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Disorder perturbed flat bands: Level density and inverse participation ratio
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We consider the effect of disorder on the tight-binding Hamiltonians with a flat band and derive a common
mathematical formulation of the average density of states and inverse participation ratio applicable for a wide range
of them. The system information in the formulation appears through a single parameter which plays an important
role in search of the critical points for disorder driven transitions in flat bands [P. Shukla, arXiv:1807.02436]. In
a weak disorder regime, the formulation indicates an insensitivity of the statistical measures to disorder strength,
thus confirming the numerical results obtained by our as well as previous studies.
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I. INTRODUCTION

Based on the dispersion relation, the band structure of
periodic lattices can in general contain two type of bands: often
studied dispersive bands defined by energy e as a function of
Bloch wave vector k and the dispersionless or flat bands defined
by e(k) = constant which appear under specific combinations
of the system conditions [1]. As indicated by recent studies,
the flat bands physics is not only of fundamental relevance, its
detailed knowledge is significant from the industrial as well
as technological viewpoint [2–17]. The latter has encouraged
a theoretical search of systems with flat bands, sometimes
referred to as “flatband engineering” [18–23] as well as the
analysis of system conditions, e.g., the role of symmetries in
flat band existence and stability [24–27], the presence of mag-
netic field [13], and the influence of disorder and interactions
[14–17]. Such bands are not mere theoretical models, they have
been observed in experimental studies too, e.g., on photonic
waveguides [28–33], exciton-polariton condensates [34–36],
and ultracold atomic condensates [37,38].

The theoretical concept of a flat band is based on the exact
relations among a set of system conditions which may not
always be fulfilled in a real solid. It is therefore relevant to seek
the information about the effect of a weak perturbation on the
system condition, e.g., approximate symmetries, topological
conditions, and disorder on the flat band properties. Due to
the highly degenerate nature of the flat bands, the response to
perturbations is expected to differ significantly based on the
location of the Fermi level, i.e., whether it is in the bulk of
the flat or dispersive band, at the edge of a flat and dispersive
band, or at the edge of two flat bands, etc. Initial studies in
this context, mostly numerical, have revealed a rich variety of
behavior based on the nature of perturbation, e.g., disorder and
other system conditions (e.g., see Refs. [11,12,18–21]) as well
as the type of bands, i.e., single or many particle type [14–17].
This motivates us to consider a theoretical approach to study the
response, based on the statistical analysis of a Hamiltonian with
a generic combination of bands, e.g., a single or multiple flat
bands, a flat band along with a dispersive band, etc. For a clear
presentation of our ideas, here we confine the analysis to one
specific perturbation, namely, disorder with a primary focus on
the single particle flat bands. Although the approach described

here is in principle applicable to interacting flat bands too, it
is technically complicated, requires a separate consideration,
and the detailed steps will be presented elsewhere.

The presence of disorder leads to randomization of the
lattice Hamiltonian and it can be best analyzed by an ensemble
of its replicas. The choice of the appropriate ensemble is
governed by the global constraints, e.g., symmetries, con-
servation laws, dimensionality as well as local constraints,
e.g., disorder, hopping, etc. and can be determined by the
maximum entropy considerations. The underlying complexity
however often conspires in favor of a multiparametric Gaussian
ensemble as a good model for many systems. For example,
physical properties of complex systems in wide-ranging areas
e.g. atoms, molecules, dynamical systems, human brain, finan-
cial markets can be well-modeled by the stationary Gaussian
ensembles if the underlying wave-dynamics is delocalized
[39,40] and by sparse Gaussian ensemble if the wave-dynamics
is partially localized [41]. The success of these Gaussian
models can usually be attributed to many independent sub-
units contributing collectively to dynamics; the emergence
of Gaussian behavior is then predicted by the central limit
theorem. This encourages us to consider a flat band with
Gaussian disorder with its Hamiltonian modeled by a multi-
parametric Gaussian ensemble. As mentioned later in the text,
the Gaussian consideration of disorder in case of a flat band
has an additional technical justification too.

