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Homogeneous and heterogeneous nucleation of skyrmions in thin layers of cubic helimagnets
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Formation of isolated chiral skyrmions by homogeneous and heterogeneous nucleation has been studied in
thin layers of cubic helimagnets via elongation of torons and chiral bobbers, respectively. Both torons and
bobbers are localized in three dimensions, contain singularities, and, according to the theoretical analysis within
the standard phenomenological models, can exist as metastable states in saturated and modulated phases of
noncentrosymmetric ferromagnets. Their elongation into the defect-free skyrmion filament is facilitated by small
anisotropic contributions making skyrmion cores negative with respect to the surrounding parental state. We show
that isolated magnetic torons pose the same problem of compatibility with a surrounding phase as the torons in
confinement-frustrated chiral nematics [I. I. Smalyukh et al., Nat. Mater. 9, 139 (2010)]. We underline the distinct
features of magnetic and liquid-crystal torons and calculate phase diagrams indicating their stability regions.
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I. INTRODUCTION

In magnetic compounds lacking inversion symmetry, the
underlying crystal structure induces a specific asymmetric
exchange coupling, the so-called Dzyaloshinskii-Moriya in-
teraction (DMI) [1]. Within a continuum approximation for
magnetic properties, the DMI is expressed by Lifshitz invari-
ants (LI) involving first derivatives of the magnetization m with
respect to the spatial coordinates,

L(k)
i,j = mi∂mj/∂xk − mj∂mi/∂xk, (1)

and in a general case of cubic helimagnets has the following
form [1,2]:

wD = L(x)
y,z + L(y)

x,z + L(z)
x,y = m · rotm. (2)

A variety of noncollinear magnetic states (e.g., one-
dimensional helicoid and conical phases) is stabilized owing
to this relativistic DMI.

LIs (1) also help to overcome the constraints of the
Hobart-Derrick theorem [3] and yield countable particlelike
topological excitations, chiral skyrmions [2,4–6]. Recently,
skyrmion lattice states (SkLs) and isolated skyrmions (ISs)
were discovered in bulk crystals of chiral magnets near
the magnetic ordering temperatures [7–9] and in nanos-
tructures with confined geometries over larger temperature
regions [10–13].

The small size and easy manipulation of skyrmions by elec-
tric fields and currents [14–16] generated enormous interest
in their applications in information storage and processing
[17,18]. Furthermore, the complex three-dimensional internal
structure of ISs and character of skyrmion-skyrmion interac-
tion are imposed by a surrounding “parental” state, e.g., a state
homogeneously magnetized along the field (repulsive inter-
skyrmion potential) [19], a conical phase with the wave vector
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along the field (attraction) [20,21], or a tilted ferromagnetic
state in magnets with polar crystal structure and easy-plane
anisotropy (anisotropic potential) [22], which extends even
further the skyrmion functionalities in prototype spintronic
devices [21].

The twisting magnetization m in the skyrmions also
matches boundary conditions at the confining surfaces of
magnetic nanostructures. In particular in nanolayers of cubic
helimagnets [23,24] with thickness L and free boundary con-
ditions at the lower (z = −L/2) and upper surfaces [z = L/2;
Fig. 1(a)], the structure of skyrmions is altered by additional
chiral twists [23,24]. The skyrmion solutions at the surfaces are
the result of the interplay between Lifshitz invariants L(x,y)

i,j ,

requiring skyrmion helicity γ = π/2, and L(z)
i,j , leading to

the inward and outward rotational sense of the magnetization
[see the structure of a Bloch-type skyrmion for z = 0 and
z = ±L/2 in Fig. 1(a)]. Thus, the skyrmion in thin layers of
cubic helimagnets could be visualized as a composite object.
The central part in the middle of the layer has higher (positive)
magnetic energy than the conical phase (Fig. 1(b); see also
Fig. 6(a) in Ref. [25]). However, the negative energy density in
a narrow surface region associated with the additional twists
may enable the lower total energy of skyrmions and thus lead
to their thermodynamical stability.

