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Macroscopic electric polarization and microscopic electron dynamics:
Quantitative insight from femtosecond x-ray diffraction
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The link between macroscopic electric polarizations and microscopic charge densities, a fundamental problem
of condensed matter physics, has been addressed by quantum theory involving geometric quantum phases for
calculating polarization differences. While such work has provided quantitative insight into stationary electric
polarizations of crystalline ferroelectrics, polarization dynamics driven by elementary electronic and/or lattice
excitations are still far from understood. X-ray diffraction with a femtosecond time resolution allows for mapping
of charge and lattice motions on their intrinsic time scales and provides time-dependent maps of electron density.
We present a combined theoretical and experimental approach which allows for determining time-dependent
macroscopic polarization changes from transient microscopic charge density maps. In an extension of existing
theory, the key steps consist of deriving a microscopic current density from the charge density maps and calculating
the macroscopic polarization change from this current density. Using femtosecond x-ray diffraction data for
crystalline (NH4)2SO4 and KH2PO4, prototype materials displaying ferro- and paraelectric phases, we determine
the ultrafast macroscopic polarization dynamics induced by coherent phonon motions. The results establish
femtosecond x-ray diffraction as a key method for grasping transient polarization changes and for validating
theoretical predictions for a wide range of polar and ferroelectric materials.
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I. INTRODUCTION

Electric polarization, a macroscopic quantity of classical
electrodynamics, describes a wide range of stationary and
transient electric phenomena in condensed matter. In polar or
ionic materials, e.g., ferroelectrics, a spatial charge separation
at the atomic level gives rise to spontaneous polarization
[1,2]. The application of external electric fields can induce
time-dependent polarizations which are described with the help
of linear and/or nonlinear susceptibilities. This concept has
been applied widely in linear and nonlinear optics [3] and for
addressing optically induced charge transport [4].

The definition of macroscopic polarizations in terms of
microscopic electric quantities such as electronic and nuclear
charge densities, dipole moments, and currents has remained
a challenging problem, requiring a link between quantum
and macroscopic physics. Extensive theoretical work has
shown that simplistic concepts relating stationary microscopic
charge densities ρ0(r) to the macroscopic polarization are ill
defined and lead to ambiguous results, except for cases in
which electronic charge is entirely localized, e.g., on ionic
sites [5,6]. In general, only polarization differences between
different states of a system are well defined, a fact that has
direct consequences for a proper theoretical description. In
their pioneering analysis, Resta, Vanderbilt, and others have
presented a quantum mechanical concept, the geometric phase
approach, for calculating macroscopic polarization differences
between different states of a solid from differential microscopic
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charge densities which have been cast as quantum currents
[6–9]. The currents are related to quantum phases, which
in crystals are calculated from the cell-periodic part of the
electronic wave function.

The geometric phase approach focuses on the electronic
contribution to the polarization difference, which is determined
by calculating the geometrical (Berry) phase change along an
adiabatic quantum path between the two states. As shown in
Ref. [10], the application of Stokes’ theorem allows for calcu-
lation of the final state of the quantum-mechanical adiabatic
motion without knowledge of the spatiotemporal phase of the
wave function along the adiabatic path. A closer inspection
shows [cf. Eq. (3) in Ref. [10]] that the procedure does not
fulfill the continuity equation for electric charge because even
though electronic charge is moved in real space, the expectation
value of the current density operator 〈j(r, t )〉 = 0 vanishes at
all times, due to the adiabatic character of the charge motion
[11,12]. While this treatment is fully appropriate for calcu-
lating differences of stationary macroscopic polarizations, it
cannot account for time-dependent macroscopic polarization
differences which originate from real transient microscopic
currents.

There are numerous cases in which macroscopic polariza-
tions change as a consequence of changes imposed on mi-
croscopic structure, i.e., atomic displacements and electronic
charge. Phase transitions between para- and ferroelectric crys-
talline structures have been rationalized by both order-disorder
transitions in a crystal structure [13] and the fundamental
soft-mode concept [14,15]. The excitation of a particular
phonon, the soft mode, is connected with subpicometer atomic
displacements which induce a spatial relocation of electronic
charge over much larger distances in the 100-pm range. This
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behavior originates from the subtle interplay of valence and
electric forces in a polar crystal lattice, which makes the spatial
distribution of valence electronic charge most sensitive to small
changes in the atomic arrangement.

Recently, such behavior has been validated by experi-
ments in which a number of polar materials were studied
under nonequilibrium conditions by ultrafast x-ray diffraction
[16–21]. Here, excitation of lattice vibrations with a period in
the femtosecond to few picosecond range induces pronounced
charge relocations on the 100-pm length scale of chemical
bonds. Transient charge density maps derived from the fem-
tosecond x-ray diffraction data have allowed for following such
dynamics in a spatially and time-resolved way.

Polarization changes induced by time-dependent elemen-
tary excitations call for an extension of the existing theoretical
framework in order to link transient macroscopic polarization
changes to charge dynamics at the microscopic level. In
this article, we present a theoretical approach which allows
for determination of macroscopic polarization changes from
time-dependent microscopic charge density maps. To illus-
trate the potential of the method, we analyze femtosecond
x-ray diffraction data for (NH4)2SO4 (AS) and KH2PO4

(KDP), both being prototype materials with different para-
and ferroelectric phases. Building upon the extensive results
of femtosecond x-ray diffraction experiments presented in
Refs. [19–21], we here extend the analysis of transient electron
density distributions in AS and KDP to derive time-dependent
microscopic current densities and macroscopic polarization
changes.

The article is organized as follows. In Sec. II, we discuss
the theoretical concept for linking microscopic time-dependent
charge densities to macroscopic polarization changes. The
first application of the method to AS is presented in Sec. III.
The model system KDP is discussed in Sec. IV, including
a symmetry analysis of phonon excitations in the para- and
ferroelectric phases, transient charge density maps, and the re-
sulting macroscopic polarizations. Conclusions and an outlook
are presented in Sec. V.

