found to present
universal behaviors [22]. Their analysis was pushed beyond
the usual asymptotic power-law variations. The universal
functions describing the creep and depinning regimes could
be extracted from experimental results obtained for different
materials and temperatures. Moreover, it was shown that
both regimes can be described self-consistently using only
three parameters absorbing all the intrinsic temperature- and
material-dependent pinning properties. These effective pin-
ning parameters are an effective pinning barrier height kBTd ,
where kB is the Boltzmann constant, a depinning threshold Hd

and a depinning velocity vT [22]. As the latter are directly
related to the physics at the so-called Larkin regime of an
elastic string in a random medium [23,24], they can be used to
bridge between the nontrivial macroscopic universal behavior,
such as the collective creep and depinning phenomena, to the
micromagnetic level of description at which domain walls
and their pinning to inhomogeneities emerge. This situation
is analogous to the case of vortex pinning in superconductors
where the Larkin regime bridges between the macroscopic
scale and the Ginzburg-Landau continuum description for
which vortices are described by well-defined pinned elastic
objects [15,25].

The aim of this paper is to understand better the corre-
lations between the material- and the temperature-dependent
pinning parameters controlling the glassy DW dynamics and
the microscopic origins of DW pinning. To this end we
exploit the self-consistent “top-down” approach [22] described
above, starting from the identification of universal features
in the driven DW glassy dynamical regimes. We deduce a
“map” of the material- and temperature-dependent effective
pinning parameters (Td, Hd , and vT ) controlling DW velocity.
We develop a model providing scaling relations among the
effective pinning parameters, the micromagnetic parameters
(the saturation magnetization Ms , the domain-wall surface
energy σ , the domain-wall thickness parameter �, and the
Gilbert damping factor α), and the microscopic pinning pa-
rameters characterizing the weak pinning disorder (which are
the pinning strength fpin and the correlation length of the
disorder ξ ). The model is used to estimate the microscopic
pinning parameters, which are not directly accessible experi-
mentally. A strong modification of domain-wall pinning prop-
erties at low temperatures is evidenced. This paper provides
a systematic quantitative analysis of magnetic domain-wall
pinning.

The organization of the paper is the following. Section II
discusses DW dynamics: It starts from a qualitative description
and extends to the self-consistent modeling, which is used
for the extraction of pinning parameters controlling creep
and depinning regimes of the velocity. Section III presents a
set of pinning parameters deduced from 50 velocity curves
reported in the literature for different materials and tem-
peratures and then proposes a model, which relates those
parameters to microscopic properties of pinning. A comparison
of microscopic parameters characterizing the pinning and
an analysis of thermal effects is presented in Sec. IV. In
Sec. V we overview our results and summarize our main
conclusions.

II. DOMAIN-WALL DYNAMICS

After a qualitative description of different magnetic-field-
driven DW dynamical regimes observed experimentally, a self-
consistent empirical approach exploiting the universal features
of the creep and depinning regimes, is presented. In this way
we obtain the three fundamental pinning parameters which we
use in the next section to compare different magnetic materials.

A. Different dynamical regimes

A typical velocity curve of the domain wall obtained for a
Pt/Co/Pt ultrathin film is shown in Fig. 1 and is used to describe
the different dynamical regimes. At low drive (H < Hd ), the
DWs move in the creep regime which is controlled by pinning,
DW elasticity, and thermal activation. The DW velocity follows
an Arrhenius law v ∼ exp(−�E/kBT ), where kBT is the
thermal activation energy, and �E is the effective pinning
barrier height. The creep regime presents a universal behavior.
Close to zero drive (H → 0), the barrier height follows a

FIG. 1. Typical velocity curve observed for an ultrathin Pt/Co/Pt
film at room temperature taken from Ref. [22]. The universal and the
nonuniversal dynamics are separated by the boundary field Hu, which
corresponds to the upper limit of the depinning transition. Within
the nonuniversal dynamics, DWs present a crossover between the
depinning transition and the linear flow regime, which is observed
at the largest drive. Within the universal dynamics (H < Hu), the
depinning threshold H = Hd separates the creep regime (H < Hd )
from the depinning transition (Hd < H < Hu). The inset: log-log
plot of the velocity curve highlighting the creep regime. The dotted
line in the main panel corresponds to the linear extrapolation of the
flow regime, observed for H > Hf . The dashed-dotted curve is a fit
of Eqs. (1) and (2) for the creep regime. The dashed curve is a fit
of Eq. (6) for the depinning transition using the universal parameter
x0 = 0.65. The part that matches with experimental data is underlined
by black solid segments. The diamond and star points located on
the vertical line H = Hd are the velocity at depinning v(Hd ) and
the depinning velocity vT . v(Hd ) corresponds to the inflection point
separating the creep regime from the depinning transition. The value
of vT was deduced from Eq. (5) and is found to coincide with the flow
velocity DWs would have in the absence of pinning.
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power-law variation with magnetic-field �E ∼ H−μ where μ

is the so-called creep exponent [4,20]. Increasing the applied
magnetic field reduces the effective barrier height which
vanishes (�E → 0) at the depinning threshold (H = Hd )
[21,26].