Topological point defects (Bloch points [26,27]) may dis-
rupt the smooth magnetization rotation and extend even further
the variety of particlelike states in thin layers of cubic heli-
magnets. In particular due to the specific energetics exhibiting
an excessive positive energy over the film thickness, isolated
skyrmions may break and transform into a pair of chiral
bobbers attached to the upper and the lower surfaces of the
layer [Fig. 1(c)] [28]. Then, the structure of the bobbers is
balanced by the negative energy contribution stemming from
additional surface twists and the positive energy due to the
point defect [Fig. 1(d)]. The Bloch point (BP) that terminates
the structure of a bobber is situated at a finite distance from
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FIG. 1. Localized particlelike states in cubic thin-film helimagnets. (a) Skyrmionic defect-free filament surrounded by the field-polarized or
conical phases. In thin layers of cubic helimagnets, the structure of a skyrmionic filament becomes additionally modulated in the near-surface
region of width LD/10. Snapshots in the transversal xy plane show the structure of skyrmions in the middle layer (z = 0, helicity value is
π/2) and for two opposite surfaces with inward and outward changes in the azimuthal angle (helicity) of the magnetization. (c) Schematic
representation of chiral bobbers, particlelike states localized near layer surfaces and culminating in two BPs. (e) Schematic representation
of magnetic torons, spatially localized three-dimensional skyrmions composed of a skyrmion filament of finite length cupped by two BPs
terminating its prolongation. (b), (d), and (f) The energy densities of skyrmions Esk , bobbers Eb, and torons Et averaged over the xy plane and
computed with respect to the energy Ec of the conical phase for h = 0.5 in the model (3), respectively.

the surface [Fig. 1(c)] [28]. The chiral bobbers may provide
an alternative approach for data encoding and thus may be
used along with skyrmions in magnetic solid-state memory
devices [29].

Interactions described by LIs (1) arise in other noncen-
trosymmetric condensed-matter systems (such as antiferro-
magnets, chiral liquid crystals, ferroelectrics, and multifer-
roics) and are also responsible for the formation of multidi-
mensional solitonic states and spatially modulated phases in
these materials. In chiral liquid crystals (LCs), a surprisingly
large diversity of naturally occurring and laser-generated topo-
logically nontrivial solitons with differently knotted nematic
fields has been recently investigated [30–32]. In particular,
a LC toron represents a localized particle consisting of two
BPs at finite distance and a convex-shaped skyrmion stretch-
ing between them [Fig. 1(e)]. Due to the gradually varying
skyrmion helicity, the energy density becomes negative in
the toron’s cross section, which is balanced by the positive-
energy contributions from two BPs [Fig. 1(f)]. Thus, such
a particle utilizes energetically favorable additional twists
and simultaneously satisfies the boundary conditions at the
confining substrates with strong surface anchoring [33,34].
Recently, a low-voltage-driven motion of such topological LC
defects with precise control of both the direction and speed was
realized in nematic fluids [33], which can be considered a LC
counterpart of the racetrack memory suggested for magnetic
skyrmions.

In the present paper, we pose a problem of skyrmion
nucleation in thin layers of cubic helimagnets, occurring via
elongation of torons (homogeneous nucleation) and chiral
bobbers (heterogeneous nucleation) since these entities are
claimed to have lower activation energy than ISs. Since the
potential barrier that must be overcome for a particle to appear
is a function of the interfacial energy with respect to the
surrounding conical or homogeneous state, the heterogeneous
nucleation is more common than the homogeneous one. In
particular in Ref. [28], the spontaneous nucleation of magnetic
bobbers has been observed during the simulated temperature
annealing with no appearing magnetic torons. The LC torons,

however, are easily laser generated, as described in Ref. [31]:
(i) the realignment of the LC director n was locally achieved
by coupling it to the optical-frequency electric field of the
laser beam; (ii) alternatively, the chiral nematic LC was locally
heated to the isotropic phase of the material by a focused laser
beam, so that the spontaneous appearance of torons could then
be prompted upon quenching it back to the LC phase.

We demonstrate that torons and bobbers are solutions of
the equations describing the equilibrium states of a noncen-
trosymmetric system and can exist as metastable states in the
saturated and modulated phases. We argue, however, that in
the isotropic case (3) both types of skyrmion nucleation are
not feasible. To facilitate elongation of torons and bobbers
and their subsequent transformation into the ordinary ISs that
pierce the layer, we apply uniaxial anisotropy as the primary
candidate making the skyrmion core negative with respect to
the surrounding state. We also construct the phase diagram of
solutions indicating the stability limits of torons and elucidate
their physical nature.