Previous studies, based on theoretical as well as numerical
analysis, indicate that a multiparametric evolution of the prob-
ability density of a Gaussian ensemble of Hermitian matrices,
with arbitrary variances and mean values for its elements,
can be expressed by a common mathematical formulation,
governed by a single parameter [42]. The latter, referred
to as the ensemble complexity parameter, is a function of
all ensemble parameters and can act as a criteria for the
critical statistics [41]. In the present study, we consider the
complexity parameter formulation for a disorder perturbed flat
band (also referred to as disordered flat band) and derive the
level density and inverse participation ratio in a generic form
applicable for a wide range of such a case. Besides revealing
interesting features, these results are later used in Ref. [1] for
the critical point analysis of the statistics of energy levels and
eigenfunctions.
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The paper is organized as follows. Our main objective here
is to search for the criticality of the spectral statistics when a flat
band is perturbed by the disorder. Due to technical complexity,
the theoretically analysis of this topic has not been carried
out in the past (to the best of our knowledge). For a simple
exposition of our ideas therefore, here we primarily focus
on the single particle bands perturbed by Gaussian disorder.
Section II A briefly introduces a tight-binding periodic lattice
with a flat band along with a few well-known examples. Onset
of disorder removes the degeneracy of the flat band energy
levels and affects their statistical correlations. An assumption
of the Gaussian disorder, discussed in Sec. II B, permits
us to model the Hamiltonian by a multiparametric Gaussian
ensemble in which the ensemble parameters, i.e., mean values
and variances of the matrix elements depend on the system
parameters, e.g., disorder, hopping, dimensionality, etc. A
variation of these parameters may subject the matrix elements
to undergo a statistical evolution which can be shown to be
governed by the ensemble complexity parameter [41–44]. This
is briefly reviewed in Sec. II C along with the complexity
parameters for the examples given in Sec. II A. As mentioned
above, a flat band may arise under a wide range of system
conditions including particle-particle interactions. Although
technically complicated, the role of disorder in the flat bands
caused by particle interactions is an important topic which
motivates us to include, in Sec. III, a brief discussion of the
complexity parameter formulation for these cases. (A detailed
investigation of this topic requires a separate consideration and
will be done elsewhere). Section IV reviews the complexity
parameter formulation for the statistics of the eigenvalues
and eigenfunctions for a multiparametric Gaussian ensemble.
The information given in Sec. IV is used in Sec. V to derive
the complexity parameter formulation of the density and the
inverse participation ratio. As discussed in Ref. [1] (part II of
this paper), a knowledge of these measures is necessary to seek
the criticality in disordered flat bands. We conclude in Sec. VI
with a brief summary of our main results.

II. TIGHT-BINDING LATTICES WITH SINGLE
PARTICLE FLAT BANDS

A. Clean limit

Within tight-binding approximation, the Hamiltonian H

of a d-dimensional periodic lattice with N unit cells, each
consisting of M atoms, with η orbitals contributing for each
atom, can be given as

H =
∑
x,y

Vxy c†x.cy (1)

with c
†
x, cx as the particle creation and annihilation operators on

the site x with Vxx as the on-site energy and Vxy as the hopping
between sites x, y. Here x = (n, α, φ) where n = (n1, . . . , nd )
are the indices for the d-dimensional unit cell, α is the atomic
labels, e.g.,α = a, b forM = 2 andφ = 1, . . . , η as the atomic
orbital index. Hereafter the orbital index will be suppressed
for the cases where only a single orbital from each atom
contributes.

Due to periodicity of the lattice, the eigenstates ψ

of the Hamiltonian H are delocalized Bloch waves with
eigenenergies eν (k) forming a band structure and ν as the
band index: ν = 1, . . . , μ with μ as the total number of
bands. The nature of these bands is sensitive to the system
conditions (manifesting through Vxx, Vxy) which may give
rise to dispersionless bands defined by the energy eν (k) =
constant along with dispersive bands with their energy as
a function of k. The macroscopic degeneracy of the energy
levels within a flat band may lead to destructive interference
of the Bloch waves, resulting in the localized or compact
localized eigenstates (with zero amplitude outside a few unit
cells) [25,45,46].