Above the threshold, the curvature of the velocity curve
becomes negative (d2v/dH 2 < 0) [22] (see Fig. 1). The DWs
undergo a depinning transition controlled by elasticity and
thermal noise, which is also a universal dynamical regime
[22]. At zero temperature, the velocity is expected to follow a
power-law scaling with magnetic-field v ∼ (H − Hd )β , where
β is the so-called depinning exponent. At finite temperatures,
the thermal activation produces a “thermal rounding” of the
velocity curve. The velocity is also predicted to present an
asymptotic power-law scaling with temperature at the depin-
ning threshold v ∼ T ψ , where ψ is the thermal rounding
exponent [22,27–31]. The end of the depinning transition
corresponds to the onset of the divergence between the velocity
curve and the magnetic-field scaling law which crosses over at a
magnetic-field H � Hu (see Fig. 1). This upper boundary also
roughly defines the limit of universal dynamics which covers
the whole creep regime and the depinning transition [21,22].
Below H = Hu, the dynamics of a DW can be described as the
motion of an elastic string submitted to thermal activation and
to pinning [20,32] and is independent of its magnetic structure.
The measured critical exponents for a DW moving in an
ultrathin film are compatible with theoretical predictions (μ =
1/4 [4,20,21,33], β = 0.25 [34], and ψ = 0.15 [22,26,29,31])
for the quenched Edwards-Wilkinson universality class with
random short-range uncorrelated pinning disorder.

Above H = Hu, the DW dynamics is found to be of
nonuniversal nature. The DW presents a crossover from the
depinning transition to a flow regime. In the flow regime, the
velocity depends on the time evolution of DW magnetic texture
and presents a nonmonotonous variation with the magnetic
field. Below the Walker limit [35] H � Hw = (1/2)αMs ,
where α is the so-called Gilbert damping parameter and Ms

is the saturation magnetization, the DW is expected to follow
the so-called steady-state regime for which its magnetic texture
remains fixed during the motion. Above Hw the DW velocity
presents a negative slope with the drive, and it recovers a
linear asymptotic variation at sufficiently high drive (H �
Hw) which corresponds to the so-called asymptotic preces-
sional regime. Experimentally, the steady-state regime is rarely
observed [36–38]. As the Walker field is usually much smaller
than the depinning field (Hw � Hd ), it is generally hidden by
pinning [33]. This is the case for the curve of Fig. 1 where
the linear variation corresponds to the precessional asymptotic
regime [22,33].

B. Universal glassy dynamics

As shown in Refs. [21,22], the universal features of driven
glassy DW dynamics, including the whole creep regime and
the depinning transition, can be made explicit by introducing
the reduced variables H/Hd, T /Td , and v/vT , where Hd, Td ,
and vT are material- and temperature-dependent parameters
characterizing DW pinning. It is worth stressing that such
a description is self-consistent: The velocities of depinning
and creep regimes are described by universal (though very

different) functions of the same set of three above-mentioned
reduced variables. In the following, we describe the form of
such functions. Table I presents an overview of parameters
describing the DW dynamics.

For the creep regime [0 < H < Hd (T )], the DW velocity
is described by an Arrhenius law,

v(H, T ) = v(Hd, T ) exp

(
− �E

kBT

)
, (1)

with the effective pinning barrier height given by

�E = kBTd (T )

[(
H

Hd

)−μ

− 1

]
, (2)

where kBTd is the characteristic pinning energy scale and
μ (=1/4) is the universal creep exponent. v(Hd, T ) corre-
sponds to the velocity at depinning. In Ref. [21], it was
shown that the ratio �E/kBTd is a universal function of the
reduced magnetic-field H/Hd , (i.e., material and temperature
independent) which controls the creep velocity in the whole
0 < H < Hd range. The asymptotic behaviors of the pinning
barrier height are a power-law divergence �E ∼ (H/Hd )−μ

close to zero drive (H → 0) and a linear collapse �E ∼
μ(1 − H/Hd ) close to the depinning threshold (H → Hd ).

For the depinning transition [Hd (T ) < H < Hu(T )], the
combined contributions of magnetic field and temperature
on the velocity are described by a generalized universal
homogeneous function [28,31,39,40] of the form

y = g

(
x

x0

)
, (3)

where the scaled dimensionless variables are defined as
y = (v/vT )(T/Td )−ψ and x = [(H − Hd )/Hd ]β (T/Td )−ψ .
A rather good approximation for the shape [22] of the g

function is

g(x/x0) = [1 + (x/x0)n]1/n, (4)

where n (=8.7 ± 0.4) tunes the width of the crossover and
x0 = 0.65 ± 0.04 is a universal constant. The DW velocity
presents two universal asymptotic power-law behaviors. At the
depinning threshold (H = Hd ), the temperature variation can
be written as

v(Hd, T ) = vT (Hd, T )

(
T

Td

)ψ

, (5)

where ψ (=0.15) is a depinning exponent and vT (Hd, T ) is a
depinning velocity. Just above the depinning threshold [22] for
H � Hd [1 + (0.8(Td/T )−ψ )1/β], the velocity is dominated by
the driving field as

v(H, T ) ≈ vT (Hd, T )

x0

(
H − Hd

Hd

)β

, (6)

where β (=0.25) is another depinning exponent. For most of
the studied magnetic materials, the thermal activation energy
is much smaller than the pinning energy (T � Td ), and part
of the velocity curve just above Hd presents good agreement
with the predictions of Eq. (6) as shown in Fig. 1.