II. THEORETICAL CONCEPTS

A. Electric polarization in condensed matter

Microscopic electric polarizations P(r, t ) and/or magneti-
zations M(r, t ), i.e., dipole densities, are not uniquely defined
physical quantities and, thus, cannot be measured directly in
any experiment. It was shown in Ref. [22] that the microscopic
P(r, t ) and M(r, t ) are not defined uniquely, similar to the
well-known ambiguity of the scalar V (r, t ) and vector A(r, t )
potential fields which determine the measurable electric E(r, t )
and magnetic B(r, t ) fields. This fact is evident from the
Maxwell equations in matter:

∇ B(r, t ) = 0, (1)

ε0∇ E(r, t ) = ρ(r, t )

= −∇[P(r, t ) + ∇ × C(r, t )], (2)

∇ × E(r, t ) = −∂B(r, t )

∂t
, (3)

1

μ0
∇ × B(r, t ) = ε0

∂E(r, t )

∂t
+ j(r, t )

= ε0
∂E(r, t )

∂t
+ ∂

∂t
[P(r, t ) + ∇ × C(r, t )]

+∇ ×
[

M(r, t ) − ∂

∂t
C(r, t )

]
. (4)

In the Maxwell equations containing, on the right-hand side,
the (measurable) charge density ρ(r,t) [Eq. (2)] and current
density j(r,t) [Eq. (4)], the terms in the brackets represent
the most general definition of P(r, t ) and M(r, t ), which
contain the arbitrary (differentiable) vector field C(r, t ). As
mentioned explicitly in Eqs. (2-9a) and (2-9b) in Ref. [22], all
definitions of P(r, t )′ = P(r, t ) + ∇ × C(r, t ) and M(r, t )′ =
M(r, t ) − ∂

∂t
C(r, t ) are equally acceptable. Pt (r, t ), the trans-

verse component of the electric polarization P(r, t ), is then
characterized by a vanishing divergence ∇ · Pt (r, t ) = 0. Thus
Pt (r, t ), can be arbitrarily modified without violating the
continuity equation of electric charge or modifying any of the
directly measurable physical quantities E(r, t ), B(r, t ),ρ(r, t ),
and j(r, t ).

A popular approach in theoretical nonlinear optics and the
theory of ferroelectrics has consisted of using microscopic
and macroscopic electric polarizations in parallel. This means
that in crystalline solids one typically averages the electric
dipole moment over the unit cell of the crystal to determine
the macroscopic polarization. This method is ill defined as
pointed out in Refs. [5] and [6]. For nonmagnetic insulators one
can always choose a vector field C(r, t ) to get M(r, t ) = 0 in
Eqs. (2) and (4). In doing so, one can add to P(r, t ) an arbitrary
homogeneous vector field without violating the Maxwell
equations and continuity equation for electric charge. Thus,
there are no absolute microscopic and macroscopic electric
polarizations which could be determined in an experiment.
Moreover, there is no direct link between the time-dependent
change of the charge density �ρ(r, t ) and the change of the
macroscopic electric polarization �P(r, t ) in periodic solids
[23]. A way out of this dilemma is to take the microscopic
current density as the basic physical quantity j(r, t ) and to
define the polarization change between time t1 and time t2 via

�P(r, t1, t2) = P(r, t2) − P(r, t1) =
∫ t2

t1

j(r, t ) dt. (5)

Macroscopic polarizations are determined by averaging
microscopic polarizations over a certain integration volume. In
crystalline materials with periodic charge and current densities
the macroscopic polarization is identical in each unit cell
and, thus, loses its spatial dependence. We, thus, define the
macroscopic polarization change as

�PUC(t1, t2) = 1

Vuc

∫
unit cell

d3r �P(r, t1, t2). (6)

where Vuc is the volume of the unit cell. The symmetry of the
unit cell of a crystal represents a basic constraint to be fulfilled
by the microscopic current density. Obviously, for unit cells
containing current densities j(r, t ) whose projections on partic-
ular axes [e.g., Jz(z, t ) = ∫ a

0 dx
∫ b

0 dy j(r, t ) . . ., etc.] contain
inversion centers, the macroscopic current identically vanishes,
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J(t ) = ∫ a

0 dx
∫ b

0 dy
∫ c

0 dz j(r, t ) = 0, as, consequently, does
the change of macroscopic polarization �PUC = 0.

B. Microscopic currents and transient charge densities

We present a theoretical method which allows for the
reconstruction of �P(r,t) from the time-dependent change
of the charge density ρ(r, t ), a quantity which is directly
accessible by time-resolved x-ray diffraction experiments. The
charge density is connected to the microscopic current density
j(r,t) via the continuity equation of electronic charge:

∂ρ(r, t )

∂t
= ρ̇(r, t )

= −∇j(r, t ) = −∇ · [ρ(r, t ) v(r, t )]. (7)

Similarly to the relation between ρ(r, t ) and the microscopic
polarization P(r, t ) in Eq. (2), there is no unique relation
between j(r, t ) and the temporal change of the charge density
ρ̇(r, t ). A straightforward integration of Eq. (7) gives

j(r, t ) = − êx

3

∫ x

0
ds ρ̇(s, y, z, t ) − êy

3

∫ y

0
ds ρ̇(x, s, z, t )

− êz

3

∫ z

0
ds ρ̇(x, y, s, t ) + ∇ × U(r, t ), (8)

with the unit vectors êx , êy , and êy in the spatial directions x, y,
and z defining a Cartesian coordinate system. Because Eq. (8)
contains the arbitrary (differentiable) vector field U(r, t ), the
transverse component of, and consequently its spatially homo-
geneous contribution to, the microscopic current density j(r, t )
can be arbitrarily modified without violating the continuity
equation, (7). Thus, an additional constraint is required for
determining the current density vector field j(r, t ) uniquely.
To this end, we assume that the entire electron ensemble
performs a quasiadiabatic motion, i.e., the wave function of
the electronic system stays at all times as close as possible
to a certain stationary eigenstate of the electronic Hamilto-
nian. In Appendix A we briefly discuss a “hydrodynamical”
formulation of quantum mechanics which explicitly shows
that the quasiadiabatic motion of electrons corresponds to
the velocity field v(r, t ) = j(r, t )/ρ(r, t ), which contains the
lowest additional kinetic energy of the electrons,

Wkin(t ) = me

2 (−e0)

∫
dVρ(r, t )|v(r, t )|2

= me

2 (−e0)

∫
dV

|j(r, t )|2
ρ(r, t )

, (9)

relative to the energy of the stationary eigenstate of the elec-
tronic Hamiltonian in which the quasiadiabatic motion is per-
formed. In the following we search for the three-dimensional
current density j(r, t ) which fulfills the continuity equation,
(7), and minimizes the kinetic energy of the electrons [Eq. (9)]
during their motion. The concrete numerical procedure is
described in Appendix B.

