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Ab initio determination of anharmonic phonon peaks
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A method to compute anharmonic phonon peaks and anharmonic phonon-dispersion curves in crystals using
ab initio calculated Hellmann-Feynman forces created from series of supercells is reported. The supercells
are filled with atoms displaced from equilibrium positions in such a way that their configurations correspond
to a given temperature. The obtained phonon-dispersion bands are able to represent the positions and shapes
of the anharmonic peaks. As illustrations, the anharmonicity in cubic tungsten W, perovskite MgSiO3, and
superconductor MgB2 crystals is presented. The method can be applied to search for anharmonic potential-energy
landscape of crystals. It includes electron-phonon coupling.
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I. INTRODUCTION

Handling of harmonic and anharmonic lattice dynamics is
required for interesting and technologically relevant materials.
These groups comprise ferroelectrics, electron-phonon medi-
ated superconductors, and thermoelectrics, thermal conductiv-
ity materials important for the understanding of heat transfer
in the Earth’s interior.

The first-principle methods are reasonably accurate, and
generally serve for calculation of harmonic phonon-dispersion
curves. This harmonic approach is in many cases valid and
useful to discuss crystal atomic vibrations. However, the
studies of phenomena, which depend on anharmonic parts
of the potential energy, become complex, and are still under
debate.

The conventional treatment of anharmonicity in crystals
relies on the expansion of the potential energy over atomic
displacements up to higher-orders terms. The second-order
term determines the harmonic properties, while the third-,
fourth-, and higher-order expansion terms are responsible
for anharmonic effects [1–5]. There exist many powerful
perturbation methods [6] able to sum part of the expansion
diagrams. Unfortunately, the perturbation theory tends to be
computationally expensive for solids with large and com-
plex unit cells. It is worthwhile to mention that there were
approaches to supplement the conventional treatment by the
self-consistent phonon theory of anharmonic lattice dynamics
[7,8]. To make use of the powerful density functional theory
(DFT) for treating anharmonic effects in solids several methods
have been developed.

The molecular dynamics method was used to analyze the
evolution of the crystal dynamics where atoms were already
interacting with anharmonic potentials. In this approach, the
atomic velocities, multiplied by harmonic polarization vectors
and Fourier transformed to wave-vector space, define the time-
dependent velocity autocorrelation function. Its time Fourier
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transform provides the anharmonic peaks with a Lorentzian
shape [9,10]. Recently, a hybrid strategy of phonon quasipar-
ticles from first-principle molecular dynamics simulation was
proposed [11]. This method has been successfully used with
the force fields [12] and DFT methods [13].

Another approach belongs to the self-consistent ab initio
lattice dynamics (SCAILD) [14,15], and the stochastic self-
consistent harmonic approximation (SSCHA) [16], which can
incorporate the effect of lattice anharmonicity at the mean-field
level. A further approach relies on the temperature-dependent
effective potential (TDEP) method, in which effective har-
monic and cubic force constants are extracted from displace-
force data calculated for an atomic configuration sampled by
ab initio molecular dynamics (AIMD) [17,18]. In comprehen-
sive reviews [16,19], elegant formulations of self-consistent
phonon (SCP) theory, based on the many-body theory [20], can
be found. But even in the case of the simplest solution, which
would allow us to derive the effective anharmonic phonon
frequency, it is required to know the fourth-order anharmonic
force constants, or their substitutes. Several additional meth-
ods, which consider crystal anharmonicity, have been reported
in Refs. [21–23].

In this paper a method is proposed to handle anharmonicity
in crystals including larger crystals unit cells within a non-
perturbative method. It relies on probing the potential-energy
landscape of the crystal in the multidimensional space of
atomic displacements. Then, the vibrations are transformed
and classified in the wave vector reciprocal space, similar to
the harmonic case. The expansion of the potential energy is
not involved. The method permits us to determine the har-
monic and anharmonic phonons using the ab initio technique.
Below, we present three examples as an illustration of the
method. These illustrative examples show that the approach
is able to include to the anharmonicity effects of phonon-
phonon and electron-phonon couplings. However, it should
be stated that in this paper phenomena such as soft modes,
unstable modes, etc., are not treated. Here, we consider anhar-
monic systems where self-consistent lattice dynamics is not
involved.

2469-9950/2018/98(5)/054305(11) 054305-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.054305&domain=pdf&date_stamp=2018-08-13
https://doi.org/10.1103/PhysRevB.98.054305


KRZYSZTOF PARLINSKI PHYSICAL REVIEW B 98, 054305 (2018)

II. METHOD

The conventional harmonic phonon theory uses an ap-
proximation, which assumes that atoms interact via harmonic
force constants. Such harmonic force constants do not change
with the amplitude of a displaced atom. Then, from the
crystal symmetry follows the symmetry constraints obeyed by
force constants and possible invariances. The assumption that
phonons are infinite waves of collective atom vibration allows
us to represent phonons in the reciprocal space and express
them as phonon-dispersion curves in the (ω, k) space. A
dispersion curve can be considered as the density of harmonic
phonons. Each point of this density may be treated as the
δ function intensity distributed over the (ω, k) space. The δ

functions are measured, for example, in a coherent scattering
experiment. Moreover, the knowledge of polarization vectors,
obtained while diagonalizing the dynamical matrix, defines
the phonon mode symmetry, and determines the contribution
of specific atom vibrations to a given phonon mode. The
computational method [24] allows us to calculate harmonic
phonons using small atomic displacements, so small that the
atomic amplitudes remain in the harmonic regime.

In this paper a similar strategy is proposed for presenting the
anharmonic phonon-dispersion curves in the (ω, k) space. The
essential difference is that anharmonic modes are characterized
by peaks having certain shapes and widths. Hence, instead
of plotting δ-function phonon-dispersion curves, one should
plot, in the (ω, k) space, anharmonic phonon-dispersion bands.
The section of each band across k = const represents a set of
anharmonic phonon peaks. Using symmetry properties of the
overlayed peaks one can decouple them into individual peaks.

In this paper for anharmonic phonon-dispersion bands a
method similar to the harmonic one formulated in Ref. [24] is
used. However, to obtain particular phonon-dispersion curves,
one should use an atomic configuration, in which all atoms in
the crystal (supercell) could be displaced, and their displace-
ment amplitudes could have entered already the anharmonic
regime. Such particular anharmonic phonon-dispersion curves
will slightly differ from the harmonic plot. Making a series
of such particular runs, and gathering the resulting dispersion
curves, one gets the anharmonic phonon-dispersion bands. The
atomic configuration should be determined according to such
rules, which reflect in the best way the displaced position of
atoms in the crystal, being at a desired temperature T . One
option of such rules is proposed below in Sec. II B.

The plot of the anharmonic phonon-dispersion bands could
be considered as a landscape, or distribution of phonon fre-
quencies over the whole (ω, k) space, a distribution which
characterizes the anharmonic crystal. Moreover, the symmetry
relations included in polarization vectors allow us to carry
out detailed discussion on the particular anharmonic peak,
its relation to other harmonic modes, contributions of atoms
to its intensity, etc. This method needs to know the forces
acting between the atoms, but it does not need to expand
the potential energy over atomic displacements. The current
method is similar to the self-consistent phonon SCP method
[19], which is applied to soft mode. However, effects related
to soft modes are not discussed below.

The existing DFT codes provide sufficiently accurate
Hellmann-Feynman (HF) forces for any atomic configuration,

and are able to establish force constants to calculate the phonon
frequencies and phenomena related to the atomic vibrations.
The DFT approach requires us to approximate the crystal as
a supercell, with periodic boundary conditions imposed. The
computations perform first the optimization of the supercell
structure, and then data for crystal dynamical properties such
as phonons are derived.