To summarize, the set of Eqs. (1)–(3) constitutes a self-
consistent description of the DW glassy dynamics observed
below the universality limit (H � Hu). The creep motion
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TABLE I. Parameters describing domain-wall dynamics, classified according to the length scale at which they emerge.

Characteristic length scale Variable Name

Micromagnetic continuum description A Stiffness energy
Keff Anisotropy energy
Ms Saturation magnetization
α Gilbert damping factor
γ Gyromagnetic factor

Microscopic domain-wall scale L < Lc � ∼
√

Keff
A

Domain-wall width parameter

DW micromagnetic structure σ ∼ √
KeffA Domain-wall energy

mf l = γ�α

1+α2 Domain-wall mobility (flow regime)
DW pinning D Strength of the pinning disorder

ξ Correlation length of the disorder
fpin ∼

√
D

ξ
Pinning force [cf. Eqs. (14) and (15)]

Mesoscopic DW scale L ∼ Lc Td Depinning temperature [cf. Eqs. (1) and (2)]
(Larkin regime) Hd Depinning threshold [cf. Eqs. (1) and (2)]

vT Depinning velocity [cf. Eq. (5)]
Macroscopic DW scale L � Lc μ Creep exponent [cf. Eq. (2)]
(Random manifold regime) creep regime �E/(kBTd ) Universal energy barrier function [cf. Eq. (2)]
Depinning transition v(Hd ) Velocity at depinning [cf. Eqs. (1) and (2)]

β Depinning exponent (field effects) [cf. Eq. (6)]
ψ Depinning exponent (thermal effects) [cf. Eq. (5)]
x0 Universal metric factor [cf. Eq. (6)]

g(x/x0) Universal function of depinning [cf. Eq. (3)]

and the depinning transition are both described by universal
functions, and their asymptotic limits agree with the pre-
dictions from models of elastic lines in disordered media.
The nonuniversal character of DW motion is caught by only
three purely material- and temperature-dependent parameters
corresponding to the depinning threshold Hd , temperature Td ,
and velocity vT .

C. Self-consistent analysis of DW dynamics

The determination of material- and temperature-dependent
parameters requires to perform simultaneously a fit of the
creep regime [Eqs. (1) and (2)] with adjustable velocity-
magnetic-field coordinates at depinning [Hd, v(Hd )] and of
the depinning transition [Eq. (6)] over an adjustable range (with
an upper bound H = Hu). The following procedure can be
used:

(1) Step 1: The upper boundary of the creep regime
[Hd, v(Hd )] is assumed to correspond to the inflection point
of the velocity curves (see the diamond in Fig. 1). Indeed,
the curvature is predicted to change the sign at the depinning
transition: positive for the creep regime [H < Hd , see Eqs. (1)
and (2)] and negative for the depinning regime [H > Hd , see
Eq. (6)].

(2) Step 2: An estimate of Td is then deduced from a fit of
v(H ) with Eqs. (1) and (2) (with μ = 1/4) over the range of
0 < H < Hd (see the dot-dashed line in Fig. 1).

(3) Step 3: In order to improve the accuracy for the values
of Hd and v(Hd ) a fit of Eqs. (1) and (2) is performed for
increasing values of H . The upper boundary of the creep
regime [Hd, v(Hd )] can also be defined as the limit above
which the fit and the experimental curve start to diverge. Step
2 can then be repeated to improve the accuracy for the Td value.

(4) Step 4: A final fine-tuning of Hd and v(Hd ) is deduced
from a fit of Eq. (6) with β = 0.25 and x0 = 0.65 over the
largest magnetic-field range (see the dashed curve in Fig. 1).

(5) Step 5: When the linear asymptotic precessional flow
regime is observed (Hw � Hd ), the coordinates [Hd, v(Hd )]
can be also finely adjusted using Eq. (5) and the observed
coincidence between vT and the velocity of the linear flow
regime for Pt/Co/Pt films [22] (see the star in Fig. 1).

This procedure was used to analyze 50 velocity curves
reported in the literature.

III. DOMAIN-WALL PINNING

In this section, we first present the effective pinning param-
eters (Hd, vT , and Td ) deduced from the analysis of the glassy
dynamics for different materials and various temperatures. We
then propose a model, which relates those parameters to the
micromagnetic and microscopic pinning parameters.

A. Effective pinning parameters

A synoptic presentation of the effective pinning parameters
is proposed in Figs. 2 and 3. See also Table II for details and
for the values of micromagnetic parameters.

A plot of the depinning field Hd versus depinning tempera-
ture Td is shown in Fig. 2. As can be observed, the data points
are rather dispersed. The values of Hd and Td extend over
two orders of magnitude (Hd : from 3 mT for CoFeB/MgO to
300 mT for TbFe and Td : from 600 K for (Ga,Mn)(As,P) to
50 000 K for CoNi). From Fig. 2 it is not evident to extract
general trends for the variations of the effective height pinning
barrier kBTd with the depinning threshold Hd . The analysis of
those variations is extensively discussed in the following.
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FIG. 2. Depinning temperature Td versus depinning field Hd . For
each magnetic material, the legend indicates the film thickness, the
explored temperature range, and the reference. For the CoFeB films,
the letter “a” means annealed.