Some prototypical examples can be described as follows
(also displayed in Fig. 1):

(a) 1d cross-stitch lattice with single orbital per site:
Referring the unit cell by the label m, a site index
can be written as x = (m,α) with α = a, b. The flat
band in this case is obtained for the following set of
conditions: (i) Vxx = 0, (ii) Vxy = t for x = (m, a), y =
(m, b), (iii) Vxy = T if x = (m, a) and y = (m − 1, β )
or (m + 1, β ) with β = a, b, (iv) Vxy = 0 for all other x, y

pairs (see, for example, Ref. [22] for details).
(b) Triangular lattice with single orbital per site: Again using

the site index x = (m,α) with m as the unit cell label, the flat
band condition can be described as (i) Vxx = 2t if x = (m, a),
(ii) Vxx = λ2t if x = (m, b), (iii) Vxy = t if x = (m, a), y =
(m ± 1, a), (iv) Vxy = T if x = (m, a), y = (m, b) or x =
(m + 1, a), y = (m, b), (v) Vxy = 0 for all other x, y pairs (see
Sec. 5 of Ref. [5] for the flat band conditions of this lattice).

(c) 2d-planer pyrochlore lattice with single orbital per site:
With 2d unit cell labeled as (m, n), one can write a site
index as x = (m, n, α) with α = a, b (i.e., two atoms per
unit cell). The lattice consists of one flat band Ef = ε − 2t

and one dispersive band Ed = ε + 2t (cos kx + cos ky + 1) if
Vxy satisfies the following set of conditions [12]: (i) Vxx = ε,
(ii) Vxy = t with x = (m, n, α) if y = (m, n, β ) or (m −
1, n, β ) or (m, n + 1, β ) with β = a, b, and (iii) Vxy = 0 for all
other x, y pairs. (Note that this case, with ε = 2, t = 1, is used
later for a numerical verification of our theoretical predictions.)

FIG. 1. (a) 1d cross-stitch lattice, (b) triangular lattice, (c) 2d-planer pyrochlore lattice, (d) 3d diamond lattice.

054206-2



DISORDER PERTURBED FLAT BANDS: LEVEL DENSITY AND … PHYSICAL REVIEW B 98, 054206 (2018)

(d) 3d diamond lattice with fourfold degenerated orbitals
on each site

With 3d unit cell labeled as r ≡ (l, m, n), the site index
can be written as x = (r, α, φ), y = (r′, β, φ′) with α, β =
a, b and φ, φ′ = 1, . . . , 4. Here hopping is considered be-
tween the orbitals within the nearest neighbor sites (on same
or different unit cells r and r′) with (i) Vxy = t0 if r =
r′, α = β and φ �= φ′, (ii) Vxy = t1 if α �= β and φ = φ′ = 1,
(iii) Vxy = t2 if α �= β and φ = 1, φ′ = 4, (iv) Vxy = t3 if α �=
β and φ = 3, φ′ = 4, (v) Vxy = t4 if α �= β and φ = 2, φ′ = 2.
As discussed in Ref. [19], choosing ε = 0.0, t0 = 0.0, t1 =
−1, t2 = 1, t3 = −1, t4 = −1 leads to two flat bands [19].

The examples mentioned above correspond to clean, single
particle, bipartite lattices with time-reversal symmetry. As an
important application of the flat band studies is in the context
of magnetic systems, here we consider two example without
time-reversal symmetry, e.g., in the presence of magnetic field.

(e) Aharonov-Bohm cages
An important example giving rise to Aharonov-Bohm cages

is the T3 lattice, a two-dimensional bipartite periodic structure
with hexagonal symmetry and with three sites per unit cell
(see Fig. 1 of Ref. [15]). The presence of a magnetic field
B affects the hopping element of H : Vxy = txy eiηxy with
ηxy = 2π

φ0

∫ y

x
A.dl with A as the vector potential and φ0 =

hc/e as the flux quantum. Assuming a uniform magnetic field
perpendicular to the plane of the lattice, the magnetic flux can
be given as φ = Ba2

√
3/2 with a as the lattice spacing. For

φ = 0 the spectrum has a flat band besides standard Bloch
waves. But an unusual effect is caused by φ = φ0/2, resulting
in collapse of the energy spectrum into three flat bands. The
high degeneracy of the energy levels in the bands allows
construction of the eigenstates localized in a finite size cluster,
known as the Aharonov Bohm cage (the term arises due to
localization caused by Aharonov-Bohm-type interference of
electron paths). This case is discussed in Ref. [15] in detail.