A. Harmonic phonons

To compute harmonic phonons, the ab initio force constant
approach formulated by Parlinski, Li, and Kawazoe in 1997
[24] can be used. This method has been already applied to about
a thousand crystals, crystals with surfaces, defects, etc., and
the results generally show good agreement with the measured
phonon data. As an input, the HF forces FH (n, μ) computed by
the DFT code are imported. The procedure relies on using the
relation between harmonic forces FH (n, μ), induced by atoms
displaced by U(m, ν) from the equilibrium position [25],

FH (n, μ) = −
∑
m,ν

BH (n, μ; m, ν) · U(m, ν), (1)

where n, m label primitive unit cells in the supercell, and μ,
ν are indices of atoms. The BH (n, μ; m, ν) are 3×3 harmonic
force constant matrices, having nine elements, which are also
called parameters. They determine the conventional dynamical
matrix [26] as

D(k; μ, ν) = 1√
mμmν

∑
m

BH (0, μ; m, ν)

× exp{−2πk · [R(0, μ) − R(m, ν)]}, (2)

where mμ, mν are masses of atoms. Its eigenvalue equation

ω2(k, j )E (k, j ) = D(k)E (k, j ) (3)

provides phonon frequencies ω2(k, j ), and eigenvectors
E (k, j ).

In Ref. [24], it was proposed to decouple each force constant
matrix into a product

BH (n, μ; m, ν) = A(n, μ; m, ν) · PH (n, μ; m, ν), (4)

where the A(n, μ; m, ν) matrix is entirely determined by crys-
tal symmetry. The PH (n, μ; m, ν) matrix depends on potential
parameters only. This relationship follows from the point-
group symmetry of the bond contained in BH (n, μ; m, ν), it
means the bond between the (n, μ) and the (m, ν) atoms [26].
Constructing the projection operator from the bond point group
one arrives at the A(n, μ; m, ν) matrix. Hence it also follows
how many independent parameters determine a given force
constant. Using Eq. (4), Eq. (1) becomes

FH (n, μ) =
∑

m,ν,j

CU (n, μ; m, ν) · PH (n, μ; m, ν), (5)

where the matrix

CU (n, μ; m, ν) = −U(m, ν) · A(n, μ; m, ν) (6)

is known, because one knows the used atomic displacements
and crystal symmetry elements collected in the bond point
groups. The symmetry matrix imposes constraints on the
values of the force constant parameters PH (n, μ; m, ν). As
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a result a number of independent and unknown parameters
PH (n, μ; m, ν) becomes smaller than the number of available
forces FH (n, μ). In turn, the forces FH (n, μ) are directly
computed in the ab initio run, by the displacing single
nonequivalent atom, and relaxing the electronic states only.
The forces arise from a displacement U(m, ν) of a single atom.
A run in a supercell provides 3n HF forces, where n is the
number of atoms in the supercell. Such a set of HF forces is
called a force list. A minimum number s of HF force lists is
equal to the number of nonequivalent atoms of a primitive unit
cell, multiplied by a number of nonequivalent directions of
displacements of each nonequivalent atom.

Equation (5) can be written in the matrix form as

FH = CU · PH. (7)

It presents a global form of the system of 3ns equations
for the harmonic force constant parameters PH, which must
be solved simultaneously. Here, FH , CU , PH are (3ns×1),
(3ns×p′), (p′×1) dimensional matrices, respectively, and p′
is the total number of independent potential parameters of all
force constants within the supercell. Due to applied symmetry
elements, in this system the number of HF forces exceeds the
number of potential parameters, 3ns > p′, therefore, Eq. (7)
is an overdetermined system. To solve it [24], the singular
value decomposition method (SVD) [27] was applied to the
CU matrix. This SVD method provides a solution, which is the
best approximation of PH to FH in the least-square sense.

Moreover, the invariance of the potential energy against
translation of all crystal atoms by constant vector S, i.e.,
U(m, ν) → U(m, ν) + S, requires that∑

m,ν

BH (n, μ; m, ν) = 0. (8)

Equation (8) guarantees that the acoustic-phonon modes have
zero frequency at reciprocal � points. This relation was also
used in the past [2,26] to determine the parameters of the on-site
force constants BH (0, μ; 0, ν). Unfortunately, the number of
unknown parameters of the on-site force constant could be
different from the number of relations provided by Eq. (8), and
then the invariance Eq. (8) could not be automatically obeyed.
The solution requires to apply the SVD method. As a rule,
violation of Eq. (8) occurs for more complex crystals.

Similarly, from the invariance of potential energy against
infinitesimal crystal rotation follows the next constraint, which
reads ∑

m,ν

{BH,i,j (n, μ; m, ν)Rk (m, ν)

−BH,i,k (n, μ; m, ν)Rj (m, ν)} = 0, (9)

where R(m, ν) indicates the equilibrium position of the (m, ν)
atom. The symmetry, translational, and rotational invariances
deliver constraints on the number and magnitudes of indepen-
dent parameters of force constants. All these constraints could
be included into the global form, Eq. (7). The two invariances,
Eqs. (8) and (9), can be written as a matrix M of (18n×p′)
dimensions, which act on PH (n, μ; m, ν). Then(

FH
0

)
=

(
CU

βM

)
· PH. (10)

Here, β adjusts the strength of the translational-rotational
invariances. In very simple crystal structures, the derived force
constants always fulfill the above invariances. Then, β = 0 can
be set. For complex crystals, or DFT studies of complicated
supercells, such as surfaces, which suffer from some numerical
noise, the invariances might not be satisfied, then one may
force to fulfill them by adjusting β > 0. Physically, of course,
the symmetry has priority, with respect to small modifications
of the force-constant parameters. Then, the above described
procedure, using again SVD, provides an effective method
to find harmonic phonons, their frequencies, eigenvectors,
phonon-dispersion curves, phonon density of states, and other
phonon dependent quantities, which obey the symmetry of the
crystal, and translational and rotational invariances.

It is useful to understand the physical features of the above
method. The phonon calculations are performed at a supercell,
on which periodic boundary conditions are always imposed.
Such circumstances involve limitations on the accuracy of
the calculated phonons. However, there are the following
rules: (i) If the interaction range is confined to the supercell
interior, then all phonon frequencies are exact. (ii) If the
interaction range exceeds the supercell size, then nevertheless
there are exact phonon frequencies, which occur for exact
discrete wave vectors ks . The discrete wave vectors must be
commensurate with the supercell size. It follows from the form
of the dynamical matrix, Eq. (2), that the exact wave vectors ks

must fulfill the following conditions: exp{−2πks · a(SC)
i } = 1,

where a(SC)
i are the lattice constants of the supercell, and

i = 1, 2, 3. The phonon frequencies beyond the exact wave
vectors are interpolations between the ks points. Of course,
the used symmetry also determines the force constants, and
this helps us to obtain such phonon-dispersion curves, which
resemble the real ones.

B. Anharmonic phonons

To compute anharmonic effects one may use a similar
approach as above. Any DFT calculations of HF forces contain
information on the anharmonicity. This means that there is
an access to anharmonic landscape of the crystal potential
energy. Moreover, the anharmonic potential may involve a lot
of atoms displaced simultaneously. During time, the atoms
vary displacements around equilibrium positions. Making a
snapshot at a fixed time moment, one might see that all atoms
of a supercell form a displacement pattern (DP) U(i), where
each pattern will be indexed by (i). Some displacements of
U(i)(n, μ) might exceed the harmonic region. One may treat
also DP (i) as coming from different locations of the crystal.
Using DFT, each DP (i) allows us to calculate one HF force
list F(i)

A with anharmonic contributions. Each such run involves
the relaxation of the electronic states only.