II. THE MODEL

A. A continuum energy functional

The standard model for magnetic states in cubic noncen-
trosymmetric ferromagnets is based on the energy density
functional [1,35]

w = A (grad m)2 + D m · rot m − μ0 Mm · H, (3)

including the principal interactions essential to stabilize
modulated states: the exchange stiffness with constant A,
Dzyaloshinskii-Moriya coupling energy with constant D, and
the Zeeman energy; m = (sin θ cos ψ ; sin θ sin ψ ; cos θ ) is the
unity vector along the magnetization vector M = mM , and H
is the applied magnetic field along the z axis. The film is infinite
in the x and y directions; that is, we exclude any influence of
the lateral sample boundaries on the nucleation process since
inhomogeneities near sample edges readily provide nucleation
centers for skyrmions (see, e.g., Fig. 3 in Ref. [36] or Fig. 3 in
Ref. [37] showing half skyrmions at the lateral edges, which
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can be considered two-dimensional defect-free counterparts of
chiral bobbers [28]). We also neglect the influence of dipole-
dipole interactions. The influence of dipole-dipole interaction
on the nucleation processes of torons and bobbers will be
considered elsewhere.

B. A classical spin model

To investigate the solutions for magnetic torons, we also use
the discretized version of Eq. (3):

w = J
∑
〈i,j〉

(Si · Sj ) −
∑

i

H · Si − KuS
2
z

−D
∑

i

(Si × Si+x̂ · x̂ + Si × Si+ŷ · ŷ + Si × Si+ẑ · ẑ).

(4)

The classical spins of the unit length are placed in the knots
of a three-dimensional cubic lattice. Here, 〈i, j 〉 denotes
pairs of nearest-neighbor spins. The first term describes the
ferromagnetic nearest-neighbor exchange with J < 0 (in the
numerical simulation J = −1 is used). The Dzyaloshinskii-
Moriya constant D defines the period of modulated structures
p via the following relation: D/J = tan(2π/p) [thus, we use
the discretized version of the DMI (2) in our forthcoming
simulations]. Or vice versa, one chooses the period of the
modulations p (a discrete analog of LD) for the computing
procedures and defines the corresponding value of the DMI
constant. In what follows, the Dzyaloshinskii-Moriya constant
is set to 0.48, which corresponds to one-dimensional modula-
tions with a period of 14 lattice spacings in a zero field (for
further details on the methods see Refs. [20,37]). The size of
our numerical grid is set to 100 × 100 × L, which is large
enough to accommodate an IS within the conical phase and to
take into account all the subtleties of its internal structure.

C. Energy minimization and numerical solutions
for torons and bobbers

The solutions for particlelike states in the film (Fig. 1)
are derived by the Euler equations for energy functional (3)
together with the Maxwell equations and with corresponding
boundary conditions. The solutions depend on the two control
parameters of the model (3), the confinement ratio, ν = L/LD ,
and the reduced value of the applied magnetic field, h =
H/HD , where LD = 4πA/|D| is the helix period and μ0HD =
D2/(2AM ) is the saturation field [4,35].

Metastable torons were initially prepared from two chiral
bobbers (obtained with a relatively high kinetic cycle temper-
ature Tk within the saturated state). Further, the toron structure
was refined using either the iterative simulated annealing
procedure (with a relatively low kinetic cycle temperature Tk)
or a single-step Monte Carlo dynamics with the Metropolis
algorithm (for details, see Sec. II B in Ref. [38]). Alterna-
tively, solutions for torons and bobbers were obtained with
the Landau-Lifshitz-Gilbert (LLG) equation starting from the
initial ansatz solutions and further using the fourth-order
Runge-Kutta method and a dimensionless damping parameter
α = 0.1 (for details see the Method section of Ref. [39]). Then,
the dynamic process of toron elongation and the complex three-

dimensional (3D) structure of magnetic torons with different
lengths along z were checked at fixed time intervals of the
LLG equation [39] or after the fixed number of steps in the
Metropolis algorithm [38].

III. THE PROPERTIES AND 3D TOPOLOGY
OF MAGNETIC TORONS

The 3D structure of magnetic torons is stipulated by the
tendency to build into the conical phase [Fig. 2(a)]. By this
process, the magnetic torons develop a lateral transitional
region towards the cones (the so-called shell [20,21]) and
terminate their structure along z by two BPs. Three different
composite sections along the z axis can be singled out in a
magnetic toron:

(1) The core section is a central part of a magnetic toron.
Figure 2(b) shows the structure of this part in the xy plane: the
central circular region nearly preserves the axial symmetry,
whereas the transient region with the asymmetric crescent-
like shape is formed with respect to the embedding conical
state. This asymmetric profile of the cross section forms a
screwlike modulation along the z axis trying to match the
conical phase at each coordinate z.