C. Reconstruction of transient charge densities from
x-ray diffraction experiments

X-ray diffraction from single crystals or crystalline powders
represents a key method for determining spatially resolved

equilibrium electron densities in crystalline matter. An anal-
ysis of the x-ray intensity diffracted from the set of lattice
planes (hkl) provides the modulus of the respective structure
factor F 0

hkl , a complex quantity given by the (spatial) Fourier
transform of the electron density. Different approaches such
as multipole refinements and the maximum entropy method
(MEM) have allowed for deriving highly accurate stationary
electron densities ρ0(r) from diffraction patterns with a high
number of diffraction peaks or Debye-Scherrer rings [24,25].
The advent of femtosecond laser-driven and accelerator-based
hard x-ray sources has paved the way towards ultrafast x-
ray diffraction which allows for mapping of atomic motions
and charge relocations on their intrinsic time scales. Most
experiments have applied pump-probe schemes in which an
optical pump pulse initiates a structure change, which is
followed by diffraction of a delayed hard x-ray probe pulse
from the excited sample. A measurement of diffraction patterns
for different pump-probe delays then maps the time evolution
of the structure changes.

In a series of studies we have shown that femtosecond
x-ray powder diffraction represents an attractive and versatile
tool for reconstructing transient, i.e., time-dependent electron
densities from patterns of Debye-Scherrer rings [17–21,26].
Time-resolved powder diffraction data allow for derivation of
transient difference density maps �ρ(r, t ) = ρ(r, t ) − ρ0(r)
if the following conditions are fulfilled: (i) the initial electron
density ρ0(r) is known with a high accuracy from stationary
x-ray crystallography, and (ii) the transient modification of
the ensemble-averaged charge density is at all times small
compared to that of the initial structure |�ρ(r, t )| � ρ0(r).
Since the structure factors Fhkl (t ) are the three-dimensional
Fourier transform of the spatially periodic electron density
ρ(r, t ), the latter condition corresponds to |�Fhkl| � |F 0

hkl|.
An appropriate tool for reconstructing the transient differ-
ence density map �ρ(r, t ) from the relative changes of the
diffracted x-ray intensity [Ihkl (t ) − I 0

hkl]/I
0
hkl = [|Fhkl (t )|2 −

|F 0
hkl|2]/|F 0

hkl|2 is the MEM [27], which fully exploits all
information from the known initial structure. �ρ(r, t ) is then
reconstructed on a three-dimensional grid with a typical grid
spacing of 0.1 Å. We have described the application of the
MEM to femtosecond powder diffraction data in detail in
Ref. [28].

The transient powder diffraction patterns are averaged over
the random spatial orientation of crystallites in the powder. As
a result, the differential charge density map �ρave(r, t ) is aver-
aged over all manifestations of the transient structure changes,
i.e., the electron density reconstructed from the (symmetry-
allowed) x-ray diffraction rings possesses a symmetry identical
to that of the initial structure ρ0(r). A break of this symmetry
would lead to the occurrence of new, initially forbidden peaks
in the transient diffraction patterns. In most studies performed
so far, forbidden peaks have not been observed or have been
of minor relevance [18].

III. MICROSCOPIC CURRENTS AND MACROSCOPIC
POLARIZATION DYNAMICS IN FERROELECTRIC

AMMONIUM SULFATE [(NH4)2SO4]

Crystalline ammonium sulfate is a prototype ionic material
which displays a macroscopic ferroelectric polarization below
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FIG. 1. (a) Crystal lattice of ferroelectric ammonium sulfate
[(NH4)2SO4] with tilted ammonium (NH+

4 ) tetrahedra (nitrogen,
blue; hydrogen, white) and sulfate (SO2−

4 ) tetrahedra (sulfur, yellow;
oxygen, red). Blue arrows: local dipoles between sulfur and oxygen
atoms. (b) Stationary electron density map ρ0(x, y, z = 0.5) in the
gray plane around the sulfate ion with blue arrows, displaying high
values on the sulfur (red) and lower values on the oxygens (yellow)
with ρmin

0 = 0 and ρmax
0 = 12 000 e−/nm3. (c–e) Difference density

maps �ρ(x, y, 0.5, t ) for delay times of t = 2.7 ps, t = 3.9 ps, and
t = 5.1 ps with �ρmin

0 = −75 e−/nm3 and �ρmax
0 = +75 e−/nm3.

(f–h) Calculated microscopic polarization changes along the a axis
�Pa (x, y, 0.5, t ) = ∫ t

−∞ jx (x, y, 0.5, s ) ds assuming quasiadiabatic
motions of the electrons for the same delay times with �P min

a = −1
C/m2 and �P max

a = +1 C/m2.

the transition temperature TC = 223 K [29]. In Fig. 1(a) we
show the crystal structure of ferroelectric AS, which consists
of tilted ammonium (NH+

4 ) and sulfate (SO2−
4 ) tetrahedra and

belongs to the orthorhombic space group Pna21 [No. 33 in the
International Tables for Crystallography (ITA)], point group
(mm2), with the polar axis parallel to the crystallographic
c axis. The blue arrows in the sulfate ion on the right-hand
side indicate local dipoles between sulfur and oxygen atoms.
The stationary electron density ρ0(r) of ferroelectric AS was
derived from stationary x-ray diffraction experiments with
single crystals [21,30]. In Fig. 1(b), a sectional view of the
electron density ρ0(x, y, z = 0.5) [gray plane in Fig. 1(a)] is

shown in a subvolume around the sulfate ion with the blue
arrows. The electron density is highest on the sulfur atom and
lower on the two oxygens.

Charge dynamics in this system has recently been studied
in femtosecond x-ray diffraction experiments with powders
of small AS crystallites in the ferroelectic phase at a tem-
perature of T = 200 K [21]. An optical pump pulse with a
center wavelength of 400 nm induces coherent vibrational
motions of the crystal lattice, and a delayed hard x-ray probe
pulse scattered from the excited sample generates momentary
Debye-Scherrer diffraction patterns. Additional experimental
details are given in Ref. [21]. Transient differential charge
density maps �ρ(r, t ) = ρ(r, t ) − ρ0(r) were derived from
the diffraction data with the help of the MEM on a 72 × 108 ×
64 grid. The coherent lattice motions, which are dominated
by a low-frequency mode with a 2.7-ps period (frequency,
0.36 THz), cause a significant oscillatory charge transfer
within the sulfate ions, the strongest of which is shown in
the �ρ(x, y, 0.5, t ) maps in Figs. 1(c)–1(e) for delay times of
t = 2.7 ps, t = 3.9 ps, and t = 5.1 ps. As discussed in detail in
Ref. [21], the distances over which electronic charge is shifted
are 3 orders of magnitude larger than the atomic displacements
connected with the 0.36-THz mode, suggesting a soft-mode
character of the latter. Due to the known phenomenon of
inhomogeneous broadening of the frequencies of infrared-
active phonons, these oscillations are severely damped on a
time scale of several picoseconds in our powder samples [21].