FIG. 3. (a) Velocity at depinningv(Hd ) and (b) depinning velocity
vT versus depinning field Hd. v(Hd ) corresponds to the measured
upper limit of the creep velocity. vT (Hd ) was deduced from Eq. (5) and
is only dependent on material and temperature. The global increasing
trend of vT (Hd ) is materialized by two dashed lines which correspond
to linear variations of depinning velocity (vT = mHd ) for two constant
slopes (m = 0.15 and 1.1 m s −1 mT−1). For the CoFeB films, the
letter a means annealed.

Now let us discuss the results obtained for the velocity
at depinning v(Hd ) and the depinning velocity vT (Hd ) [see
Eq. (5)]. As shown in Fig. 3(a), v(Hd ) globally increases with
increasing Hd value except for some materials and covers a
typical range extending from 1 to 100 m/s. The significantly
lower values obtained for TbFe compared to other magnetic
materials could be due to an underestimation of the depinning
threshold since no change in curvature sign was observed in
the velocity curve of Ref. [21]. For the depinning velocity vT , a
global increase with Hd is observed in Fig. 3(b) except for some
materials. This trend can be framed by two linear variations of
the depinning velocity (vT = mHd ) for two constant slopes
[see the dashed lines which correspond to m = 0.15 and
1.1 m s −1 mT−1].

More generally, the map of effective pinning parameters
presented in Figs. 2 and 3(b) is the main result of the present
paper. It serves as a starting point for the discussion on the
microscopic origin of pinning proposed in the following.

B. Model for domain-wall pinning

In order to go further in the analysis of pinning properties,
the effective pinning parameters deduced from velocity curves
(Hd, vT , and Td ) have to be related to the microscopic
characteristics of pinning and ultimately to the micromagnetic
parameters of each material.

The universal functions describing the velocity are con-
sistent with the general theoretical predictions obtained by
solving the large-scale nonequilibrium behavior of a driven
elastic string in random medium [41]. We thus expect to
obtain Hd, vT , and Td from a simple dimensional analysis
of such a model at relatively short length scales. We follow
the approaches of Refs. [4,42,43] which consider the DW as
an elastic line not taking into account the detailed magnetic
texture [44,45] and express the model parameters in terms of
micromagnetic quantities.

The variation of the free energy associated with the displace-
ment of a DW segment of length L over a transverse distance
u is roughly given by

δF (L, u) = σ tu2/L + δFpin(L, u) − 2MsHtLu, (7)

where the magnetization saturation Ms , and the DW elastic
energy σ ( ≈4

√
AKeff for a Bloch wall, where A and Keff are

the stiffness and the effective anisotropy constant, respectively)
are micromagnetic parameters. t is the layer thickness (see
Table I for an overview of the parameters controlling domain-
wall pinning). In Eq. (7), the first term corresponds to the elastic
energy associated with the elongation of domain-wall δFel , the
second is the pinning energy δFpin, and the third term stands
for the contribution of the driving magnetic-field δFH .

The DW is expected to be depinned for an applied magnetic-
field H = Hd such that no metastable states with zero velocity
exist for H > Hd . Larkin realized that this happens when a
DW segment of a characteristic size Lc displaces over the
characteristic range of the effective pinning potential (u ≈ ξ )
or pinning force correlation length in response to the field.
The so-called Larkin length Lc is field independent and can be
estimated from δFpin(ξ, Lc ) ≈ δFel (ξ, Lc ). This estimate can
be explicitly performed after modeling the scaling properties of
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TABLE II. Material- and temperature-dependent parameters. For each material, the thickness (t) and the temperature of the experiment
[T (K)] are indicated. The depinning temperature (Td ), the magnetic-field (Hd ), and the domain-wall velocity at the depinning field [v(Hd )]
are deduced from a fit of the velocity curves (see the text). mf l (m s−1 mT−1) is the best fit for the slope of the linear precessional regime. The
saturation magnetization Ms , the DW energy σ , and the DW thickness parameter � are extracted or deduced from the references indicated
below the name of material. The numbers in the parentheses are the error bars.

v(Hd ) mf l Ms σ �

Material t (nm) T (K) Td (K) Hd (mT) (m/s) (m s−1 mT−1) (kA/m) (μJ/m2) (nm)

Pt/Co/Pt 0.5 293 2558(10) 28.5(2) 5.7(0.2) 0.276(0.005) 910 9030 6.2
Ref. [33] 0.6 4145(25) 56(1) 10.6(1.0) 0.325(0.005) 1130 11700 5.5

0.7 6490(30) 76(1) 16.6(1.0) 0.370(0.005) 1200 10700 6.7
0.8 9720(45) 72(1) 18.4(1.0) 0.454(0.005) 1310 10200 8.6

Irradiated 0.5 2260(50) 15(1) 7.5(1.0) 0.676(0.005) 700 3080 15.6
Pt/Co/Pt 0.45 293 1900(100) 91(4) 59(2) 800 7400 5.8
Ref. [26] 200 2500(100) 110(5) 61(2) 1120 12300 6.9

150 2700(100) 135(5) 90(2) 1260 14700 7.3
100 3200(100) 141(5) 75(2) 1370 16700 7.6