Knowing the displacements U(i) and force lists F(i)
A , we

supplement Eq. (10) with the anharmonic contributions, for-
mulating in this way a global anharmonic form of a system of
equations,

⎛
⎝ FH

0
FA

(i)

⎞
⎠ =

⎛
⎝ CU

βM
CU (i)

⎞
⎠ · PA

(i), (11)
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where CU (i) (n, μ; m, ν) is determined by a relation similar to
Eq. (6), and i = 1, 2, . . . N runs over DP’s. This system of
equations is formulated in the spirit of the perturbation theory
of the singular value decomposition [28]. Now, a single SVD
solution of Eq. (11), corresponding to one DP, gives a single set
of dispersion curves with the index (i). Again, the SVD method
ensures the best least-square approximation of parameters
PA

(i) to both force lists FH and FA
(i). Now, the parameters

PA
(i) do not correspond to an ideal harmonic crystal, but

determine the forces acting between the atoms displaced from
equilibrium positions in accordance to the used DP. Therefore,
they can describe anharmonic effects. The above approach goes
along a similar line as the general idea developed in the field
of information science for recording sparse solutions [29] and
later suggested to be used for lattice dynamics [30].

For a realistic modeling of anharmonic effects one should
select a sequence of N independent DP’s (i = 1, 2, . . . N), and
compute dispersion curves for all these N patterns. From one
DP to another DP, probing different anharmonic environments,
the phonon-dispersion curves are slightly different due to
variation of potential energy created by displaced atoms. In
the absence of anharmonicity, and with negligible atomic
amplitudes, all phonon-dispersion curves will be identical
to the harmonic case. However, in the anharmonic case, all
phonon-dispersion curves, i = 1, 2, . . . N form rather phonon
bands of finite widths.

Again, every single atomic configuration DP is a perturba-
tion in Eq. (11). Its solution tells us about the modifications of
the (i) set of phonon-dispersion curves. The modified phonon-
dispersion curves can be treated as energy characteristics of the
atomic configuration (i). Every other atomic configuration (i)
provides another set of phonon-dispersion curves, or energy
characteristics. For a given size of supercell we should use
all phonons allowed by this size, varying only phonon wave
phases. The accuracy may be improved by applying larger
supercells, since then more kinds of commensurate phonon
waves can be inserted into the supercell.

To stay consistent with the supercell concept, DP’s U(i)

must preserve the periodic boundary conditions. Thus, a DP
must be generated as a superposition of the allowed phonon-
displacement waves. It means that each phonon-displacement
wave must be commensurate with the supercell size and shape.
At the end of Sec. II A, when the harmonic exact phonon-
dispersion curves were discussed, the same principles have
already been used. There, accurate phonon frequencies have
been obtained for exact commensurate wave vectors ks . A
similar approach is applied here to select exact displacement
waves. The amplitudes of these waves can be estimated from
the harmonic theory as

U(n, μ) = Q(k, j )√
mμ

E (k, j )exp{2πi[k · R(n, μ) − φ(k, j )]},

(12)

where one may vary randomly also the phonon phases φ(k, j ).
The Q(k, j ) is taken from its mean-square amplitude,

〈Q2(k, j )〉 = h̄

2ω(k, j )
coth

(
h̄ω(k, j )

2kBT

)
, (13)

where ω(k, j ) and E (k, j ) are the harmonic phonon frequen-
cies and polarization vectors, respectively, at wave vector
k, and phonon branch j . Here, T is the temperature at
which the crystal anharmonicity is studied. The temperature
displacements in Eq. (12) depend on the thermal occupation
factor, Eq. (13). The proposed phonon waves with varying
phases leads, in the limit of a large supercell, and in harmonic
approximation, to Gaussian displacements probability distri-
bution on every crystal site. The width of the corresponding
Gaussian is determined by the mean-square displacement
related to atoms located at the considered site [31]. This
theorem was formulated by Debye in classical [32] cases and
by Ott in quantum [33] cases. It tells us how the crystal is
filled with harmonic phonon waves. Here, according to our
approximation, in the supercell only phonons of commensurate
wavelengths are generated.

The DP’s may also be obtained as snapshots of atomic
motion traced during molecular dynamic simulation at a
specific temperature T . Also in this case, phonon waves are
commensurate with the supercell size.

For the same wave vector k the anharmonic phonon bands
frequently overlap. Therefore, we found a systematic projec-
tion method to select out any single anharmonic peak from the
whole phonon band. A diagonalization of the dynamical ma-
trix, Eq. (2), delivers orthonormalized eigenvectors E (0)(k, J )
of harmonic phonon curves, where J labels phonon modes for
the same wave vector k. Similarly, one obtains the E (i)(k, j )
eigenvectors of the anharmonic phonon bands, relevant for all
DP’s (i), where j label phonon modes for the same wave vector
k. Each eigenvector involved in the anharmonic peak can be
expanded over a complete set J = 1, 2, . . . Jmax of harmonic
eigenvectors,

E (i)(k, j ) =
Jmax∑
J=1

α(i)(k, j, J )E (0)(k, J ). (14)

Applying the orthonormality relation
∑jmax

j=1 E∗(i)(k, j ) ·
E (i)(k, j ) = 1, the expansion coefficients of Eq. (14) can be
found as α(i)(k, j, J ) = E∗(i)(k, j ) · E (0)(k, J ).

The total density of anharmonic states b(ω, k) for the fixed
k wave vector is

b(ω, k) = 1

Z

N∑
i=1

jmax∑
j=1

δ�ω[ω − ω(i)(k, j )], (15)

where the constant Z = NJmaxjmax�ω. The histogram bin �ω

is defined by the function δ�ω(x) = 1, if −�ω
2 < x � �ω

2 , or
0 otherwise. For fixed k the b(ω, k) can be plotted as single
spectrum of ω. For a set of parallel k = const lines on the
(ω, k) plane the amplitudes b(ω, k) can be converted to colors
and plotted as a map, where the colors denote the amplitude of
b(ω, k).

At fixed k wave vector, the density of states for the
anharmonic peak of mode J , denoted by bJ (ω, k), as a function
of frequency ω, can be found from the histogram

bJ (ω, k) = 1

Z

N∑
i=1

jmax∑
j=1

|α(i)(k, j, J )|2δ�ω[ω − ω(i)(k, j )].

(16)
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The coefficients α(i)(k, j, J ) select out from all the bands
(i) only those phonon intensities which resemble the vibra-
tions determined by harmonic eigenvectors E (0)(k, J ). Each
bJ (ω, k) determines a single anharmonic peak of symmetry
J and wave vector k. This method can sort out all anharmonic
peaks, even if they overlap.

The crystal symmetry is determined by the crystallographic
space group. Hence, an irreducible representation of the
crystallographic space group is assigned to each harmonic
phonon mode. The present method assures that the irreducible
representations of all phonon modes belonging to the same
phonon band are the same. Therefore, a given anharmonic
phonon peak is characterized by the same irreducible repre-
sentation as the corresponding harmonic phonon peak. Thus,
the conventional assignment of harmonic phonon modes is
accepted as a reference to classify the anharmonic peaks.

III. ILLUSTRATIVE EXAMPLES

The above method was applied to three examples, namely
a crystal of tungsten W , a mineral MgSiO3, and a BCS
superconductor MgB2. The calculations were performed on
the respective supercells using the VASP software [34], and
applying the generalized gradient approximation (GGA)–
projector augmented wave (PAW) approach issued with this
code. Each unit cell and subsequently supercell were relaxed
to the ground-state stable structure, at which all HF forces
acting on all atoms of the supercell vanish. The harmonic
force constants and phonons were calculated with the PHONON

software [35], according to Eq. (10), taking into account the
symmetry of the crystal space group. Next, sets of DP’s were
generated using the amplitude of displacements as suggested
by Eqs. (12) and (13). Each HF force list provided phonon-
dispersion curves, which might have been more or less different
from the harmonic one. Indeed, the atomic configuration in
the supercell resembles the fluctuation occurring at a finite
temperature in the crystal, therefore in a nonharmonic potential
the phonon frequencies in such an environment might be
different. An average over all computed phonon-dispersion
curves gave a number of quantities, which characterize the
crystal anharmonic properties. Among these properties are
the anharmonic phonon intensity maps, which are graphic
representations of the anharmonic phonon-dispersion bands.
All maps were created so that the phonon frequencies at a fixed
wave vector were sorted to bins of a histogram, and a color
index was assigned to the number of collected frequencies in
the bin. The color scales of all maps presented here go from
the lowest (black) to highest (red) colors. The histograms were
analyzed by the orthonormalized polarization vectors for the
same wave vector according to the rule Eq. (16), to separate
phonon peaks of different symmetries. Such an analysis can be
done in the PHONONA software, which generates DP files and
solves the global anharmonic form system Eq. (11).