The inherent properties of such nonaxisymmetric skyrmion
solutions with infinite length have been extensively studied in
Refs. [20,21,40]. It was shown that the shell has positive energy
with respect to the cone phase and thus underlies an attractive
interskyrmion potential.

In the present case of magnetic torons, the core section
extends along z over a finite length. This implies that the
shell, which is obtained with the energy averaging along z,
has different magnitudes depending on the azimuthal angle. In
Fig. 2(g), we show the energy density (3) after integration with
respect to the z coordinate,

e(x, y) = (1/l)
∫

l

wdz. (5)

For this integration procedure we used a magnetic toron with
length l = p/2 of its core section. Such an energy distribution
underlies an anisotropic but still attracting skyrmion-skyrmion
interaction. Figure 2(h) shows a horizontal line scan across
e(x, y): it has a bump with positive energy density from the
left which is essentially lowered on the right side.

Figure 2(e) shows the energy density ε(z) averaged over the
xy plane as a function of the z coordinate. The core section of
a magnetic toron is marked by the red shading.

(2) The second is the section of magnetic torons with
additional twists. Figure 2(c) shows the structure of this
part in the xy plane. The magnetization in this section does
not retain its helicity equaling π/2 as in the core section,
but rather undergoes an additional in-plane rotation while
propagating along z. The sense of the magnetization rotation
is opposite while moving towards upper and lower BPs; that
is, the magnetization undergoes an outward (with the helicity
decreasing towards zero) and/or inward rotation (with the
helicity increasing towards π [24,25]). Due to the rotational
DMI terms (2) along z, the additional negative energy (with
the value larger than in the core section) can be “earned.” In
Fig. 2(e) this region has orange shading. The color plot in
Fig. 2(c) displays the spin structure for the fixed value of the z
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FIG. 2. (a) Magnetic structure of isolated magnetic torons with different lengths along the z axis and surrounded by the conical phase.
The color plots indicate the z component of the magnetization; blue arrows are projections of the magnetization onto the yz plane. The green
arrow shows the q vector of the conical phase. (b)–(d) Composite parts of the magnetic torons shown in the transversal xy plane: (b) the core
section, (c) the section with the additional twists along z, and (d) the Bloch point (see text for details). The color indicates the z component of
the magnetization, whereas the blue arrows are the projections of the magnetization onto the xy plane. (e) The energy density ε(z) averaged
over the xy plane and computed with respect to the conical phase shows the negative energy density in the region of additional twists (orange
shading) and the core region (red shading) balanced by the positive energy associated with BPs (yellow region). (f) In magnetic torons with
longer extension along z, the negative energy density ε(z) is gained owing to the core region. (g) The color plot for the energy density e(x, y )
obtained from (5) and computed with respect to the energy of the conical phase. A magnetic toron with core section length p/2 was chosen for
simplicity. Such an asymmetric energy distribution implies anisotropic attracting skyrmion-skyrmion interaction. (h) The horizontal line scan
of e(x, y ) compares the magnitudes of the shell from the left and right sides of the core section.

coordinate corresponding to the minimal energy density in the
orange shaded region.

(3) The Bloch points represent singular points at which the
smooth rotation of the magnetization is disrupted [26,27]. The
structure of the Bloch points is shown in Fig. 2(d) in the xy

plane. The corresponding section of the magnetic torons is
marked by the yellow shading in Fig. 2(e). The z coordinate
of the color plot corresponds to the maximal energy value in
Fig. 2(e).

Thus, the magnetic toron can be visualized as a composite
object formed by a finite-length section of the nonaxisymmet-
ric skyrmions within the conical phase with the “attached”
chiral bobbers at its ends.