50 3500(100) 150(5) 81(2) 1470 18500 7.9
Pt/Co/Pt 0.5 293 2650(50) 57(3) 12.0(0.5) 0.288(0.005) 910 9030 6.2
Ref. [22] 225 2750(50) 75(3) 14.8(0.5) 0.307(0.005) 1120 12300 6.9

150 2700(50) 101(3) 18.6(0.5) 0.280(0.005) 1330 16000 7.5
100 3090(50) 107(3) 18.7(0.5) 0.260(0.005) 1470 18500 7.9

50 2860(50) 120(3) 19.5(0.5) 0.292(0.005) 1600 21000 8.2
10 660(50) 130(3) 21.0(0.5) 0.363(0.005) 1720 23500 8.5

4.4 450(50) 136(3) 20.0(0.5) 0.364(0.005) 1730 23700 8.5
Au/Co/Au 1.0 318 28400(1500) 88.0(1.0) 8.7(1.0) 1400
Ref. [58] 273 29000(1500) 96.5(1.0) 8.4(1.0) 1400

243 29300(1500) 102.5(1.0) 7.3(1.0) 1400
213 29400(1500) 110.0(1.0) 7.5(1.0) 1400
183 28800(1500) 115.0(1.0) 7.4(1.0) 1400
150 25800(1000) 122.6(1.0) 9.7(1.0) 1400

Co20Fe60B20 an 1 293 1800(100) 6.6(0.2) 1.7(0.5) 1100 9200 9.7
Co20Fe60B20 ag 1800(100) 4.8(0.2) 2.3(0.5) 1000 2700 30.2
Co40Fe40B20 an 1400(100) 5.0(0.2) 2.0(0.5) 880 7400 10.7
Co40Fe40B20 ag 2000(100) 4.3(0.2) 4.6(0.5) 1100 4900 21
Co60Fe20B20 an 2200(100) 3.5(0.5) 2.3(0.5) 1100 5100 27.7
Ref. [55]
Co20Fe60B20 an 1 293
Ref. [9]
Dose × 1019 He/nm2

0 2640(100) 10.5(0.2) 2.1(0.5) 880
0.1 2580(100) 10.2(0.2) 2.4(0.5) 860
0.2 2570(100) 10.9(0.2) 2.4(0.5) 890
0.4 2640(100) 11.4(0.2) 3.0(0.5) 760
0.6 2500(100) 11.4(0.5) 3.2(0.5) 810
0.8 2510(100) 17(0.2) 3.8(0.5) 840
1 2540(100) 22.4(0.2) 3.3(0.5) 770
1.2 2670(100) 23.0(0.2) 2.9(0.5) 710
1.4 2680(100) 25.0(0.5) 2.8(0.5) 680
1.6 2300(100) 46.3(0.5) 1.7(0.5) 670
TbFe 5 × 1.8 271 5750(50) 295(5) 1.4(0.1)
Ref. [21] 289 4200(50) 225(5) 1.8(0.1)

304 3050(50) 130(5) 1.7(0.1)
310 2600(50) 100(5) 1.7(0.1)
315 2200(50) 80(5) 1.8(0.1)

(Ga,Mn)(As,P) 12 10 616(10) 6.2(0.1) 1.8(0.1) 0.537(0.005) 38 130 11.1
Ref. [21] 30 1440(20) 5.8(0.1) 1.8(0.1) 0.564(0.005) 34 100 11.6

50 1140(20) 5.6(0.1) 2.0(0.2) 0.566(0.005) 26 60 11.7
65 815(10) 5.5(0.1) 2.3(0.1) 0.58(0.01) 18 30 12.0

[Co/Ni] superlattice 1.1 × 3 293 51300(500) 25(1) 5.1(0.1) 930 6900 5.8
Ref. [56]
[Co/Ni] superlattice 1.2 × 4 293 30000(10000) 12.5(2.0) 7.5(2.5) 680 8300 6.95
Ref. [57]
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δFpin(u,L), typically using collective pinning theory if pinning
is weak [24,25].

At depinning, the elastic and Zeeman terms are of the same
order [δFel (Lc, ξ ) ≈ δFH (Lc, ξ )], establishing a connection
between the collectively pinned DW segment length Lc and the
depinning field Hd . Moreover, we can assume that the typical
pinning energy barrier height encountered in Eqs. (2) and (5)
corresponds to the pinning energy at the depinning threshold
kBTd ≈ δFpin(Lc, ξ ). As the latter energy contribution should
be also on the same order as δFel (Lc, ξ ), using Eq. (7) we
obtain

kBTd = (ξ 2σ t )/Lc, (8)

Hd = σξ
/(

2MsL
2
c

)
, (9)

which relate the depinning temperature and magnetic field to
the microscopic length scales Lc and ξ and to the micromag-
netic parameters σ and Ms .

As this model is essentially based on scaling arguments,
it is expected to describe correctly the temperature variation
of Lc and ξ and to provide a rough estimate of their magni-
tude from the knowledge of velocity response parameters Td

and Hd .
Note that the dynamics of DW magnetic texture may play

a role in the physics of depinning threshold Hd as evidenced
in Refs. [44,45]. The discussion of those models, which are
based on an oversimplified description of DW pinning [45] or
magnetic structure [44], is beyond the scope of this paper. The
internal degrees of freedom of the DW is not accounted in the
simple elastic line model.