A. Tungsten W

Tungsten W crystallizes in the bcc cubic structure with the
space group Im3̄m. The ab initio calculations were carried on
a 2×2×2 supercell with 16 atoms and using a 4×4×4 k mesh.
The optimized lattice constant was a = 3.171 Å. Harmonic

FIG. 1. Tungsten W phonon-dispersion curves along
N -�-H -P -� wave-vector path. (a) Harmonic dispersion relations.
(b),(c) Anharmonic phonon maps created from averaging over 50
different sets of DP’s at T = 1 K and T = 300 K, respectively.

phonon-dispersion curves are shown in Fig. 1(a). Next, for
15 temperatures from 1 to 4200 K in intervals of 300 K, 50
DP’s were generated for each temperature. The used mean dis-
placement amplitudes X̄ = √〈UxUx〉 for 1, 300, . . . , 4200 K
were on average equal to 0.0265, 0.0319, . . . , 0.1732 Å, re-
spectively. For each temperature the 50 DP’s provided 50
force-constant lists by using Eq. (11). The results of elaborating
all 50 lists of force constants led to maps of phonon-dispersion
bands, which for T = 1 K and T = 300 K are plotted at
Figs. 1(b) and 1(c). One can see that at T = 1 K phonon widths
are negligible, except for the triply degenerate mode at the
H high-symmetry point of the Brillouin zone. A convergence
test for 300 DP’s provided a smooth and elegant asymmetric
phonon peak with the same linewidth as the relevant peak found
from 50 DP’s.

The phonon-dispersion curves were measured at T =
300 K by coherent neutron-scattering spectroscopy [36,37].
The measurements [37] included also the anharmonic fre-
quency linewidths at the H wave vector in order to observe
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FIG. 2. The phonon linewidth temperature behaviors of phonons
in bcc cubic tungsten. The labels N1, N2, N3 (from lowest to higher
frequency at k = N ), H , and P denote the high-symmetry points of
bcc Brillouin zone. The phonon mode at H point has large linewidth,
which diminishes while decreasing the temperature.

phonon behavior close to the predicted Kohn effect [38]. Unfor-
tunately, as follows from Ref. [37] the Kohn effect could not be
unambiguously observed. The phonon-dispersion curves were
recently calculated using the first-principle method SCAILD
[15]. There, at T = 300 K the renormalized phonon frequency
at the H wave vector was 5.5 THz. The present harmonic
phonon frequency at the H point occurs at 1.5 THz, while at
T = 300 K the anharmonic mechanism elevates it to 4.7 THz
[Fig. 1(c)].

Moreover, Figs. 1(b) and 2 suggest that at the H high-
symmetry point, the highest linewidth occurs at low tem-
perature, and the width diminishes with increasing tempera-
ture. The linewidth broadening could be a sign of a strong
electron-phonon coupling at the H points. It is worth noticing
that the linewidths of remaining phonon peaks belonging to
other high-symmetry points always increase with temperature
(Fig. 2). Searching at T = 1 K for a wide phonon linewidth
beyond the H points of the Brillouin zone was unsuccessful.
Moreover, W becomes a superconductor below 0.015 K, and
the electron-phonon coupling seems to be responsible for the
superconducting property, according to the conclusions of
Ref. [39].

B. Magnesium Silicate MgSiO3

The anharmonicity of MgSiO3 has been studied in
Refs. [10,11,13,40] with respect to thermodynamic properties
and thermal conductivity of the Earth’s lower mantle. The
perovskite MgSiO3 belongs to the orthorhombic space group
Pmnb, no. = 62. The crystal structure lattice parameters have
been measured [41–43] and optimized with the DFT code [44].

We have selected for ab initio runs the 1×√
2×√

2 super-
cell, and 2×2×2k-point mesh. For illustration, two unit cells
under hydrostatic pressure of P = 57.3 GPa and P = 0.0 GPa
were prepared. The structure DFT optimization started from
parameters given in [44]. The lattice constants of the primitive
unit cells were a = 6.481 Å, b = 4.689 Å, c = 4.462 Å, and
a = 6.840 Å, b = 4.904 Å, c = 4.743 Å. From these cells two
supercells were built. Inserting to supercells the DP’s, Eqs. (12)

FIG. 3. MgSiO3 phonon-dispersion curves along �-X-S-Y -
�-Z-U -R-T -Z wave-vector path. (a) Harmonic phonon-dispersion
relations at temperatureless regime, and pressure P = 57.3 GPa. (b)
Anharmonic phonon bands created by 100 different sets of DP’s at
T = 2300 K and P = 70.5 GPa. (c) Plots of all anharmonic peaks of
B1g symmetry close to k = �(0, 0, 0) [close to vertical line at (b)].

and (13), we could simulate temperatures T = 2300 K and
T = 800 K. With inserted DP’s the pressures increased to
P = 70.5 GPa and P = 0 GPa, respectively. Then, for each
supercell 100 DP’s were generated. The primitive unit cell
contains 20 atoms, therefore 60 phonon-dispersion curves ex-
ist. The harmonic phonon-dispersion curves plotted along the
�-X-S-Y -�-Z-U -R-T -Z wave vectors are shown on Fig. 3(a).
For the above given temperatures and pressures the used mean
displacements of atoms were X̄Mg = 0.127 Å, X̄Si = 0.087 Å,
X̄O1 = 0.110 Å, X̄O2 = 0.105 Å, and X̄Mg = 0.099 Å, X̄Si =
0.063 Å, X̄O1 = 0.087 Å, X̄O2 = 0.075 Å, respectively.

Within the two considered states of MgSiO3, the an-
harmonic properties were studied. The harmonic phonon-
dispersion curves, Figs. 3(a) and 4(a) do not show soft modes.
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FIG. 4. MgSiO3 phonon-dispersion curves along �-X-S-Y -
�-Z-U -R-T -Z wave-vector path. (a) Harmonic phonon-dispersion
relations at temperatureless regime, and pressure P = 0.0 GPa. (b)
Anharmonic phonon bands created by 100 different sets of DP’s at
T = 800 K and P = 0.0 GPa. (c) Plots of all anharmonic peaks of
B1g symmetry close to k = �(0, 0, 0) [close to vertical line at (b)].