For a reconstruction of the macroscopic polarization change
�PUC(t ), i.e., the microscopic polarization �P(r, t ) averaged
over the unit cell of ferroelectric AS, it is sufficient to solve the
continuity equation, (7), using the time-dependent �ρave(r, t )
of the unit cell averaged over all orientations in the powder.
This simplified treatment is sufficient because ferroelectric AS
consists of neutral molecular arrangements in layers parallel to
the ab plane of its unit cell. Such layers are separated by regions
of extremely low electron density. Microscopic currents flow-
ing between neighboring molecular layers are negligible, even
for lattice oscillations with a symmetry belonging to IRREP
A1, the irreducible representation of the point group (mm2)
which possesses the full symmetry of the ferroelectric unit
cell. In the language of Resta this behavior corresponds to
the “Clausius-Mossotti” case [6]. To solve Eq. (7), one can
choose the (uneven) interface of lowest electron density as a
boundary between two adjacent subvolumes in the c direction,
over which the averaging of the electric field (created by
electronic charge) is then performed to calculate the electronic
contribution to the macroscopic �PUC(t ) [21]. The main
contribution to �PUC(t ) is due to the anisotropic transfer of
electronic charge within the sulfate ions [cf. Figs. 1(c)–1(e)].

We now go one step further and address the dynamics
of local dipole changes �d in the sulfate ions [sketched as
blue arrows in Fig. 1(a)] for which the knowledge of the
microscopic current density j(r, t ) is relevant. Following the
theoretical approach in Sec. II B, the coupled equations,
(7) and (9), are solved to determine j(r, t ) from the charge
density ρ(r, t ) as derived from the diffraction experiment. The
microscopic current densities j(r, t ) provide the microscopic
polarization changes along the a axis �Pa (x, y, 0.5, t ) =∫ t

−∞ jx (x, y, 0.5, s) ds, which are shown for the different delay
times in Figs. 1(f) to 1(h). The highest microscopic polarization
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FIG. 2. (a) Diamonds: Transient charge change of the SO3 sub-
group within the sulfate ion (identical to Fig. 5(b) in Ref. [21]). The
dipole change�da (t ) along thea axis (solid red line) of a single sulfate
ion follows almost perfectly the electronic charge transfer from the
upper oxygen atom to the SO3 subgroup, obvious in Figs. 1(c) to
1(e). The dipole change �db(t ) along the b axis (dashed green line) is
somewhat smaller and shows additional contributions. (b) The dipole
change �dc(t ) (right vertical axis) along the c axis (solid black line)
of a single sulfate ion is an order of magnitude smaller and shows a
temporal behavior quite different from those along the a and b axes.
The corresponding macroscopic polarization of all four sulfate ions
belonging to a single unit cell (left vertical axis) is very similar to that
of the entire unit cell shown in (c) (cf. Fig. 8(c) in Ref. [21]).

changes occur exactly on the chemical bonds within the sulfate
ions, i.e., the spatial regions between the dashed circles indi-
cating the atomic positions. Our theoretical treatment confirms
this intuitive physical picture and, at the same time, allows
for a quantitative analysis of microscopic polarization changes
along various spatial directions, among them the change along
the a axis �Pa (x, y, 0.5, t ) = ∫ t

−∞ jx (x, y, 0.5, s) ds.
In Fig. 2(a) the diamonds represent the transient charge

change of the SO3 subgroup within the sulfate ion (right
ordinate scale; cf. Fig. 5(b) in Ref. [21]). Integrating the mi-
croscopic current density j(r, t ) over time and the subvolume
of a single sulfate ion allows for calculation of transient dipole
changes along various axes. The dipole change �da (t ) along
the a axis of a single sulfate ion is plotted as the solid red
line in Fig. 2(a). Its transient follows almost perfectly the
electronic charge transfer from the upper oxygen atom to the
SO3 subgroup (blue diamonds). The dipole change �db(t )
along the b axis, shown as the dashed green line, is somewhat
smaller and shows additional contributions. We would like

to stress the fact that although individual sulfate ions show
large transient dipoles along the a and b directions, they do
not create macroscopic polarizations along those directions
because for symmetry reasons the unit cell contains another
sulfate ion with opposite dipole moments in the a and b

directions.
The dipole change �dc(t ) [right vertical axis in Fig. 2(b)]

along the c axis [solid black line in Fig. 2(b)] of a single
sulfate ion is an order of magnitude smaller and shows a
temporal behavior quite different from those along the a

and b axes. In addition, all transient dipoles of sulfate ions
within the unit cell of AS point in the same direction and
give the dominant contribution to the macroscopic polarization
�Pc

UC(t ) of the crystal, which is given by the spatial average
of �Pc(r, t ) over the unit cell. The left axis in Fig. 2(b) shows
the corresponding macroscopic polarization of all four sulfate
ions belonging to a single unit cell. A comparison with the
total macroscopic polarization along the c axis [Fig. 2(c)]
which includes contributions from the NH+

4 units shows a very
similar temporal behavior and demonstrates the dominance of
intramolecular electronic dipoles within the sulfate ions to the
soft-mode polarization in ferroelectric AS.

IV. STRUCTURAL DYNAMICS IN THE PARAELECTRIC
PHASE OF KH2PO4

KDP represents a ferroelectric with a lattice structure that
is determined by Coulomb interactions between the ionic
subunits K+ and H2PO−

4 and by hydrogen bonds between
adjacent H2PO−

4 groups [31]. At T = 300 K, KDP crystallizes
in the tetragonal space group I42d (a = 0.745 21 nm, c =
0.697 40 nm) with four formula units in the unit cell [Fig. 3(a)].
There is no polar axis in this noncentrosymmetric space group,
and thus, the material is paraelectric. At the critical temperature
Tc = 123 K, KDP undergoes a structural phase transition into
the nonconventional space group I21d, leading to a reduction
of the crystal symmetry. In the literature this crystal structure
is more commonly reported in the conventional orthorhombic
space group Fdd2, where the crystallographic a and b axes are
rotated by 45◦ and elongated by a factor of

√
2 (a = 1.054 59

nm, b = 1.046 64 nm, c = 0.692 65 nm) compared to the
paraelectric structure [31]. This results in a doubled volume of
the unit cell, with eight formula units being present. The change
of the atomic arrangement within the H2PO−

4 ion as well as
the displacement of the K+ ion relative to the phosphorus
atom �RK (t ) is illustrated in the inset in Fig. 3(b) and is
characterized mainly by a shift of the potassium and oxygen
atoms along the c direction. This reduction of symmetry
leads to a polar axis in the crystallographic c direction and
a ferroelectric polarization along this direction. The absolute
value of the spontaneous polarization is Ps = 47.5 mC m−2

just below Tc = 123 K. The microscopic mechanisms of the
phase transition have remained controversial [13,32,33].