IV. PHASE DIAGRAMS AND HOMOGENEOUS
NUCLEATION

A. Skyrmion stabilization in thin films of cubic helimagnets
due to the surface twists

The phase diagram of states constructed in Refs. [24,41]
for a thin layer within model (3) shows vast areas of SkLs
and spirals stabilized due to the additional surface twists and
separated by the lines of the first-order phase transition from
the conical phase (see inset of Fig. 3). ISs within the conical
phase, however, are metastable particles for all values of the
confinement ratio [28] (except the small orange shaded region
for ν < 1 in which the energy of an IS becomes negative).
The reason lies in the specific transient region between an
IS and the conical phase (dubbed “shell” in Ref. [20]) that

bears the positive energy density and increases linearly with
the thickness. Moreover, the additional surface twist (and
hence the associated negative energy) is essentially reduced
in the IS compared with the SkL [28]. The energy of chiral
bobbers, on the contrary, is only field dependent and does not
depend on the layer thickness [28], which makes bobbers the
lowest-energy metastable states and precludes the process
of heterogeneous skyrmion nucleation. The homogeneous
nucleation of skyrmions is also prevented within the model
(3) since the part of the skyrmion with the positive energy
density must be implanted into the toron’s structure, which
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FIG. 3. Diagram in coordinates H/HD-Ku/K0 reflecting the
internal properties of magnetic torons (see the text for details). The
inset shows the phase diagram for model (3) with Ku = 0.
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necessarily increases its energy. In particular in Ref. [42] it was
shown that LC torons exist in some range of the confinement
ratio. If the confinement ratio is too small, the anchoring
force necessitates the toron transformation into the aligned
state. On the contrary, if one tries to elongate the LC torons
by increasing the confinement ratio, the torons undergo an
elliptical instability towards the more stable fingerprint texture.

B. Skyrmion stabilization due to the uniaxial anisotropy

In the following, we supply the model (3) with a uniaxial
anisotropy of the easy-axis type [43] with the easy axis
a coaligned with the field H, wan = −Ku(m · a)2. Ku > 0
since for Ku < 0 the conical phase is the global minimum
in the whole region of the phase diagram [44,45]. As a
solution with period LD , the conical phase exists below the
critical field HC = HD (1 − Ku/K0), where K0 = D2/(4A).
The equilibrium parameters for this cone phase are expressed
in the analytical form [35] as

θc = arccos (H/HC ), ψc = 2πz/LD. (6)

Above the critical field HC , the cone phase transforms into the
saturated state with θ = 0 (straight line A-B in Fig. 3).

The diagram in Fig. 3 exhibits the following regions for
magnetic torons. In the orange shaded region, the energy of the
core section becomes negative with respect to the surrounding
conical phase. Then, the magnetic toron undergoes an elonga-
tion: the longer the distance is between two Bloch points, the
larger the amount of negative energy with respect to the conical
phase “accumulates” in the core section. Moreover, the Bloch
points might be expelled altogether at the sample surfaces,
thus making the skyrmion even more energetically favorable.
In the blue shaded region, the energy density of the core section
in the magnetic torons is positive with respect to the conical
phase, which disables their elongation. In the yellow shaded
region, the magnetic torons have negative energy in their cores,
but with respect to the surrounding homogeneous state: thus,
the same process of skyrmion elongation might take place.
The hatched regions display the thermodynamically stable
hexagonal SkLs and helicoids and, owing to the first-order
phase transition between different modulated phases, do not
coincide with the colored regions for isolated torons. Hence,
in the green shaded region of the phase diagram, torons undergo
an elliptical instability with respect to the thermodynamically
stable helicoid.

C. Magnetic torons and the A-phase phenomenon in cubic
helimagnets near the ordering temperatures

A process of homogeneous skyrmion nucleation from mag-
netic torons must also be inherent in bulk cubic helimagnets.
We treat the magnetic torons as nuclei of the first-order
phase transition from the conical phase into the skyrmion
lattice which may become paramount within A phases of bulk
cubic helimagnets near the ordering temperature (e.g., in B20
magnets MnSi [7] and FeGe [8]). This transition may occur via
formation of magnetic torons of finite length accompanied by
their elongation (e.g., due to the cubic or exchange anisotropy,
which also may lead to the negative energy density of skyrmion
cores) and mutual attraction. We stress that a softened version
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FIG. 4. (a) The total energy of a magnetic toron Et for the fixed
field and the anisotropy values, H/H0 = 0.5, Ku/K0 = 0.25, plotted
as a function of the toron’s length along z. The total energy becomes
negative for some critical length lcr . (b) The critical anisotropy-
dependent length of magnetic torons lcr for a fixed field value H/H0 =
0.5 according to the phase diagram in Fig. 3. The orange and yellow
shading was added to distinguish between torons within the conical
and saturated states, respectively.

of the order parameter (magnetization) allows us to replace
the notion of localized defects as BPs with smooth, but more
complex, geometrical adaptation of ordering with regions of
suppressed order-parameter intensity [46]. In particular, such
a method was applied to construct a new modulated phase in
bulk cubic helimagnets, a square lattice of half skyrmions [46],
that does not exist with a fixed value of the order parameter.