Another simple system described by the Hamiltonian in
Eq. (1) and leading to cage effect is a one-dimensional chain
of square loops with periodic boundary conditions kept in a
uniform perpendicular magnetic field B. This case is discussed
in detail in Ref. [14].

B. Effect of disorder

As indicated by previous studies, the response of a flat
band is sensitive to the nature of disorder, e.g., correlated
vs uncorrelated and whether it causes a breaking of existing
lattice symmetries [21,27]. For example, a randomization of
the on-site energies leads to breaking of a chiral symme-
try but the latter is preserved if the hopping strengths are
randomized [27]. For clarity purposes, the present study is
confined to the randomized on site energies Vxx only. The
choice of an appropriate distribution for the latter depends
on the available information and local system conditions.
For cases with information only about the first two moments
of Vxx (over an ensemble of disordered Hamiltonians), the
maximum entropy hypothesis predicts a Gaussian distribution.
The latter can also be justified on the following grounds:
Due to macroscopic degeneracy of the levels, the density of
states in the clean limit is a δ function which, in the presence
of a weak disorder, can be well approximated by a limiting

Gaussian distribution. An ensemble averaging of the density
of states gives, by definition, the probability density of a
typical energy state. Assuming the dominant contribution to
energy states coming from the randomized on-site energies,
the latter can then be appropriately described by a Gaussian.
(Although the hopping strength also contributes to the energy
states, its effect is significant for the cases in which wave
dynamics is extended in the unperturbed limit. In the case of
clean flat bands, however, most eigenfunctions are fully or
compact localized.) This motivates us to consider the case of
a periodic lattice with on-site uncorrelated Gaussian disorder;
the corresponding Hamiltonian is described by Eq. (1) but with
Vxx as independent Gaussian random variable.

To study the effect of on-site disorder, it is appropriate
to represent H in the site basis. For simplification, we now
refer to it as |k〉, k = 1 → N with N as the total number of
sites. As the prototypical examples given in Sec. II indicate,
H in the site basis is in general a sparse Hermitian matrix,
with the degree of sparsity governed by the dimensionality
and range of hopping. In the presence of disorder, however,
the effective sparsity may vary (based on relative strength
of the nonzero elements) resulting in a change of behavior
of the system with significant sample-dependent fluctuations.
The joint probability distribution ρ(H ) of all independent
matrix elements Hkl ≡ 〈k|H |〉, also referred to as the ensemble
density, can then be given as

ρ(H ) = Cw

N∏
k=1

e− (Hkk−Vkk )2

2w2

N∏
k,l=cntd

q=1→β

δ(Hkl;q − Vkl;q )

×
N∏

k,l �=cntd

q=1→β

δ(Hkl;q ) (2)

with subscript “q” of a variable referring to its real or
imaginary component, β as their total number (β = 1 for real
variable, β = 2 for the complex one), and Cw = ( 1√

2πw2
)
N

where the subscript k, l = cntd refers to a pair of sites
k, l which are connected. Further representing the Dirac-
delta function by its Gaussian limit, i.e., δ(Hkl;q − Vkl;q ) →

lim
σ→0

1√
2πσ 2

e− (Hkl;q −Vkl;q )2

2σ2 , Eq. (2) can be rewritten as a multi-
parametric Gaussian ensemble

ρ(H ) = lim
σ→0

Cσ,w

N∏
k=1

e− (Hkk−Vkk )2

2w2

N∏
k,l=cntd

q=1→β

e− (Hkl;q −Vkl;q )2

2σ2

×
N∏

k,l �=cntd

q=1→β

e− H2
kl;q

2σ2 (3)

with Cσ,w = ( 1√
2πσ 2

)
N (N−1)

( 1√
2πw2

)
N

.
On variation of the ensemble parameters, the ensemble den-

sity given by Eq. (3) is expected to undergo a multiparametric
evolution. But as shown in a series of studies [42–44], the
evolution is indeed governed by a single parameter, a function
of all ensemble parameters which is therefore referred to as
the ensemble complexity parameter. This is briefly reviewed
in the next section.
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C. Complexity parameter formulation

Consider an ensemble of Hermitian matrices H with uncor-
related multiparametric Gaussian density