The interplay of nonequilibrium phonon excitations and
spatial relocations of electronic charge in paraelectric KDP
has been elucidated in a recent femtosecond x-ray powder
diffraction experiment at room temperature. Experimental
details and extended data sets have been reported in Refs. [19]
and [20]. A stationary powder diffraction pattern obtained
in these experiments is presented in Fig. 3(b), including
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FIG. 3. (a) Equilibrium crystal structure of paraelectric KDP.
(b) X-ray powder diffraction pattern of the unexcited paraelectric
sample. The normalized diffracted intensity integrated over individual
Debye-Scherrer rings is plotted as a function of the scattering angle 2θ ,
including assignments to lattice plains. Inset: Overlay of the atomic
positions of the K+ and the H2PO−

4 ions shown by colored spheres
in paraelectric and ferroelectric KDP (darker and lighter colors,
respectively) to illustrate the structural modifications due to the phase
transition. (c) Change of diffracted x-ray intensity upon excitation
�Ihkl (t )/I 0

112 on three different Bragg reflections as a function of the
pump-probe delay in femtosecond experiments at room temperature
(black symbols). Red lines are a guide for the eye.

the assignments of the 11 observed Bragg peaks. Optical
excitation of KDP by pump pulses with a center wavelength
of ≈266 nm induces transient changes of the intensities of
different Debye-Scherrer rings, as shown in Fig. 3(c), where the

(a)

K
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P
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(c)
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0 e /nm- 3

14000
e /nm- 3

-20 e /nm- 3

+20 e /nm- 3

FIG. 4. (a) Equilibrium electron density ρ0(r) as a two-
dimensional contour map in a plane containing a potassium, a phos-
phorus, and two oxygen atoms [highlighted in yellow in Fig. 3(a)].
(b–d) Transient changes in electron density �ρ(r, t ) with contour
intervals of±1e−/nm3 in the same plane plane at selected delay times.
The positions of the atoms in the unexcited unit cell are indicated by
dashed circles.

relative intensity change �Ihkl (t )/I 0
hkl = (Ihkl (t ) − I 0

hkl )/I
0
hkl

of selected Bragg peaks is plotted as a function of the pump-
probe delay [Ihkl (t ), I 0

hkl : intensity diffracted with and without
optical excitation]. A more extensive data set containing a total
of 10 transients has been reported in Refs. [19] and [20]. The
transient electron density changes �ρ(r, t ) are then derived
with the MEM on a 72 × 72 × 72 grid (cf. Sec. II C) taking
the full data set into account. This procedure establishes a
link between the exact symmetry of the equilibrium electron
density ρ0(r) and the microscopic transient changes in electron
density �ρ(r, t ).

Equilibrium and transient charge density maps for different
pump-probe delays in a plane containing a potassium, a
phosphorus, and two oxygen atoms of the phosphate unit are
shown in Fig. 4. The latter reveal a pronounced modulation
of charge density with time, close to the original positions of
the lattice atoms, which are indicated by dashed circles. In
particular, a pronounced oscillatory relocation of electronic
charge between the K+ and the H2PO−

4 ions as well as within
the phosphate unit is observed, in excellent agreement with
the results published in Refs. [19] and [20], which were
derived with a different method of charge density analysis. The
corresponding vibrational elongations at a frequency of around
60 cm−1 with an amplitude in the subpicometer range induce
charge displacements over distances of the order of 100 pm,
i.e., a chemical bond length [19]. This behavior is in line with

054306-6



MACROSCOPIC ELECTRIC POLARIZATION AND … PHYSICAL REVIEW B 98, 054306 (2018)

FIG. 5. (a, f) View of the crystal structure of paraelectric KDP along the polar c axis with the two different two-dimensional planes
containing a potassium, a phosphor, and two oxygen atoms indicated by green lines. (b, g) Transient changes in the microscopic polarization
density �P (r, t ) at a selected delay time (t ∼ 730 fs) in the planes indicated in (a, f) for a structure in which no additional displacement of
the ground-state structure according to the B2 mode is present. The positions of the atoms in the unexcited unit cell are indicated by dashed
circles. The additional changes in the microscopic polarization density ��P (r, t ) at the same delay time caused by a full positive or negative
displacement according to the B2 mode are shown in (c) and (h) and in (d) and (i), respectively. (e) Total change of the macroscopic electric
polarization �P UC(t ) at a delay time of t ∼ 730 fs as a function of the fraction of the full B2-mode displacement [37]. The red line represents
a linear fit to the data points (black symbols).

the soft-mode character of the TO phonon mode suggested by
vibrational spectroscopy [34,35] and the basic physical picture
developed in the pioneering work by Cochran [15].

In addition to the soft mode, the analysis of �ρ(r, t ) has also
revealed the presence of other phonon modes in photoexcited
paraelectric KDP [19,20]. Coherent phonon motions with A2,
B1, or E symmetries would cause a finite intensity of the
symmetry-forbidden 110 and 002 reflections, a phenomenon
completely absent in our time-resolved experiments [19,20].
Thus, coherent phonons with A2, B1, or E symmetries can be
safely neglected and exclusively coherent phonon motions of
A1 and B2 symmetry are present. Among them is the soft mode
with B2 character that plays the key role for the polarization
dynamics.

The approach, detailed in Sec. II B, now allows for recon-
struction of transient changes in the microscopic polarization
�P(r, t) from the �ρ(r, t ) maps. The results are summarized
in Fig. 5. It is important to note that the projection of electron
density onto the crystallographic (ab) plane perpendicular
to the polar c axis of KDP retains inversion symmetry. The
oscillatory relocation of the electronic charge is connected with
microscopic currents along the a and b directions; the resulting
change of macroscopic polarization, however, vanishes due to
the crystal symmetry, which is preserved upon excitation in the
time-resolved x-ray experiments [19]. Therefore, only micro-
scopic currents along the c direction contribute to a nonzero

change of the macroscopic electric polarization �PUC(t ).
In the first step, we calculate the microscopic polarization
�P(r, t) in the two crystal planes defined in Figs. 5(a) and 5(f),
which contain a potassium, a phosphorus, and two oxygen
atoms at their equilibrium positions, i.e., for negligible soft-
mode elongations. The latter condition is fulfilled at a delay
time of 730 fs in the experiments in Ref. [19].