V. TORON’S LONGITUDINAL STABILITY

Figure 2(f) highlights the tendency of magnetic torons to
elongate: it shows the averaged energy density along z for
magnetic torons with different longitudinal extensions. The
critical length of a magnetic toron lcr , which ensures the total
negative energy (i.e., the sum of the energy of all three com-
posite sections) with respect to the cone, varies throughout the
orange shaded region of Fig. 3. The method to define the critical
length lcr is as follows: we define the energy Et of magnetic
torons with different lengths l for fixed parameters Ku and H

[Fig. 4(b)]. We consider the length l of a magnetic toron to be
the distance between two BPs [the distance between points with
the maximal energy density in Fig. 2(e)]. Then, Et = 0 with
respect to the energy of the conical phase specifies the critical
length lcr . Figure 4(b) shows such a critical length lcr as a func-
tion ofKu for a fixed value of the fieldH/H0 = 0.5. The critical
length lcr (Ku) of a magnetic toron reaches the minimal value
in the middle of the orange shaded region and equals 1.65p

for Ku/K0 = 0.2. At the boundaries of the orange and yellow
shaded regions, the critical length diverges to infinity: such
torons lose their BPs, and consequently, the section with the
additional twists transforms into the isolated nonaxisymmetric
skyrmions studied in Refs. [20,21,40] and depicted in Fig. 1(a).

The internal structure of magnetic torons in the yellow
region of the phase diagram (Fig. 3) is depicted in Fig. 5
and basically reproduces the structure of torons within the
conical phase (Fig. 2); that is, three composite sections may
be introduced as well [Figs. 5(c)–5(e)]. The crucial differ-
ence, however, lies in the absence of the shell since such
magnetic torons laterally match the homogeneous background.
Therefore, the skyrmions rather repulse each other (for details
see Ref. [19]). At the boundary of the yellow shaded region
(Fig. 3) the energy of an isolated skyrmion [which, according
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FIG. 5. (a) Magnetic structure of isolated magnetic torons with
different lengths along the z axis and surrounded by the saturated
phase. The color plot indicates the z component of the magnetization;
blue arrows are projections of the magnetization onto the yz plane.
(b) Topological charge Q (7) calculated in xy planes as a function of
the z coordinate. The color shading corresponds to the color scheme
in Fig. 2(e). (c)–(e) Composite parts of a magnetic toron shown in
the transversal xy plane: (c) the core region, (d) the region with the
additional twists along z, (e) the Bloch point (see the text for details).
The color indicates the z component of the magnetization, whereas
the blue arrows are the projections of the magnetization onto the xy

plane.

to Fig. 4(b), has an infinite length] becomes zero with respect
to the homogeneous state: below this line, the skyrmions may
condense into a thermodynamically stable skyrmion lattice
(hatched region), whereas above they exist as metastable
excitations. Thus, this upper boundary is the line of the second-
order phase transition between the skyrmion lattice and the
homogeneous state [4,19]. Figure 5(b) shows the topological
charge Q along the z axis:

Q = 1

4π

∫∫
d2rm

∂m
∂x

∂m
∂y

. (7)

It equals 1 in the core regions and the region of additional twists
(red and orange shading) and decreases to 0 in the section with
BPs (yellow shading).

The stable SkL with the hexagonal arrangement of
skyrmions exists in the hatched region of Fig. 4(a). The line
of the first-order phase transition between the skyrmion lattice
and the conical phase does not coincide with the line at which
the energy of an isolated magnetic toron becomes negative.
The reason lies in the skyrmion shell with positive energy.
For the same reason, the first-order phase transition, which
occurs between cones and SkLs and involves the formation of
transient regions with positive energy between corresponding
phase domains, will lag until the linear energy density of the
transient region is balanced by the negative surface energy
density of a new phase with respect to the old one. In Ref. [40]
in particular, it was observed experimentally that the skyrmion
clusters within the conical phase have the tendency to merge

FIG. 6. (a) and (c) reduced energy of the interaction between
two nonaxisymmetric skyrmion filaments surrounded by the conical
phase, Eint/Esk , shown as a color plot in coordinates of r (the distance
between the skyrmion centers) and the applied magnetic field H/H0

(Ku = 0). The attraction between skyrmions of (b) negative and (d)
positive polarities has been considered.

into one bigger cluster: they diminish the energy of the domain
boundary with the conical phase by decreasing its linear energy
density.