ρ(H, v, b) = C exp

⎡
⎣−

β∑
q=1

∑
k�l

1

2vkl;q
(Hkl;q − bkl;q )2

⎤
⎦ (4)

with C as the normalization constant, v as the set of the
variances vkl;q = 〈H 2

kl;q〉 − 〈Hkl;q〉2, and b as the set of all mean
values 〈Hkl;q〉 = bkl;q . Here the variances vkl;q and mean values
bkl;q can take arbitrary values (e.g., vkl;q → 0 for nonrandom
cases). It is easy to see that Eq. (3) is a special case of
Eq. (4). Changing system parameters may lead to a variation
of the ensemble parameters vkl, bkl and a diffusion of the
elements Hkl . But the evolution of ρ(H ) is described by a
single parameter [42]

∂ρ

∂Y
=

∑
k,l;q

∂

∂Hkl;q

[
gkl

2

∂

∂Hkl;q
+ γ Hkl;q

]
ρ, (5)

where gkl = 1 + δkl with δkl as a Kronecker delta function and

Y = − 1

γ Nβ

ln

⎡
⎣∏

k�l

β∏
q=1

|1−(2−δkl )γ vkl;q | |bkl;q + b0|2
⎤
⎦

+ constant, (6)

with Nβ = βN

2 (N + 2 − β ) + Nb and Nb as the total number
of bkl;q which are not zero. Further b0 = 1 or 0 if bkl;q = 0 or
�= 0, respectively, and γ as an arbitrary constant, marking the
end of transition (ρ(H ) ∝ e− γ

2 TrH 2
in steady state limit).

Equation (5) describes a Y governed Brownian dynamics
of the elements Hkl in the Hermitian matrix space, subjected
to a harmonic potential and is analogous to the Dyson’s
Brownian motion model [40]. In the stationary limit Y → ∞,
the solution of the above equation corresponds to Gaussian
orthogonal ensemble (GOE, for β = 1) or Gaussian unitary
ensemble (GUE, for β = 2), the stationary universality classes
of random matrices. A finite Y solution of Eq. (5) corresponds
to a nonequilibrium state of crossover from an arbitrary initial
ensemble to GOE or GUE and is referred to as the Brownian
ensemble (BE) [40,47,48] intermediate between the specific
initial condition → GOE/GUE. It must be noted that Eq. (5)
has a unique solution for Y � 0.

A relevant initial condition, in the context of weakly disor-
dered flat bands, is the Poisson spectral statistics, with localized
eigenfunctions. The solution of Eq. (5) for this initial condition
is known as Poisson → GOE/GUE Brownian ensemble; the
latter is analogous to Rosenzweig-Porter (RP) ensemble (see
Refs. [41,49–51] and references therein), a special case of
Eq. (4) with

bkl;q = 〈Hkl;q〉 = 0,
〈
H 2

kk

〉 = 1,
〈
H 2

kl;q

〉 = 1

c Nγ0
, (7)

with c and γ0 as arbitrary constants. From Eq. (6), Y for RP
ensemble becomes

Y = 1

c Nγ0
. (8)

For later reference, it is worth mentioning here that, for γ0 =
1, 2, the statistical behavior of RP ensemble corresponds to a

critical level statistics with multifractal eigenstates [41,49,51].
A detailed study of RP ensembles is presented in Ref. [49].

As Eq. (3) is a special case of Eq. (4), Y for a disordered
lattice modeled by Eq. (3) can be obtained from Eq. (6). For
example, Y (w, t,N ), for the cases (a), (b), (c), (d) mentioned
in Sec. II, can be given as (for large N and with β = 1 for each
case as H is real symmetric)

Y = − 1

γ N
ln

[|1 − γ w2|2 |1 − 2γ σ 2|(N−1) |t | |T |2]
+ const. case(a) (9)

= − 1

γ N
ln

[|1 − γ w2|2 |1 − 2γ σ 2|(N−1) (2 λ4 t6)
]

+ const case(b) (10)

= − 1

γ N
ln

[|1 − γ w2|2 |1 − 2γ σ 2|(N−1) |t |3]
+ const. case(c) (11)

= − 1

γ N
ln

[|1 − γ w2|2 |1 − 2γ σ 2|N−1(t0t1t2t3)2
]

+ const. case(d) (12)

Similarly for the case (e), Eq. (6) gives (with β = 2)

Y = − 1

γ N
ln[|1 − γ w2| |1 − 2γ σ 2|(N−1) |t |12.