The �P(r, t) derived from �ρ(r, t ) for a delay time of 730 fs
is shown in Figs. 5(b) and 5(g). The changes of microscopic
polarization are associated with the transient prolate distortion
of electron density on the potassium atom along the c axis,
as signaled by a strong positive or negative current density
above or below the equilibrium position indicated by a dashed
circle. Further significant changes of �P(r, t) are observed
in the P-O bonds and, less pronounced, in the region of the
weaker K-O bonds. This behavior bears some similarity to
the results for ferroelectric AS (cf. Sec. III), where intraionic
charge transfer in the SO2−

4 ion occurs along the S-O bonds.
In KDP, the four P-O bonds within one phosphate unit display
a striking asymmetry: while two bonds are characterized by
a positive microscopic polarization [Fig. 5(b)], the other two
bonds behave in the opposite fashion [Fig. 5(g)]. It should
be noted that the macroscopic polarization �PUC(t ), which is
calculated by integrating the microscopic �P(r, t) over the unit
cell, vanishes for the atomic positions in the paraelectric unit
cell considered here.
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TABLE I. Relation between the IRREPs of space group
I 4̄2d (KDP in the paraelectric phase) and those of space group
I21d (Fdd2) (KDP in the ferroelectric phase). The corresponding
point groups are mentioned in the second row. The number of
corresponding mechanical representations for optical phonons in
KDP are mentioned in the first and last rows, respectively.

I 4̄2d I21d (Fdd2)

Ntot IRREP of D2d (4̄2m) IRREP of C2v (mm2) Ntot

4 A1

←→ A1 10
6 B2

5 A2

←→ A2 11
6 B1

B1 12
24 E ←→

B2 12

Next, we consider the impact of soft-mode excitations of
the crystal lattice on the polarization changes. In the first
step, the asymmetric nuclear displacements during a coherent
soft-mode oscillation need to be determined. Such asymmet-
ric atomic positions determine the asymmetry in the elec-
tronic currents creating the microscopic polarization changes
�P(r, t ) and, in turn, a nonvanishing macroscopic polarization
change �PUC(t ) �= 0 in the coherently excited subvolume. To
this end, we performed a group theoretical analysis of the
optical phonon modes in KDP, which is described in detail
in Appendix C. There is an interesting relation between the

IRREPs of the I 4̄2d and I21d (Fdd2) space groups as shown
in Table I. The IRREPs A1 and B2 of the paraelectric space
group I 4̄2d are completely caught up in IRREP A1 of their fer-
roelectric counterpart I21d (Fdd2). As a direct consequence
it is possible to describe the atomic motions occurring during
a phase transition from the para- to the ferroelectric state of
KDP as coherent phonon motions according to the mechanical
representations belonging to IRREPs A1 and B2 of space group
I 4̄2d. Tables II and III show the directions of the motion of
the P, K, O, and H atoms according to IRREPs A1 and B2.
We projected the atomic motions occurring during a phase
transition from the para- to the ferroelectric state of KDP
onto the 4 mechanical representations belonging to IRREP A1

and the 6 belonging to B2 and found that all 10 mechanical
representations are relevant for that motion:

�Rpara→ferro
I 4̄2d

= −0.000710 · A
O(a)
1 − 0.001480 · A

O(b)
1

+ 0.000865 · A
O(c)
1 − 0.001580 · AH

1

+ 0.014820 · BK
2 − 0.000180 · B

O(a)
2

+ 0.000530 · B
O(b)
2 + 0.008825 · B

O(c)
2

− 0.026060 · B
H (a)
2 + 0.009420 · B

H (b)
2 .

(10)

Only atomic motions according to IRREP A1 of I 4̄2d can
be directly reconstructed from the differential charge density
map �ρave(r, t ) measured in the paraelectric phase, as the
intensity changes �Ihkl/I

0
hkl depend in a linear way (for small

amplitudes) on the elongations of A1 phonon modes. In con-
trast, �Ihkl/I

0
hkl depends at lowest order strictly quadratically

TABLE II. The 45 optical phonon modes in paraelectric KDP can be reduced to five different IRREPs according to its space group I 4̄2d .
The table shows the atomic motions of the four mechanical representations belonging to IRREP A1 possessing the full symmetry of its space
group. Wyckoff positions 4a (P atoms) and 4b (K atoms) do not have any mechanical motions according to A1. The eigenvectors A

O(a)
1 , A

O(b)
1 ,

and A
O(c)
1 of correlated oxygen motions along the relative coordinates �x, �z, and �z are shown for Wyckoff positions 16e and those of AH

1

for correlated hydrogen motions for Wyckoff positions 8d.

Wyckoff O (16e) H (8d)

position A
O(a)
1 A

O(b)
1 A

O(c)
1 AH

1

Atom x y z �x �y �x �y �z �x �y

P 0 0 0
1/2 0 3/4

K 0 0 1/2
1/2 0 1/4

O x y z 1 −1 −1
−x −y z −1 1 −1
y −x −z 1 1 1

−y x −z −1 −1 1
−x + 1/2 y −z + 3/4 1 1 1
x + 1/2 −y −z + 3/4 −1 −1 1

−y + 1/2 −x z + 3/4 −1 1 −1
y + 1/2 x z + 3/4 1 −1 −1

H x 1/4 1/8 −1
−x 3/4 1/8 1
1/4 −x 7/8 1
3/4 x 7/8 −1
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TABLE III. Atomic motions of the six mechanical representations belonging to IRREP B2 of space group I 4̄2d allowing for a macroscopic
polarization along the c direction. Since we consider only optical phonon modes we keep the P atoms at their Wyckoff positions 4a. The
eigenvectors BK

2 , B
O(c)
2 , and B

H (b)
2 describe the collective motions of the K, O, and H atoms along the c direction, respectively. B

O(a)
2 , B

O(b)
2 ,

and B
H (a)
2 describe correlated oxygen and hydrogen motions within the ab plane.