VI. SKYRMION-SKYRMION ATTRACTION

In Fig. 6, we plot the interaction energy between two
nonaxisymmetric skyrmions Eint/Esk (in units of the total
equilibrium energy of an isolated asymmetric skyrmion Esk)
as a function of the distance between the skyrmion centers r

calculated for different values of the applied field (Ku = 0).
It is seen that the largest interaction energy is achieved at
H/HD = 0.4 and equals ∼0.3Esk . In Ref. [44] (see their
Fig. 10), it was shown that in the field H/HD = 0.4 the
difference between the energy densities of the hexagonal SkL
and the cone phase is minimal. Thus, it was suggested that
the SkL could be stabilized with respect to the cones by
additional anisotropic energy contributions exactly around this
field value. With our insight, we may add that the energy of the
shell in ISs is the largest for this field value. Therefore, while
condensing into the lattice and thus eliminating the shell, the
skyrmions acquire the largest increase in their energy density.

Note that the conical phase accommodates two types of ISs
with magnetization in their cores, either along or opposite the
field. At zero field, two states with opposite polarities share the
same energy (note the opposite location of the crescent-shaped
region in two types of ISs with respect to their circular cores).
In an applied magnetic field, however, the skyrmions with the
positive polarity may exist only in a narrow field interval (for
Ku = 0 the range is 0–C in Fig. 3).

VII. HETEROGENEOUS NUCLEATION

Transition from the chiral bobbers [Fig. 7(a)] to IS
[Fig. 7(d)] occurs via an intermediate state [Fig. 7(b)] with
two Bloch points located at a fixed distance from each other. In
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FIG. 7. Heterogeneous nucleation of defect-free skyrmions (d) from chiral bobbers with defects (a) occurring via an intermediate state (b).
(c) The energy density of such an intermediate state averaged over the xy plane and computed with respect to the energy Ec of the conical
phase for H/HD = 0.5, Ku/K0 = 0.25 in model (3).

this case, the energy distribution in the region between two BPs
[Fig. 7(c)] looks qualitatively the same as for a toron [Fig. 1(f)]
and is stipulated by the additional twist of the magnetization
which necessarily accompanies a chiral Bloch point. Thus,
some potential barrier must be overcome to annihilate a pair
of BPs, which becomes also inherent for bulk helimagnets
filled with torons of finite length. Hence, we anticipate small
jumps of the magnetization associated with this process in A

phases of bulk cubic helimagnets, reminiscent of the magnetic
Barkhausen effect.

VIII. TORONS IN CHIRAL NEMATICS

A. The free Frank energy

Within the continuum theory the equilibrium distributions
of the director n(r) in confined liquid crystals are derived by
solving the Euler equations for the Frank free energy density
functional [47,48]

f (n) = K1

2
(div n)2 + K2

2
(n · rot n − q0)2

+ K3

2
(n × rot n)2 − εa

2
(n · E)2 − χa

2
(n · H)2. (8)

Here, Ki (i = 1, 2, 3) and q0 are elastic constants; E and H
are the vectors of applied electric and magnetic fields, and εa

and χa are values of dielectric and diamagnetic anisotropies. In
the following for the sake of simplicity we will consider only
effects imposed by the magnetic field and restrict our analysis
to the one-constant approximation (K1 = K2 = K3 = K). In
this case the energy (8) is reduced to the following expression:

fv = K

2
(grad n)2 + Kq0n · rot n − χa

2
(n · H)2. (9)

We use here the equation (grad n)2 = (div n)2 + (n · rot n)2 +
(n × rot n)2 + 〈surface terms〉, which holds for any unity
vector n (for details see, e.g., Ref. [49]).