The maximum phonon frequency at 34 and 27 THz correspond
to pressures P = 57.3 GPa and P = 0.0 GPa, respectively.
Figures 3(b) and 4(b) show plots of phonon intensity maps
calculated along the same wave-vector path as for harmonic
phonon curves. Each band consists of 100 phonon curves,
but there are so many overlapping peaks that the information
becomes obscure. Having 6000 modes for each wave vector
k, one may construct histograms of all anharmonic peaks.
Applying the projection method, Eqs. (14) and (16) one could
have separated the spectra to all 60 anharmonic peaks. As
examples we plot anharmonic peaks of B1g and Ag symmetry
on Figs. 3(d), 4(d), and 5. The spectra do not resemble the
Lorentzian functions. At higher frequencies the centers of
the peaks are very sharp, while in the low-intensity part the

FIG. 5. A comparison of Ag anharmonic phonon modes of
MgSiO3 at � wave vector. (a) at T = 2300 K and P = 70.5 GPa,
(b) at T = 800 K and P = 0.0 GPa. No smoothing is used for plots.
The lines joint the points following from the histograms created by
100 different sets of DP’s.

peaks become quite wide. Peaks at lower frequencies have
irregular shapes. This could be due to insufficient sampling.
Nevertheless, an estimate of the widths of B1g and Ag peaks
leads on average to 1.4 and 1.1 THz atT = 2300 K, and 0.9 and
0.6 THz at T = 800 K. These quantities could be compared
with results of previous DFT works on MgSiO3. Figure 1(b)
of Ref. [11] refers to the linewidths of about 0.6 THz for three
peaks with frequency close to 10.0 THz at T = 700 K, and,
Figs. 2(g)–2(i) show linewidths of about 0.18 THz for peaks
in the range from 7.44 to 15.3 THz at similar conditions.
Figure 5(b) of Ref. [13] presents inverse anharmonic times
at T = 300 K, P = 24.1 GPa, which suggests linewidths of
anharmonic peaks from about 0.5 to 4.0 THz for phonon
frequencies from an interval range of 5–25 THz, respectively.
Figure 1(b) of Ref. [40] suggests a variation of linewidths at
T = 300 K from 0.6 to 2.0 THz for phonon frequencies from
an interval of 5–25 THz, respectively. The cited results are
compatible with each other and similar to the results provided
by the present approach.

C. Magnesium diboride MgB2

MgB2 becomes a superconductor at 39 K [45]. From deep
studies of this material have emerged a phonon-mediated
superconducting mechanism with moderate electron-phonon
coupling [46–49] and anharmonicity [46,50,51]. The Raman
spectroscopy has shown that the optical mode E2g is strongly
damped [52]. The inelastic x-ray-scattering measurement of

054305-7



KRZYSZTOF PARLINSKI PHYSICAL REVIEW B 98, 054305 (2018)

FIG. 6. MgB 2 phonon-dispersion curves plotted along �-K-M-
�-A-L-H -A wave-vector path. E1u, A2u, E2g , and B1g are the
irreducible representation of modes at �. (a) Harmonic phonon-
dispersion relations. (b),(c) Anharmonic phonon maps created from
averaging over 200 different sets of DP’s at T = 1 K and T = 300 K,
respectively.

phonon-dispersion curves revealed phonon broadening of
the E2g peak at � [53]. Anomalous broadening of phonon
branches, extending from this E2g along �-A and �-M direc-
tions, was also observed. Phonon damping can be caused by
electron-phonon coupling and/or phonon-phonon interaction.
Comparison of the ab initio quantum-mechanical calculations
of the two types of interactions [53] established that the
dominant contribution to the linewidth of E2g is provided by
the electron-phonon coupling [54,55].

MgB2 crystallizes in the P 6/mmm space group. The
optimization of the structure was performed in a rhombo-
hedral supercell with 36 atoms, and 4×4×4 k-point mesh.
The hexagonal lattice constants are equal to a = 3.70 Å, and
c = 3.52 Å. To determine the harmonic phonon-dispersion
curves it was necessary to calculate 12 lists of the HF forces
for the +/− displacements of nonequivalent Mg and B atoms.
The resulting harmonic phonon-dispersion curves are plotted

FIG. 7. MgB2 anharmonic peaks plotted at (a) M , (b) �, and (c)
A high-symmetry points in reciprocal space for T = 1 K. Labels a,
b, eg, and eu correspond to notations of modes used in Table I.

along �-K-M-�-A-L-H -A path [Fig. 6(a)]. At the � point
they are indexed by irreducible representations of the point
group 6/mmm, where A2u, B1g and E2g , E1u are single and
double degenerate modes, respectively.

At T = 1 K and T = 300 K the 200 DP’s were gen-
erated. The atomic displacements at T = 1 K, correspond-
ing to zero-temperature fluctuations X̄i = √〈UxUx〉, Z̄i =√〈UzUz〉, Eq. (13), were X̄Mg = 0.0511 Å, Z̄Mg = 0.0516 Å,
and X̄B = 0.0524 Å, Z̄B = 0.0595 Å for Mg and B atoms,
respectively. The computed 200 HF lists provided 200 sets
of phonon-dispersion curves. Sorting phonon modes along
the frequency axis determines a histogram. Amplitudes of the
histogram bins, converted to colors, gave the intensity map as
shown in Figs. 6(b) and 6(c). There are visible wide phonon
bands, which include the phonon E2g mode at �. The selected
histograms, for wave vectors k = M , k = �, k = A, with
spline smoothed peaks, are displayed in Fig. 7. Data of optic
phonons for the wave vectors of k = M, �, andA are collected
in Table I. It shows that the largest phonon linewidth occurs for
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TABLE I. Calculated linewidth �k,j (THz) and estimated value
of electron-phonon coupling constant λk,j , Eq. (17), at wave vectors
k = M, �, and A and phonon frequencies ωk,j (THz) due to common
phonon-phonon and electron-phonon interactions for MgB2 at T =
1 K. In column of “Mode j” irreducible representations at � are given.

Mode j ωM,j �M,j λM,j ω�,j ��,j λ�,j ωA,j �A,j λA,j

E1u(eu) 14.3 1.08 0.57 10.1 0.58 0.62 9.3 1.79 2.25
E1u(eu) 21.3 1.42 0.34 10.1 0.58 0.62 9.3 1.79 2.25
A2u(a) 12.2 0.65 0.47 12.1 0.68 0.50 11.2 0.84 0.73
E2g (eg) 22.1 1.75 0.39 14.4 4.84 2.53 19.3 2.28 0.66
E2g (eg) 22.8 1.42 0.30 14.4 4.84 2.53 19.3 2.28 0.67
B1g (b) 13.8 0.55 0.37 20.6 0.52 0.13 21.7 0.71 0.16

the E2g , and reads 4.84 THz, and such a wide band extends over
the whole wave-vector path displayed on the map [Fig. 6(b)].
The anharmonic linewidth at � was evaluated using the linear-
response theory and the (2n + 1) theorem for metals [53], and
hence at � the anharmonic linewidths are equal to 0.039 THz
at T = 0 K and 0.294 THz at T = 300 K, much less than
the presently calculated value of 4.84 THz. This suggests
that the main source of broadening is the electron-phonon
coupling. It is obvious that our calculated linewidths contain
both anharmonic contributions: tiny from phonon-phonon and
dominant from electron-phonon interactions. At present the
two contributions cannot be separated.

One may find the electron-phonon coupling λ(k, j ) from
Allen’s linewidth expression [54]:

λ(k, j ) = �(k, j )

2πN (0)ω2(k, j )
, (17)

where N (0) = 0.001 464 states/MbB2 THz spin is the den-
sity of states at the Fermi level. Hence, the electron-phonon
coupling for E2g reads λ = 2.53. The computed data are listed
in Table I for the exact wave vectors.

This linewidth of the E2g mode is comparable with the
magnitude of 4.92 THz of the similar mode at A wave vector
measured with x rays [53].

The question of how the electron-phonon coupling is related
to the linewidth of the E2g phonon has been widely discussed in
Refs. [55–59]. It was pointed out that the large increase of the
Raman linewidth of E2g symmetry between 40 and 300 K has
no equivalence in the x-ray inelastic spectra. Indeed, the x-ray
inelastic spectra show that the E2g phonon linewidth along the
�-A direction remains essentially temperature independent in
the above-mentioned temperature range [56]. However, recent
measurements of the temperature dependence of the E2g peak
up to T = 750 K showed a severe variation of the Raman
linewidth. The peak behavior was successfully calculated
taking into account the ab initio renormalization of electronic
structure due to electron-phonon coupling [60].