Wyckoff K (4b) O (16e) H (8d)

position BK
2 B

O(a)
2 B

O(b)
2 B

O(c)
2 B

H (a)
2 B

H (b)
2

Atom x y z �z �x �y �x �y �z �x �y �z

P 0 0 0
1/2 0 3/4

K 0 0 1/2 1
1/2 0 1/4 1

O x y z 1 −1 1
−x −y z −1 1 1
y −x −z −1 −1 1

−y x −z 1 1 1
−x + 1/2 y −z + 3/4 −1 −1 1
x + 1/2 −y −z + 3/4 1 1 1

−y + 1/2 −x z + 3/4 −1 1 1
y + 1/2 x z + 3/4 1 −1 1

H x 1/4 1/8 −1 1
−x 3/4 1/8 1 1
1/4 −x 7/8 1 1
3/4 x 7/8 −1 1

on the amplitude of coherent phonon motions belonging to
IRREPs A2, B1, B2, and E of I 4̄2d [36]. The soft mode in the
paraelectric phase of KDP contains relative motions between
the K, P, and O atoms along the c axis and definitely belongs
to IRREP B2. According to IRREP B2 of I 4̄2d the K atom can
move along the c axis of the KDP crystal. Since the powder
diffraction experiment averages over all manifestations of the
structure changes in the unit cell, the initially spherical electron
density of the K atom develops as a function of time a cigarlike
shape along the c axis with a time-dependent aspect ratio c/a.
Such an electron density represents the superposition of two
subensembles of unit cells with K atoms having moved into
the +c and −c directions. The insensitivity of the sign of
the phase of B2-mode coherent phonons is another intrinsic
property of the probing process via x-ray diffraction from a
randomly oriented powder sample. It has nothing to do with
the excitation mechanism of coherent phonons belonging to
IRREP B2 of I 4̄2d, i.e., even for a direct phase-sensitive THz
excitation of the soft mode in the paraelectric phase of KDP
one cannot derive the sign of the phase of a coherent B2 phonon
from femtosecond powder diffraction data.

For a reconstruction of transient macroscopic polarizations
caused by coherent B2 phonon modes in the paraelectric
phase of KDP we proceed as follows: We assume that the
entire ensemble of unit cells within the powder sample can
be split into two subensembles having the opposite phase of
the optically excited coherent B2-phonon modes. The relative
amplitudes and phases of the motions of various atoms within
the unit cell of KDP are taken from the projection of the atomic
motions occurring during a phase transition from the para- to
the ferroelectric state onto the six mechanical representations
belonging to IRREP B2 of I 4̄2d [Eq. (10)]. The amplitude of
the soft-mode motion is then derived from the time-dependent

cigarlike shape of the K atoms (cf. Fig. 3 in Ref. [20]). The
results of this calculation are presented in Fig. 6(b). This
course of action is valid if predominantly strongly polar (i.e.,
with large LO-TO splittings) low-frequency optical phonon
modes are excited as in the femtosecond powder diffraction
experiments in Refs. [19] and [20].

The results for the two limiting cases with full B2

displacements [37] are shown in Figs. 5(c) and 5(h)
and Figs. 5(d) and 5(i) as two-dimensional contour maps
of the additional changes in the microscopic polariza-
tion ��P(r, t ) = �Psoft mode(r, t ) − �Pw/o soft mode(r, t ) rel-
ative to �Pw/o soft mode(r, t ) without soft-mode displacements
[Figs. 5(b) and 5(g)]. The additional changes ��P(r,t) are pre-
dominantly centered on the P-O bonds and are overwhelmingly
positive or negative for a positive or negative displacement
according to the B2 mode. This strong imbalance is the micro-
scopic origin of the nonzero macroscopic electric polarization
change �PUC(t ) once an additional displacement of the crystal
structure according to the soft mode (IRREP B2) is introduced.
As illustrated in Fig. 5(e), the resulting �PUC(t ) is linearly
proportional to the soft-mode displacement. We note that the
macroscopic equilibrium polarization of ferroelectric KNbO3

as calculated from a Berry phase approach by Resta et al.
displays a similar linear dependence on lattice elongations [7].
This allows for calculation of the time-dependent macrosopic
polarization change during the experimentally observed soft-
mode oscillations.

The results are shown in Fig. 6(a) for three cases: (i) no
soft-mode displacements (black symbols), (ii) full positive
soft-mode displacements (red symbols) [37], and (iii) full
negative soft-mode displacement (blue symbols). The soft-
mode displacements observed in the experiments [19] are
somewhat smaller than the B2 contribution of the atomic
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FIG. 6. (a) Time-dependent electronic contributions to the total
change of the macroscopic electric polarization �PUC(t ) as derived
from the transient charge density data (symbols, solid lines). Black
symbols represent the transient polarization change for the structure
with no additional displacement of the ground-state structure, while
red and blue symbols represent cases with full positive or negative
displacement [37]. (b) Time-dependent displacement of the potassium
atom �RK (t ) obtained from the prolate or oblate distortion of
the transient electron density ρ(r, t ). (c) Absolute time-dependent
polarization change �PUC(t ) obtained from a calculation of the total
change of the macroscopic electric polarization �PUC(t ) with the
time-dependent displacement of the potassium atom �RK (t ) shown
in (b), with the color coding of the symbols as in (a). Lines in (a)–(c)
are a guide for the eye.

motions occurring during the structural change from the
para- to the ferroelectric phase. Their ratio to the maximum
values can be derived from the transient electron density
maps �ρ(r, t ) by analyzing the distortion of the electron
density in the vicinity of the potassium atom from a spherical
to a more prolate geometry. The resulting time-dependent
displacement of the potassium atom �RK (t ) is plotted in
Fig. 6(b) and follows a slowly decaying sinusoidal oscillation,
the decay representing the decoherence of the underlying
vibrational wave packet. Due to the random orientations of

KDP crystallites in the powder sample, the experiment gives
the averaged absolute value of the displacements but not the
direction. As a result, either of the two curves shown in Fig. 6(b)
can be realized in a particular crystallite. Since the maximum
displacement of the potassium atom during the full soft-mode
oscillation is known (10.3 pm) [37], �RK (t ) can be used to
calibrate the polarization change �PUC(t ). The result is shown
in Fig. 6(c) and gives the total electronic contribution to the
macroscopic polarization change during the experimentally
observed soft-mode oscillation in KDP.

The results presented in this section establish the first
link between transient microscopic electron densities from
time-resolved x-ray diffraction experiments and macroscopic
electric polarizations of KDP. Complementary experiments
with KDP single crystals rather than powder samples will
eliminate the orientational averaging over crystallites and, thus,
hold potential for generating even more specific insight.

V. CONCLUSION AND OUTLOOK

In conclusion, our results demonstrate the potential of
ultrafast x-ray diffraction for unraveling the microscopic mech-
anisms behind ferroelectricity and for mapping the intrinsically
ultrafast dynamics of electric polarizations upon coherent
phonon excitation. The fact that time-resolved charge density
maps allow for solution of the continuity equation, (7), while
at the same time minimizing the kinetic energy [Eq. (9)]
of electrons during their quasiadiabatic motion, establishes
a natural and most direct link between microscopic charge
density changes and microscopic or macroscopic electric
polarization changes. This insight will allow for benchmarking
of the ab initio quantum theory of ferroelectrics and will, thus,
be instrumental in understanding and tailoring ferroelectric
materials for a wide range of applications.