Let us now discuss the DW velocity at depinning v(Hd, T )
and the depinning velocity vT . In Eqs. (5) and (6), vT is
defined as a purely scaling factor, and it is important to give
to this parameter a precise physical meaning. Following the
discussions in Refs. [22,26], we assume that vT corresponds
to the velocity that DWs would have in the absence of pinning,
which yields

vT (Hd, T ) = mf l (Hd, T )Hd (T ), (10)

where mf l (Hd, T ) is the mobility of the DW in the flow regime
at the depinning field Hd . Strictly, mf l (Hd, T ) has a non-
monotonous field dependence with two important reference
values: mf l (Hd, T ) = γ�/α for Hd � Hw and

mf l (Hd, T ) = γ �α

1 + α2
(11)

for Hd � Hw, where � = √
A/Keff is the domain-wall width

parameter, α is the Gilbert damping parameter, and γ is
the gyromagnetic factor (=1.76 × 1011 Hz T−1). For the data
of Refs. [21,22,33] as in the case of Fig. 1, mf l (Hd, T )
corresponds to the mobility of the asymptotic precessional flow
regime (i.e., Hw � Hd ).

C. Thermal effects

The thermal activation produces fluctuation of the DW
position which, if strong enough, can appreciably smooth the
effective random pinning potential experienced by DWs. As
a result, the correlation length of the disorder ξ (T ) and the

Larkin length Lc(T ) are expected to increase with increasing
temperature. For a weakly pinned elastic line, Nattermann
et al. [42] and Chen and Marchetti [43] proposed the following
temperature variations: ξ (T ) = ξ0[1 + (T/Td )]3 and Lc(T ) =
Lc0[1 + (T/Td )]5, which are interpolation formulas between
power-law variations deduced from scaling arguments and
values (ξ0 and Lc0) corresponding to the limit of zero thermal
fluctuation of the DW position. More recently, Agoritsas et al.
[46] proposed the analytic predictions,

Lc(T , ξ ) = 4π

σ tD2

(
kBT

f (T/Td )

)5

, (12)

and

ξ (T ) =
√

3(4π )5/6

σ tD

(
kBT

f (T/Td )

)3

, (13)

where the function f is given by the implicit equation f 6 =
4π (1 − f )(T/Td )6. The zero-temperature values are given by

Lc0 = (4π )1/6 (kBTd )5

σ tD2
, (14)

and

ξ0 =
√

3(4π )5/6 (kBTd )3

σ tD
. (15)

In Eqs. (12)–(15), D is the strength of disorder [46–48], re-
flecting the typical amplitude of the quenched random pinning
potential and has the dimension of the square of an energy.
Note that Eqs. (14) and (15) indicate that Lc0 and ξ0 are
also expected to present intrinsic temperature variations due to
their dependency on micromagnetic and pinning parameters.
Such intrinsic variation must be hence distinguished from the
extrinsic variation explicitly given in Eqs. (12) and (13), which
becomes important only when the temperature T is close to Td .

D. Pinning and domain-wall dynamics

In order to get a better insight into the variation of DW
dynamics with the magnetic material and temperature, it is
interesting to relate the pinning parameters (see Figs. 2 and 3)
with the micromagnetic and microscopic pinning parameters.

A more intuitive insight of the predictions of Ref. [46]
can be deduced from scaling arguments. Following Ref. [4]
and neglecting thermal effects (i.e., Lc = Lc0 and ξ = ξ0) the
pinning energy can be modeled by collective pinning theory
[24] δFpin(Lc0, ξ0) = fpinξ0

√
nξ0Lc0, where n is the density

of pinning centers (≈1/ξ 2
0 ) and fpin is a typical pinning force.

Using Eqs. (8) and (9) leads to

(kBTd )3 = σ t (fpinξ0)2ξ0, (16)

which for f 2
pinξ

2
0 = D/[

√
3(4π )5/6] is equivalent to Eq. (15)

and to

(Hd )3 = (fpinξ0)4

ξ 7
0 σ t4(2Ms )3

, (17)

respectively. Eqs. (16), (17), (10), and (11) now fully relate
the pinning parameters controlling DW dynamics (Hd, vT ,
and Td ) to the micromagnetic parameters (σ, Ms, �, and
α) and the microscopic pinning parameters (fpin and ξ0).
Therefore, combining the description of universal behaviors
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FIG. 4. Characteristic lengths versus reduced temperature. �, ξ ,
and Lc are the domain-wall width parameter, the correlation length
of the disorder, and the Larkin length, respectively. The hatched areas
highlight the range of variation of the three lengths.

[see Eqs. (1)–(3), (5), and (6) in Sec. II B], the predictions
of model for DW pinning [see Eqs. (16) and (17)] and
experimental measurements of the micromagnetic parameters,
one can estimate the microscopic parameters controlling DW
pinning.

IV. FUNDAMENTAL PINNING SCALES

By means of the scaling model of pinning developed in
Sec. III, it is possible to discuss the fundamental pinning
scales from the map [see Figs. 2 and 3(b)] of material-
and temperature-dependent pinning parameters controlling
domain-wall dynamics.