Similar calculations for temperature T = 300 K, which in-
volve larger displacements, namely X̄Mg = 0.0706 Å, Z̄Mg =
0.0726 Å, and X̄B = 0.0603Å, Z̄B = 0.0723 Å for Mg and B
atoms, respectively, lead to a similar intensity map, Fig. 6(c)
with, perhaps, a slightly larger linewidth of phonon peaks.
The broad phonon band, which crosses the E2g mode at �,
is present.

IV. CONCLUSIONS AND DISCUSSIONS

The above formulated method proposes to probe the an-
harmonic potential-energy landscape by a series of atomic
displacement configurations. Each configuration represents a
fluctuation similar to collection of phonons. However, contrary
to the molecular dynamic technique, the dynamical evolution
of these fluctuations does not need to be studied explicitly.
Instead, a series of atomic displacement configurations is
generated. For each fixed atomic configuration the electronic
states are minimized, and then, for this configuration, the
list of all HF forces FA

(i) is found. (It is in contrast to the
conventional perturbation approach, where anharmonic force
constants are calculated by optimization of configurations
with only three or four atoms displaced, while leaving the
remaining atoms at equilibrium.) Perhaps the minimization of
electronic energy of the displaced configuration DP involving
all atoms is essential for achieving the correct HF forces,
which lead, if present, to describing the strong electron-
phonon coupling. The forces FA

(i) are used to calculate the
bands of phonon-dispersion curves [24] guided by Eq. (11),
in which the harmonic dispersion curves play a reference
role.

Within symmetry consideration, the irreducible represen-
tations of the phonon modes are determined by the crystal-
lographic space group. The transformation of the phonon po-
larization vectors decides about the irreducible representation
related with a considered phonon mode. Notice that the same
transformation can be applied to all DP’s, i = 1, 2, 3, . . . N ,
hence, to all phonon curves belonging to the same band and
the same wave vector k. From this follows that the whole
anharmonic peak area really belongs by the same irreducible
representation.

The present method applies some similar ideas as used in
the SCAILD [14,15,61] approach. The common features are
that this approach assumes the systems to be confined to a
supercell, which is filled with possible commensurate phonon
waves, next used to calculate modified phonon frequencies,
and amplitudes for the subsequent consecutive cycles,
till the procedure converges. During this self-consistency
procedure the HF forces are found via a DFT code. The results
deliver renormalized phonon-dispersion curves, and even the
phonon linewidth in a form of the Gaussian [61]. Based on
similar ideas, another self-consistent method is proposed:
SSCHA [16].

In the method proposed in this paper the supercell is also
filled with all possible commensurate phonon waves, but
additionally we make use of the phases of every phonon,
which remarkably increases the amount of possible atomic
configurations, DP’s. Each atomic configuration is treated as
a perturbation in the sense of the SVD procedure, as shown
in Eq. (11). (The perturbation does not have expansional
character.) Then, phonon frequencies and polarization vectors
are calculated once for all created DPs. It must be stressed that
the essential point is the SVD procedure, which not only finds
phonon frequencies, but also provides the least-square fitting
of values of all force constants to the actual configurations
of atoms, simultaneously conserving the crystal symmetry
properties. Currently the unstable phonon phenomena and the
self-consistent procedure are not considered.
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Several theoretical works have given estimates of the
phonon frequency and shift in MgB2 using direct, or frozen
phonon approaches. See [57] for references. There it is
stated that the perturbation theory with third-, fourth-, and
higher-order terms may require us to go beyond the Born-
Oppenheimer approximation [62]. Indeed, such a typical cal-
culation assumes that phonons are static perturbations, where
nonactive atoms remain at equilibrium positions. In the present
method the forces FA

(i), used in Eq. (11), are calculated at
a fixed displaced configuration of all atoms (DP), and the
electronic energy relaxes to the optimized state, at which the
HF forces FA

(i) are collected.

The method offers a high degree of computing paralleliza-
tion, since the electronic relaxation of each displacement
configuration, which leads to HF forces FA

(i), can be done
simultaneously. Moreover, each such run is limited to a single
ionic loop, hence the CPU time could be rather short, even if
several hundreds of HF force lists are required.
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P. Jochym, J. Łażewski, M. Sternik, and A. Ptok.

[1] R. A. Cowley, Rep. Prog. Phys. 31, 123 (1968).
[2] A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962).
[3] G. Deinzer, G. Birner, and D. Strauch, Phys. Rev. B 67, 144304

(2003).
[4] K. Esfarjani and H. T. Stokes, Phys. Rev. B 77, 144112 (2008).
[5] K. H. Michel, S. Costamagna, and F. M. Peeters, Phys. Rev. B

91, 134302 (2015).
[6] T. H. K. Barron and M. L. Klein, in Dynamical Properties of

Solids, edited by G. K. Horton and A. A. Maradudin (North-
Holland, Amsterdam, Elsevier, New York, 1974), Vol. 1, p. 391.

[7] N. R. Werthamer, Phys. Rev. B 1, 572 (1970).
[8] W. Götze and K. H. Michel, in Dynamical Properties of Solids

(Ref. [6]), Vol. 1, p. 498.
[9] T. Sun, D. B. Zhang, and R. M. Wentzcovitch, Phys. Rev. B 89,

094109 (2014).
[10] D. B. Zhang, P. B. Allen, T. Sun, and R. M. Wentzcovitch,

Phys. Rev. B 96, 100302 (2017).
[11] D. B. Zhang, T. Sun, and R. M. Wentzcovitch, Phys. Rev. Lett.

112, 058501 (2014).
[12] A. France-Lanord, P. Soukiassian, Ch. Glattli, and E. Wimmer,

Phys. Rev. Appl. 7, 034030 (2017).
[13] N. Ghaderi, D.-B. Zhang, H. Zhang, J. Xian, R. M. Wentzcovitch,

and T. Sun, Sci. Rep. 7, 5417 (2017).
[14] P. Souvatzis, O. Eriksson, M. I. Katsnelson, and S. P. Rudin,

Phys. Rev. Lett. 100, 095901 (2008).
[15] H.-Y. Zhang, Z.-W. Niu, L.-C. Cai, X.-R. Chen, and F. Xi,

Comput. Mater. Sci. 144, 32 (2018).
[16] I. Errea, M. Calandra, and F. Mauri, Phys. Rev. B 89, 064302

(2014).
[17] O. Hellman, I. A. Abrikosov, and S. I. Simak, Phys. Rev. B 84,

180301 (2011).
[18] O. Hellman and I. A. Abrikosov, Phys. Rev. B 88, 144301 (2013).
[19] T. Tadano and S. Tsuneyuki, J. Phys. Soc. Jpn. 87, 041015

(2018).
[20] H. Horner, Z. Phys. 205, 72 (1967).
[21] J. J. Plata, P. Nath, D. Usanmaz, J. Carrete, C. Toher, M. de

Jong, M. Asta, M. Fornari, M. B. Nardelli, and S. Curtarolo,
npj Comput. Mater. 3, 45 (2015).

[22] T. Tadano and S. Tsuneyuki, Phys. Rev. B 92, 054301 (2015).
[23] W. Li, J. Carrete, N. K. Katcho, and N. Mingo, Comput. Phys.

Commun. 185, 1747 (2014).
[24] K. Parlinski, Z.-Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063

(1997).

[25] G. Kresse, J. Furthmüller, and J. Hafner, Europhys. Lett. 32, 729
(1995).

[26] A. A. Maradudin, in Dynamical Properties of Solids (Ref. [6]),
Vol. 1, p. 1.

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
in Numerical Recipes (Cambridge University Press, Cambridge,
England, 1992), p. 670.

[28] G. W. Stewart, in SVD and Signal Processing, II: Algorithms,
Analysis and Applications, edited by R. J. Vaccaro (Elsevier
Science, Amsterdam, 1991), p. 99.