The tiny asymmetry in the atomic motions during coher-
ent soft-mode oscillations in ferro- or paraelectric crystals
strongly influences the electronic currents, the time integral
of which represents the transient change of the electronic
microscopic polarization (which typically dominates that of
the ionic displacements). Thus, future experiments should aim
at improving the spatial resolution of the femtosecond x-ray
diffraction experiment to determine subtle atomic motions with
a higher accuracy. For the experiments on paraelectric crystals,
phase-sensitive time-resolved x-ray methods, e.g., measure-
ments of Friedel pairs on single crystals, will provide direct
experimental access to the symmetry reduction introduced by
coherent soft-mode oscillations.
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APPENDIX A: QUASIADIABATIC THEORY FOR
ELECTRON MOTIONS ON FINITE TIME SCALES

In his first article on the adiabatic principle in quantum
mechanics [11,12] Max Born referred, in the discussion of
his equations (18), to the fluid-mechanical formulation of
Madelung [38]. The latter concept gives expectation values
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of experimental quantities identical to those calculated with
the time-dependent Schrödinger equation, (A1):

ih̄
∂�(r, t )

∂t
= − h̄2

2 m0
∇2�(r, t ) + V (r, t )�(r, t ) (A1)

�(r, t ) = R(r, t ) exp[i S(r, t )], (A2)

ρ(r, t ) = −e0 R(r, t ) · R(r, t ), (A3)

v(r, t ) = h̄

m0
∇S(r, t ), (A4)

dv(r, t )

dt
= ∂v(r, t )

∂t
+ [v(r, t ) · ∇]v(r, t ), (A5)

m0ρ(r, t )
dv(r, t )

dt

= −ρ(r, t )∇V (r, t ) − ρ(r, t )∇
[
− h̄2

2 m0

∇2√|ρ(r, t )|√|ρ(r, t )|
]
.

(A6)

The fluid-mechanical approach, which has been used spo-
radically [39–41], consists of two coupled equations of motion
for the electron density ρ(r, t ) [Eq. (A3)] and the electron ve-
locity field v(r, t ) [Eq. (A4)]. While Eq. (7) is the well-known
continuity equation for electronic charge, the last equation (A6)
corresponds to an irrotational potential flow in fluid mechanics
(Sec. 9 in Ref. [42]). The fluid-mechanical treatment describes
the behavior of single electrons [38–41] but can be extended
to many-electron systems (cf. discussion around Eq. (18) in
Ref. [11]). The equation of motion of the antisymmetric wave
function of many indistinguishable electrons can be reduced
to equations of motion for single-particle Green functions
describing the dynamics of independent quasiparticles [28].
The latter concept corresponds to a single-particle theory
with modified potentials due to correlations in the many-body
system. The electronic currents in quasiadiabatic motions flow
essentially within the molecular bonds where the electron
density is typically quite low. As a result, a single-electron
quasiparticle theory according to (A1)–(A6) and (7) is mostly
sufficient to describe the quasiadiabatic polarization dynamics
in crystalline matter.

Here, we consider quasiadiabatic electron motions in sys-
tems without any circular electron currents or spin-related
effects (i.e., all magnetic effects are considered to be absent).
This situation is present in a (ferroelectric) insulator in its
electronic ground state or even in electronic excited states
if strongly localized (charge-transfer) excitons represent a
valid description of the excited state. In such a case the
quasiadiabatic motion occurs essentially on a single vibrational
potential surface, far away from any conical intersection. In
the fluid-mechanical formulation of quantum mechanics, such
a stationary electronic eigenstate has a vanishing velocity
field v(r, t ) = 0, i.e., electronic currents are absent and the
corresponding kinetic energy according to (9) identically

vanishes. This changes when the nuclei in the system start to
move, creating coercively superpositions of electronic states,
because electrons can change only their spatiotemporal density
ρ(r, t ) by forming moving wave packets which (by definition)
are superpositions of several electronic eigenstates of the
system. Minimizing the kinetic energy according to (9) ensures
that the electronic system stays as close as possible to one
electronic eigenstate during the quasiadiabatic motion. In this
sense, our theoretical concept is the first-order extension of
the (approximative) wave function in Berry’s paper (Eq. (3) in
Ref. [10]) describing fully adiabatic electron motion.

APPENDIX B: NUMERICAL PROCEDURE FOR
DETERMINING THE MICROSCOPIC CURRENT DENSITY

The microscopic current density j(r, t ) in Eq. (5) is deter-
mined by solving the continuity equation, (7), while at the same
time minimizing the kinetic energy [Eq. (9)] of electrons during
their quasiadiabatic motion. To this end we discretized the
unit cell into small cubic boxes (voxels) which can exchange
electronic charge with their neighboring voxels in the x, y, and
z directions. The square interfaces between the boxes define
a grid for the microscopic currents jx , jy , and jz. At each
instant in time, the given information is the temporal change
of the electronic charge ∂tQv in N voxels of the unit cell.
Thus, we have in the beginning 3N unknown variables for
the currents between voxels in the x, y, and z directions. The
discretized version of the continuity equation, (7), determines
linear relations between a subset of N − 1 currents and N − 1
charge changes ∂tQv (due to charge conservation the charge
change information in one of the voxels is redundant). After
inserting these linear relations into the kinetic energy [Eq. (9)]
the latter becomes a (bilinear) function of a subset of 2N + 1
currents with one global minimum. The latter is found simply
by solving a system of 2N + 1 linear equations.

APPENDIX C: GROUP THEORETICAL
CONSIDERATIONS AND NORMAL-MODE ANALYSIS

Paraelectric KDP belongs to space group I 4̄2d (No. 122 in
the ITA), while ferroelectric KDP belongs to its nonisomorphic
subgroup Fdd2 (No. 43 in the ITA). In both phases the
primitive unit cell contains two KH2PO4 molecules leading to
45 normal optical phonon modes (at q = 0) whose reduction to
IRREPs is shown in Tables I and II in Ref. [35]. To elucidate the
atomic motions occurring during a paraelectric-to-ferroelectric
phase transition in KDP, we adopt the nonconventional setting
I21d for the ferroelectric space group Fdd2. This allows for
a continuous atomic motion within the relative coordinates
of the initial paraelectric space group I 4̄2d, thus avoiding a
transformation of the relative coordinates x ′ = (x + y)/2 and
y ′ = (x − y) (cf. caption to Table II in Ref. [35]). Tables II
and III show the directions of the motion of the P, K, O, and H
atoms according to IRREPs A1 and B2.
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