A. Characteristic length scales of pinning

Using Eqs. (8) and (9), we can deduce the range of the
pinning potential,

ξ = [(kBTd )2/(2MsHdσ t2)]1/3, (18)

and the Larkin length,

Lc = [
(σkBTd )

/(
4M2

s tH 2
d

)]1/3
. (19)

Those relations are expected to provide estimations of values ξ

and Lc and to reveal their temperature variation [26]. Following
Eqs. (18) and (19), estimations of ξ and Lc rely on the values of
Ms andσ . As can be seen in Table II, this eliminates the analysis
for materials Au/Co/Au, CoFeB for different irradiation doses,
and TbFe. Note that we could also consider the Larkin area
Lcξ [=(kBTd )/(2HdMst )], which is independent of σ .

As can be observed in Fig. 4 for all the reported materials
[Pt/Co/Pt, Co/Ni, (Ga,Mn)As, and CoFeB/MgO], the range
of values for the pinning correlation length (ξ ≈ 20–50 nm)
and the Larkin length ( Lc ≈ 40–170 nm) are relatively well
separated. The ratio between Lc and ξ scales the density of
pinning sites along the DWs. Its relatively small values suggest
that DWs pinning involves only few pinning sites (two to four)
over the Larkin length. Moreover, the correlation length of
the disorder is larger than the domain-wall width parameter

(� ≈ 5–20 nm) except for CoFeB/MgO for which we have
� ≈ ξ . This indicates that generally the weak pinning origi-
nates from fluctuations of pinning over distances longer than
the domain-wall width parameter.

B. Temperature variations of the pinning
strength and length scales

Let us now discuss the temperature variation of ξ and Lc.
In order to compare the temperature variation for different
materials and theoretical predictions we first normalize the data
for each material to values of ξn and Lcn, which are assumed to
be temperature independent. Those values were chosen in order
for the ratios ξ (T )/ξn and Lc(T )/Lcn to follow the temperature

FIG. 5. (a) Reduced correlation length of the disorder ξ/ξn and (b)
reduced Larkin length Lc/Lcn as a function of reduced temperature
T/Td . The solid lines in (a) and (b) correspond to the predictions of
Eqs. (12) and (13), respectively. All the data correspond to single
samples and variable temperatures except the shaded red points
(Pt/Co/Pt: Ref. [33]), which correspond to room temperature and
different sample thicknesses. The normalization values (ξn and Lcn)
are indicated in the figures for each material. In the range of 0.02 <

T/Td < 0.1, the data agree well with theoretical predictions. For
T/Td < 0.02, there is a drop in both ξ/ξn and Lc/Lcn.
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FIG. 6. Square root of the strength of the disorder as a function
of reduced temperature T/Td .

variation predicted by Eqs. (12) and (13) over the largest range
of T/Td , respectively.

The results are shown in Fig. 5 for materials for which both
σ and Ms are reported in the literature. Following Eqs. (12) and
(13), ξ/ξn and Lc/Lcn are predicted to decrease rather weakly
as the temperature is reduced. In contrast, the experimental data
present an important variation with temperature. This suggests
that the thermal behavior of ξ (T ) and Lc(T ) is dominated by
the temperature variation of the micromagnetic and pinning
parameters of ξ0(T ) and Lc0(T ) [reflected by Eqs. (14) and
(15)] and not by thermal fluctuations of the DW position.

Assuming now negligible fluctuations of the DW position,
the data of Fig. 5 can be viewed as the relative tempera-
ture variation of ξ0(T ) and Lc0(T ). Different regimes can
be clearly distinguished. For T/Td > 0.02, ξ0(T )/ξn and
Lc0(T )/Lcn globally tend to weakly increase with temperature.
For T/Td > 0.10, the large observed fluctuations suggest a
strong sample-dependent temperature behavior. For T/Td <

0.02, both ξ0(T )/ξn and Lc0(T )/Lcn are observed to drop with
decreasing temperature. The decrease in ξ0(T )/ξn can reach a
factor of 4, which suggests that ξ0(T ) becomes close to the
DW width �. Therefore, we can infer the drop observed in
Fig. 5 to reflect a crossover between different pinning length
scales. At sufficiently large reduced temperature (T/Td >

0.02), the correlation length of the disorder is larger than the
DW thickness (ξ0 > �). At low temperature (T/Td < 0.02),
the pinning is controlled by the DW width, which defines the
correlation length of the disorder (ξ0 ≈ �).

In order to further analyze the pinning, it is interesting
to discuss the strength of pinning disorder. The value of the
strength of the pinning disorder can be deduced from Eq. (14)
{D2 = (4π )1/6[(kBTd )5]/[σ tLc0]}. In Fig. 6, we plot

√
D

(which has the dimension of an energy) as a function of the
ratio T/Td . Above the crossover (T/Td > 0.02), the strength
of pinning disorder is almost temperature independent for the
Pt/Co/Pt films (

√
D ≈ 200 meV) as expected for a quenched

disorder. For (Ga,Mn)(As,P), the slight decrease in
√

D with
increasing temperature is probably associated with a not
enough stringent estimation of the DW energy σ (see Table II).

FIG. 7. Ratio between depinning velocity and mobility in the flow
regime versus the depinning field. The equality between those two
quantities indicates that the depinning velocity corresponds to the
velocity the DW would have in the absence of pinning.