× | cos η sin η + η0|3] + const. case(e) (13)

with η0 = 1 if sin η = 0 or cos η = 0, η0 = 0 otherwise.
Substitution of w = 0 in Eqs. (9)–(13) gives Y for a clean

flat band for each of the above cases. Here an important point
worth noticing is that Y ∝ 1

N
for cases (a)–(e) in the large

N limit; as mentioned above, a similar dependence of Y in
RP ensemble for γ0 = 1 corresponds to a critical statistical
behavior. But as discussed later in Sec. IV, this analogy by
itself is not enough to predict the criticality of statistics for
cases (a)–(e).

The applicability of the diffusion equation given above
is not confined only to a Gaussian potential (i.e., Gaussian
distributed matrix elements), it can be extended to the cases
with generic single-well potentials too (see Sec. 2 of Ref. [43]).
Further, under generic conditions, the impurity distribution in
the lattice may lead to pair-wise correlations among H -matrix
elements, e.g., 〈Hij ;qHkl;q〉 �= 0. Following maximum entropy
hypothesis, H can then be represented by an ensemble density

ρ(H, a, b)

= C exp

⎡
⎣−

∑
i,j,k,l;q

bijkl;qHij ;qHkl;q −
∑
k,l;q

akl;qHkl;q

⎤
⎦,

(14)

with akl;q, bijkl;q as the distribution parameters and C as a
normalization constant. As discussed in Ref. [44], the evolution
of ρ(H ) in this case can again be described by Eq. (5), but the
form of Y is now more complicated (see Sec. II A, Eq. (1), and
Eq. (18) of Ref. [44]).
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III. MANY-PARTICLE FLAT BANDS

The tight-binding approximation in Eq. (1) is applicable
for simple structures with single particle bands. As indicated
by previous studies [16,17], flat bands can also be generated
or destroyed by turning on the particle-particle interactions.
For example, as discussed in Ref. [17], an interaction can be
tuned in a dispersive band structure of noninteracting electrons
to yield an effective flat band of the interacting electrons. On
the contrary, a flat band localization in Aharonov-Bohm cages,
caused due to subtle interplay between structure geometry and
magnetic field, is destroyed as soon as the particle interaction
is switched on [14]. It is then natural to seek the role of a
disorder as a perturbation of many particle flat bands. An
important question in this context is whether and how disorder
and interactions compete with each other to cause a localization
to delocalization transition and is this transition different from
that in a dispersive band? Another relevant question is whether
the presence of interactions can inhibit a critical spectral
statistics or lead to multipoint criticality? In the past, there have
been attempts to answer the above questions (see, for example,
Refs. [15,17]) but these are system specific. It is therefore
desirable to seek a complexity parametric formulation which
could be applicable to a wide range of many particle flat bands.
In this section, we briefly discuss the formulation for a simple
interacting lattice.

A. Lattice with two electrons

For a clear explanation, we first consider a simple case of
two electrons in a periodic lattice of N unit cells, with S sites
per unit cell, described by the standard Hubbard Hamiltonian

H =
∑
k,l;s1

Vkl c
†
ks1

cls1
+

∑
k,s1,s2

Uk c
†
ks1

cks1
c
†
ks2

cks2
(15)

with |k〉, k = 1 → N as the N -dimensional site basis (N =
SN ), and s1, s2 = ±1 refers to two spin states of the electron.
Here Uk is the on-site interaction, Vkk = εk is the on-site
energy, and Vkl is the hopping element between sites k, l:
Vkl �= 0 if k, l are neighboring sites and zero otherwise.