[29] E. Candès and M. Wakin, IEEE Signal Proc. Mag. 25, 21 (2008).
[30] F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, Phys. Rev. Lett.

113, 185501 (2014).
[31] G. Grimvall, in Thermophysical Properties of Materials (Else-

vier Science, Amsterdam, 1999), p. 121.
[32] P. Debye, Ann. Phys. 348, 49 (1913).
[33] H. Ott, Ann. Phys. 415, 169 (1935).
[34] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996);

Comput. Mater. Sci. 6, 15 (1996).
[35] K. Parlinski, in Neutrons and Numerical Methods, edited by

M. R. Johnson, G. J. Kearley, and H. G. Büttner, AIP Conf.
Proc. No. 479 (AIP, Melville, NY, 1999), pp. 121–126.

[36] A. D. B. Woods and S. H. Chen, Solid State Commun. 2, 233
(1964).

[37] A. Larose and B. N. Brockhouse, Can. J. Phys. 54, 1819 (1976).
[38] W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
[39] S. L. Daraszkiewicz, Y. Giret, H. Tanimura, D. M. Duffy, A. L.

Shluger, and K. Tanimura, Appl. Phys. Lett. 105, 023112 (2014).
[40] H. Dekura, T. Tsuchiya, and J. Tsuchiya, Phys. Rev. Lett. 110,

025904 (2013).
[41] H. Horiuch, E. Ito, and D. J. Weidner, Am. Mineral. 72, 357

(1987).
[42] E. Ito and Y. Matsui, Earth Planet Sci. Lett. 38, 443 (1978).
[43] Y. Kudoh, E. Ito, and H. Takeda, Phys. Chem. Miner. 14, 350

(1987).
[44] K. Parlinski and Y. Kawazoe, Eur. J. Phys. B 16, 49 (2000).
[45] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J.

Akimitsu, Nature (London) 410, 63 (2001).
[46] A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005

(2001).
[47] J. M. An and W. E. Pickett, Phys. Rev. Lett. 86, 4366 (2001).
[48] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and

L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001).

054305-10

https://doi.org/10.1088/0034-4885/31/1/303
https://doi.org/10.1088/0034-4885/31/1/303
https://doi.org/10.1088/0034-4885/31/1/303
https://doi.org/10.1088/0034-4885/31/1/303
https://doi.org/10.1103/PhysRev.128.2589
https://doi.org/10.1103/PhysRev.128.2589
https://doi.org/10.1103/PhysRev.128.2589
https://doi.org/10.1103/PhysRev.128.2589
https://doi.org/10.1103/PhysRevB.67.144304
https://doi.org/10.1103/PhysRevB.67.144304
https://doi.org/10.1103/PhysRevB.67.144304
https://doi.org/10.1103/PhysRevB.67.144304
https://doi.org/10.1103/PhysRevB.77.144112
https://doi.org/10.1103/PhysRevB.77.144112
https://doi.org/10.1103/PhysRevB.77.144112
https://doi.org/10.1103/PhysRevB.77.144112
https://doi.org/10.1103/PhysRevB.91.134302
https://doi.org/10.1103/PhysRevB.91.134302
https://doi.org/10.1103/PhysRevB.91.134302
https://doi.org/10.1103/PhysRevB.91.134302
https://doi.org/10.1103/PhysRevB.1.572
https://doi.org/10.1103/PhysRevB.1.572
https://doi.org/10.1103/PhysRevB.1.572
https://doi.org/10.1103/PhysRevB.1.572
https://doi.org/10.1103/PhysRevB.89.094109
https://doi.org/10.1103/PhysRevB.89.094109
https://doi.org/10.1103/PhysRevB.89.094109
https://doi.org/10.1103/PhysRevB.89.094109
https://doi.org/10.1103/PhysRevB.96.100302
https://doi.org/10.1103/PhysRevB.96.100302
https://doi.org/10.1103/PhysRevB.96.100302
https://doi.org/10.1103/PhysRevB.96.100302
https://doi.org/10.1103/PhysRevLett.112.058501
https://doi.org/10.1103/PhysRevLett.112.058501
https://doi.org/10.1103/PhysRevLett.112.058501
https://doi.org/10.1103/PhysRevLett.112.058501
https://doi.org/10.1103/PhysRevApplied.7.034030
https://doi.org/10.1103/PhysRevApplied.7.034030
https://doi.org/10.1103/PhysRevApplied.7.034030
https://doi.org/10.1103/PhysRevApplied.7.034030
https://doi.org/10.1038/s41598-017-05523-6
https://doi.org/10.1038/s41598-017-05523-6
https://doi.org/10.1038/s41598-017-05523-6
https://doi.org/10.1038/s41598-017-05523-6
https://doi.org/10.1103/PhysRevLett.100.095901
https://doi.org/10.1103/PhysRevLett.100.095901
https://doi.org/10.1103/PhysRevLett.100.095901
https://doi.org/10.1103/PhysRevLett.100.095901
https://doi.org/10.1016/j.commatsci.2017.11.041
https://doi.org/10.1016/j.commatsci.2017.11.041
https://doi.org/10.1016/j.commatsci.2017.11.041
https://doi.org/10.1016/j.commatsci.2017.11.041
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevB.89.064302
https://doi.org/10.1103/PhysRevB.84.180301
https://doi.org/10.1103/PhysRevB.84.180301
https://doi.org/10.1103/PhysRevB.84.180301
https://doi.org/10.1103/PhysRevB.84.180301
https://doi.org/10.1103/PhysRevB.88.144301
https://doi.org/10.1103/PhysRevB.88.144301
https://doi.org/10.1103/PhysRevB.88.144301
https://doi.org/10.1103/PhysRevB.88.144301
https://doi.org/10.7566/JPSJ.87.041015
https://doi.org/10.7566/JPSJ.87.041015
https://doi.org/10.7566/JPSJ.87.041015
https://doi.org/10.7566/JPSJ.87.041015
https://doi.org/10.1007/BF01326300
https://doi.org/10.1007/BF01326300
https://doi.org/10.1007/BF01326300
https://doi.org/10.1007/BF01326300
https://doi.org/10.1038/s41524-017-0046-7
https://doi.org/10.1038/s41524-017-0046-7
https://doi.org/10.1038/s41524-017-0046-7
https://doi.org/10.1038/s41524-017-0046-7
https://doi.org/10.1103/PhysRevB.92.054301
https://doi.org/10.1103/PhysRevB.92.054301
https://doi.org/10.1103/PhysRevB.92.054301
https://doi.org/10.1103/PhysRevB.92.054301
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1016/j.cpc.2014.02.015
https://doi.org/10.1103/PhysRevLett.78.4063
https://doi.org/10.1103/PhysRevLett.78.4063
https://doi.org/10.1103/PhysRevLett.78.4063
https://doi.org/10.1103/PhysRevLett.78.4063
https://doi.org/10.1209/0295-5075/32/9/005
https://doi.org/10.1209/0295-5075/32/9/005
https://doi.org/10.1209/0295-5075/32/9/005
https://doi.org/10.1209/0295-5075/32/9/005
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1103/PhysRevLett.113.185501
https://doi.org/10.1103/PhysRevLett.113.185501
https://doi.org/10.1103/PhysRevLett.113.185501
https://doi.org/10.1103/PhysRevLett.113.185501
https://doi.org/10.1002/andp.19133480105
https://doi.org/10.1002/andp.19133480105
https://doi.org/10.1002/andp.19133480105
https://doi.org/10.1002/andp.19133480105
https://doi.org/10.1002/andp.19354150206
https://doi.org/10.1002/andp.19354150206
https://doi.org/10.1002/andp.19354150206
https://doi.org/10.1002/andp.19354150206
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0038-1098(64)90370-9
https://doi.org/10.1016/0038-1098(64)90370-9
https://doi.org/10.1016/0038-1098(64)90370-9
https://doi.org/10.1016/0038-1098(64)90370-9
https://doi.org/10.1139/p76-215
https://doi.org/10.1139/p76-215
https://doi.org/10.1139/p76-215
https://doi.org/10.1139/p76-215
https://doi.org/10.1103/PhysRevLett.2.393
https://doi.org/10.1103/PhysRevLett.2.393
https://doi.org/10.1103/PhysRevLett.2.393
https://doi.org/10.1103/PhysRevLett.2.393
https://doi.org/10.1063/1.4890413
https://doi.org/10.1063/1.4890413
https://doi.org/10.1063/1.4890413
https://doi.org/10.1063/1.4890413
https://doi.org/10.1103/PhysRevLett.110.025904
https://doi.org/10.1103/PhysRevLett.110.025904
https://doi.org/10.1103/PhysRevLett.110.025904
https://doi.org/10.1103/PhysRevLett.110.025904
https://doi.org/10.1016/0012-821X(78)90119-X
https://doi.org/10.1016/0012-821X(78)90119-X
https://doi.org/10.1016/0012-821X(78)90119-X
https://doi.org/10.1016/0012-821X(78)90119-X
https://doi.org/10.1007/BF00309809
https://doi.org/10.1007/BF00309809
https://doi.org/10.1007/BF00309809
https://doi.org/10.1007/BF00309809
https://doi.org/10.1007/s100510070248
https://doi.org/10.1007/s100510070248
https://doi.org/10.1007/s100510070248
https://doi.org/10.1007/s100510070248
https://doi.org/10.1038/35065039
https://doi.org/10.1038/35065039
https://doi.org/10.1038/35065039
https://doi.org/10.1038/35065039
https://doi.org/10.1103/PhysRevLett.87.087005
https://doi.org/10.1103/PhysRevLett.87.087005
https://doi.org/10.1103/PhysRevLett.87.087005
https://doi.org/10.1103/PhysRevLett.87.087005
https://doi.org/10.1103/PhysRevLett.86.4366
https://doi.org/10.1103/PhysRevLett.86.4366
https://doi.org/10.1103/PhysRevLett.86.4366
https://doi.org/10.1103/PhysRevLett.86.4366
https://doi.org/10.1103/PhysRevLett.86.4656
https://doi.org/10.1103/PhysRevLett.86.4656
https://doi.org/10.1103/PhysRevLett.86.4656
https://doi.org/10.1103/PhysRevLett.86.4656