Equation (9) implies close relations between chiral textures
in both condensed-matter systems, in chiral magnets and
liquid crystals. However, in contrast to magnetic systems still
favoring smooth distributions of the order parameter, liquid
crystals usually form patterns composed of various types of
singularities. Defects in liquid crystals are of various dimen-
sionalities, not only point defects but also the line and walls,

and appear due to the prevalence of orientational order over
positional order in the applied magnetic or electric fields [47].
Control and understanding of the nature of topological defects
in LCs are currently a topic of utmost interest, as the topological
defects transfer topological singularities to light and could be
exploited in novel devices based on singular photonics [42].
In the defects the director n is said to be well defined [42,50]
and the properties of defects are well controlled. These results
for observations of specific skyrmion states with defects in
confined cholesteric systems can help us to investigate similar
structures in chiral magnets. Liquid crystals have several
advantages over magnetic systems for the investigation of
various inhomogeneous structures. The system parameters can
be varied over wide limits to establish the necessary conditions
for a given experiment; as a rule experiments are conducted at
room temperature and are comparatively simple; the results
of investigations are easily visualized [31,51], to a degree not
usually attainable in the investigation of magnetic systems.

B. Comparison of magnetic and LC torons

The absence of a Zeeman-like term in the elastic (Frank)
free energy [47,48] (9) leads to the inability of LC torons
to elongate, as described for their magnetic counterpart in
Fig. 2. The reason is that the core section of LC torons
obtained within the model (9) has positive energy compared
with the surrounding phase (see, e.g., Ref. [43], which showed
that in bulk cubic helimagnets the SkL is stabilized by the
simultaneous effect of the magnetic field and the easy-axis
anisotropy). Therefore, a LC toron can be visualized as two
chiral bobbers attached together by the squeezed core section.
The helicity of the director continuously changes when going
from one Bloch point to another and has a value of π/2 in the
central plane. The magnetic counterpart of such LC torons
exists in the white region of the phase diagram in Fig. 3.
Reference [50] showed, however, that the BPs comprising such
LC torons do not annihilate and are bound to each other at a
certain well-defined distance. Thus, a certain potential barrier
is associated with the creation and annihilation of torons.

According to the phase diagram in Fig. 3, without a Zeeman
term in (3) one gets solutions for LC torons for Ku/K0 > 1.24,
i.e., the case of strong anchoring. For a weaker anchoring, one
may enter the region of the spiral thermodynamical stability
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(hatched region in Fig. 3). In this case, the defect-free localized
solutions, spherulites [52], may occur; such solutions, however,
may undergo an elliptical instability towards spirals.

Interestingly, the LC torons with the nonaxisymmetric core
section [realized in Fig. 2(b) in the applied magnetic field] may
be realized as a result of the competition between the surface
anchoring and the electric-field term in (8): whereas the surface
anchoring tends to orient the director n(r) perpendicular to the
confining glass plates, the electric field E with the negative di-
electric anisotropy εa is parallel to them (see in particular Fig. 1
in Ref. [33]). As a result of such an interplay, one creates an
analog of the conical phase around a skyrmion that induces an
attractive toron-toron interaction and experimentally observed
toron chains [34]. Moreover, the directional motion of such
skyrmions is possible as a response to modulated electric fields:
when alternating current with some frequency is applied to a
confined skyrmion with the axisymmetric structure [Fig. 5(c)],
it transforms into a nonaxisymmetric solution [Fig. 2(b)] back
and forth, thus inducing a squirming motion.

In general in chiral nematic LCs, point and line defects
spontaneously occur as a result of symmetry-breaking phase
transitions, and versatile 3D topological solitons might be sta-
bilized. As an alternative to SkLs, different ordered structures
of defects could be organized. Reference [50] showed that
using a scanning laser generation system, one can program
a focused laser beam to generate periodic lattices formed by
the metastable LC torons. In chiral magnets, different periodic
arrangements of BPs have also been considered. In particular,
the monopole-antimonopole pairs were arranged in the form

of a lattice in which they are connected by the skyrmion
strings [53]. It was shown that such a lattice has nontrivial
transport properties which may result, in particular, in a novel
magnetoresistivity effect as applied for MnGe [53].

IX. CONCLUSIONS

To conclude, we have derived numerical solutions for torons
in the saturated and cone phases of cubic helimagnets. Along
with the chiral bobbers introduced in Ref. [28], magnetic
torons may serve as nuclei of skyrmion matter: the energy
of a magnetic toron may become negative in some region
of the constructed phase diagrams (Fig. 3), thus instigating
its elongation. Subsequently, defect-free ISs (or torons and
bobbers of finite length) due to the mutual lateral attraction
form clusters and eventually an ideal SkL. Such a process
follows the definition of a nucleation-type phase transition
introduced by de Gennes [54] for (continuous) transitions
into incommensurate modulated phases. A comparison of
magnetic torons with their LC counterparts will facilitate
their experimental investigation in thin-layer and bulk chiral
helimagnets.
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