For T/Td < 0.02, we observe a drop in the pinning strength. At
low temperatures, DWs become sensitive to pinning sites with
both lower strength and shorter range, which are unefficient at
higher temperatures. This also suggests the existence of differ-
ent pinning strength ranges and a crossover between pinning
regimes tuned by the magnitude of thermal activation. A better
understanding of this issue requires further investigations.

C. Depinning velocity

Let us now discuss the depinning velocity vT , which is
important as it sets the fundamental time scale, once known
as the length scales characterizing the pinning. As shown in
Fig. 1, the value of vT deduced from Eq. (5) is found to coincide
with the linear extrapolation of the flow regime observed at
high drive. In order to test the generality of this observation,
we have analyzed the flow regime for different materials and
temperatures. Table II reports the value of DW mobility mf l

deduced from a linear fit of the linear flow regime, which was
only observed for Pt/Co/Pt and (Ga,Mn)As films. In Fig. 7, we
report the variation of the ratio vT [(Hd, T )/mf l (T ) with the
depinning field Hd . As can be observed, all the points collapse
on a single line. The slope is equal to 1, which indicates that
the depinning velocity can be written vT (Hd, T ) = mf l (T )Hd .
We can deduce that the depinning velocity vT corresponds to
the flow velocity that the DW would have in the absence of
pinning. Following Eq. (5), this suggests that the DW velocity
of the glassy dynamics scales with the domain-wall width
parameter � and damping parameter α following Eq. (11).

V. CONCLUSION

In conclusion, we propose a quantitative and comparative
study of domain-wall pinning in different ferromagnets.
The latter is based on a clear discrimination between
universal and material-dependent behaviors of the creep and
depinning dynamical regimes. The determination of effective
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pinning parameters allows to explore the interplay between
micromagnetic and pinning properties of ferromagnets and
domain-wall dynamics.

Our paper provides a better understanding of the micro-
scopic origin of pinning in magnetic systems. Our analysis
provides a functional dependency of DW glassy velocity with
the micromagnetic and pinning parameters. This should have
important implications for a comparison between experimental
and theoretical studies as micromagnetic simulations on one
hand [49] and to statistical models for interface motion in
disordered elastic systems [46,50] on the other. In particu-
lar, the latter allows a more stringent test for the different
equilibrium and depinning universality classes proposed to
describe the nonequilibrium dynamics at different length scales
and velocities. Moreover our analysis should help for a better
understanding of the chiral effects on DW dynamics [19,51,52]
and, in particular, the contribution of the Dzyaloshinskii-
Moriya interaction. They should manifest through the funda-
mental field, temperature, and velocity scales controlling the
macroscopic universal response of DWs.
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APPENDIX: MICROMAGNETIC
AND PINNING PARAMETERS

Here, we discuss technical details on the determination of
micromagnetic parameters, which are listed in Table II together
with the fundamental pinning parameters controlling domain-
wall dynamics. The values of magnetization saturation Ms ,

domain-wall energy σ , and thickness parameter � are directly
reported from the publications when they are available or
deduced from the relations σ = 4

√
AKeff and � = √

A/Keff ,
where A is the stiffness energy and Keff is the effective
anisotropy.

For Pt/Co/Pt, the data were taken from Refs. [33] (dif-
ferent thicknesses t and room temperature), [26] (thickness
t = 0.45 nm and variable temperature), and [22] (thickness
t = 0.5 nm and variable temperature). For the 0.5-nm-thick
Pt/Co/Pt film [22], the room-temperature micromagnetic
parameters Ms, σ , and � correspond to those of the 0.5-nm-
thick film of Ref. [33]. As proposed in Ref. [26], the thermal
dependence of Ms was deduced from polar magneto-optical
Kerr rotation. Since A ∼ [Ms (T )]2 and Keff ∼ Ms (T ), we
assumed the following temperature variations for the DW
energy σ ∼ [Ms (T )]3/2 and the domain-wall width parameter
� ∼ [Ms (T )]1/2.

For Au/Co/Au, Ms was taken equal to its bulk value [53].
For (Ga,Mn)(As,P), the temperature variation of the satura-

tion magnetization Ms was deduced from a polar magneto-
optical Kerr effect measurement and was found similar to
that observed for (Ga,Mn)As [36,38]. The Curie temperature
is 74 ± 1 K. According to the concentration of Mn atoms,
we assumed Ms (T = 0 K) = 40 kA/m [54]. The domain-wall
width parameter � was deduced from the slope (mf l) of
the precessional flow regime and the prediction of the one-
dimensional model: mf l = v/H = αγ�/(1 + α2) with γ =
1.76 × 1011 Hz/T and α = 0.3 [36,38]. The obtained value
for � = 11.5 ± 0.5 nm is almost temperature independent and
close to the value reported in Ref. [54] (� = 8 ± 1 nm).

For CoFeB/MgO with different Co and Fe concentrations,
the data were taken from Ref. [55]. The DW energy is deduced
from σ = 4Keff� with Keff = MsHk,eff/2.

For CoFeB/MgO with different irradiation doses, the data
were taken from Ref. [9].

For the [Co/Ni] superlattices, data were taken from
Refs. [56,57]. For the DW energy, we used σ = 4Keff/�. For
the stiffness energy, we took the value (A = 10 pJ/m) reported
in Ref. [57].
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