AB INITIO DETERMINATION OF ANHARMONIC … PHYSICAL REVIEW B 98, 054305 (2018)

[49] Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen,
Phys. Rev. B 64, 020501 (2001).

[50] T. Yildirim, O. Gulseren, J. W. Lynn, C. M. Brown, T. J. Udovic,
Q. Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky,
T. He, M. K. Haas, P. Khalifah, K. Inumaru, and R. J. Cava,
Phys. Rev. Lett. 87, 037001 (2001).

[51] L. Boeri, G. B. Bachelet, E. Cappelluti, and L. Pietronero,
Phys. Rev. B 65, 214501 (2002).

[52] J. Hlinka, I. Gregora, J. Pokorny, A. Plecenik, P. Kus, L.
Satrapinsky, and S. Benacka, Phys. Rev. B 64, 140503(R) (2001).

[53] A. Shukla, M. Calandra, M.d’Astuto, M. Lazzeri, F Mauri,
C. Bellin, M. Krisch, J. Karpinski, S. M. Kazakov, J. Jun, D.
Daghero, and K. Parlinski, Phys. Rev. Lett. 90, 095506 (2003).

[54] P. B. Allen, Phys. Rev. B 6, 2577 (1972).
[55] J. Menendez and M. Cardona, Phys. Rev. B 29, 2051 (1984).
[56] M d’Astuto, M. Calandra, S. Reich, A. Shukla, M. Lazzeri, F.

Mauri, J. Karpinski, N. D. Zhigadlo, A. Bossak, and M. Krisch,
Phys. Rev. B 75, 174508 (2007).

[57] M. Calandra, M. Lazzeri, and F. Mauri, Phys. C (Amsterdam,
Neth.) 456, 38 (2007).

[58] E. Cappelluti, Phys. Rev. B 73, 140505(R) (2006).
[59] M. Calandra and F. Mauri, Phys. Rev. B 71, 064501 (2005).
[60] Yu. S. Ponosov and S. V. Streltsov, Phys. Rev. B 96, 214503

(2017).
[61] P. Souvatzis, J. Phys.: Condens. Matter 23, 445401 (2011).
[62] M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).

054305-11

https://doi.org/10.1103/PhysRevB.64.020501
https://doi.org/10.1103/PhysRevB.64.020501
https://doi.org/10.1103/PhysRevB.64.020501
https://doi.org/10.1103/PhysRevB.64.020501
https://doi.org/10.1103/PhysRevLett.87.037001
https://doi.org/10.1103/PhysRevLett.87.037001
https://doi.org/10.1103/PhysRevLett.87.037001
https://doi.org/10.1103/PhysRevLett.87.037001
https://doi.org/10.1103/PhysRevB.65.214501
https://doi.org/10.1103/PhysRevB.65.214501
https://doi.org/10.1103/PhysRevB.65.214501
https://doi.org/10.1103/PhysRevB.65.214501
https://doi.org/10.1103/PhysRevB.64.140503
https://doi.org/10.1103/PhysRevB.64.140503
https://doi.org/10.1103/PhysRevB.64.140503
https://doi.org/10.1103/PhysRevB.64.140503
https://doi.org/10.1103/PhysRevLett.90.095506
https://doi.org/10.1103/PhysRevLett.90.095506
https://doi.org/10.1103/PhysRevLett.90.095506
https://doi.org/10.1103/PhysRevLett.90.095506
https://doi.org/10.1103/PhysRevB.6.2577
https://doi.org/10.1103/PhysRevB.6.2577
https://doi.org/10.1103/PhysRevB.6.2577
https://doi.org/10.1103/PhysRevB.6.2577
https://doi.org/10.1103/PhysRevB.29.2051
https://doi.org/10.1103/PhysRevB.29.2051
https://doi.org/10.1103/PhysRevB.29.2051
https://doi.org/10.1103/PhysRevB.29.2051
https://doi.org/10.1103/PhysRevB.75.174508
https://doi.org/10.1103/PhysRevB.75.174508
https://doi.org/10.1103/PhysRevB.75.174508
https://doi.org/10.1103/PhysRevB.75.174508
https://doi.org/10.1016/j.physc.2007.01.021
https://doi.org/10.1016/j.physc.2007.01.021
https://doi.org/10.1016/j.physc.2007.01.021
https://doi.org/10.1016/j.physc.2007.01.021
https://doi.org/10.1103/PhysRevB.73.140505
https://doi.org/10.1103/PhysRevB.73.140505
https://doi.org/10.1103/PhysRevB.73.140505
https://doi.org/10.1103/PhysRevB.73.140505
https://doi.org/10.1103/PhysRevB.71.064501
https://doi.org/10.1103/PhysRevB.71.064501
https://doi.org/10.1103/PhysRevB.71.064501
https://doi.org/10.1103/PhysRevB.71.064501
https://doi.org/10.1103/PhysRevB.96.214503
https://doi.org/10.1103/PhysRevB.96.214503
https://doi.org/10.1103/PhysRevB.96.214503
https://doi.org/10.1103/PhysRevB.96.214503
https://doi.org/10.1088/0953-8984/23/44/445401
https://doi.org/10.1088/0953-8984/23/44/445401
https://doi.org/10.1088/0953-8984/23/44/445401
https://doi.org/10.1088/0953-8984/23/44/445401
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002