As examples, we consider the two-dimensional T3 lattice
or one-dimensional chain of square loops [see case (e) of
Sec. II], placed in a uniform magnetic field of strength B

applied in the direction perpendicular to the plane of the lattice.
The latter results in a magnetic flux f = eBa2/2hc through
an elementary square (a as the unit cell vector length, h as
the Planck’s constant, and c as the speed of light) and the
hopping element Vkl = t eiη with η = 2πf . [Note, for Uk = 0,
Eq. (15) corresponds to the Hamiltonian (1).] As discussed in
Ref. [14] for zero on-site energies (i.e., Vkk = 0), the single
particle spectrum consists of three bands with energies εα (k) =
2α

√
1 + cos(η/2) cos(ka) where k ∈ [0, 2π/a], α = 0,±1 is

the band index. Clearly for f �= 1/2, only one single particle
band is flat (with ε0 = 0) but for f = 1/2 all three bands are
flat. The latter in turn leads to five flat bands for two particle
spectrum when Uk = 0. Assuming the total spin polarization
of the two electrons as zero (i.e., with opposite spins) and a
gauge in which only one hopping term per unit cell is modified
for B �= 0, the study in Ref. [14] shows that, for Uk = 0
and φ = φ0/2, the lattice has nondispersive flat bands with

strong localization of eigenstates but Uk = U �= 0 leads to their
delocalization.

To understand the above behavior in terms of Y based
formulation, we proceed as follows. For the matrix repre-
sentation of H , we choose the antisymmetrized two parti-
cle product basis |ks1; ls2〉 = 1√

2
(|ks1〉.|ls2〉 − |ls2〉.|ks1〉) with

|ks1〉 as the single particle state at the site k for a particle
with spin s1. Clearly the product basis is N2 = N (N − 1)/2
dimensional and the matrix elements here satisfy the following
symmetries: 〈is1; js2|H |ks1; ls2〉 = 〈js2; is1|H |ls2; ks1〉 and
〈is1; js2|H |ks1; ls2〉 = 〈ks1; ls2|H |is1; js2〉. From Eq. (15),
with notation |μ〉 ≡ |ks1; ls2〉 and |ν〉 ≡ |is3; js4〉, a general
matrix element Hμν of H in the product basis can then be
written as

Hμν = (Vik δjl + Vjl δik )δs1s3δs2s4

+Uk δijkl (1 − δs1s2 )(δs1s3δs2s4 − δs2s3δs1s4 ) (16)

with symbol δijkl = 1 if i = j = k = l and is zero other-
wise. From Eq. (16), Hμμ = Vkk + Vll + Uk δkl (1 − δs1s2 ) and
Hμν = t eiη if j = l and i, k as nearest neighbor sites, or, i = k

with j, l as nearest neighbor sites; all other matrix elements are
zero. Clearly for nonzero on-site energies Vkk , the diagonals
Hμμ need not be all uncorrelated and H , in general, cannot be
represented by an ensemble of type (4). But for zero on-site
energies and random, independent interaction parameters Uk ,
the diagonals are uncorrelated and can be random (if k = l,
s1 �= s2) or zero (if s1 = s2). A choice of Gaussian distributed
Uk with mean 〈Uk〉 = U0 and variance w2 then results in a
same distribution for Hμμ if k = l, s1 �= s2. Further assuming
nonrandom hopping, i.e., both t and η nonrandom, H is
a N2 × N2 sparse complex Hermitian matrix with random
diagonal elements and is described by the following ensemble
density

ρ(H ) = Cw

∏
μ

k=l,s1 �=s2

e− (Hμμ−U0 )2

2w2
∏

μ;s1=s2

δ(Hμμ)

×
N∏

μ,ν=cntd

δ(Hμν − t eiη )
N∏

μ,ν �=cntd

δ(Hμν ). (17)

Here the notation μ, ν = cntd implies either sites i, k

and/or j, l are connected by hopping t . Again describing
the nonrandom independent elements by a limiting Gaussian
distribution, H can be represented by the ensemble density in
Eq. (4) but with indices {k, l} now replaced by {μ, ν} (thus
Hkl;q → Hμν;q, vkl;q → vμν;q, bkl;q → bμν;q).

bμν = t eiη for (i, k = n.n and j = l) or

(j, l = n.n and i = k)

bμμ = U0 for k = l, s1 �= s2 (18)

Further, with only random Uk and zero on-site energies,

vμν;q = 〈(Hμν )2〉 − 〈Hμν〉2

= w2 δq1 if i = j = k = l, and s1 �= s2,

= σ 2 for other (μ, ν) pairs. (19)

054206-5



PRAGYA SHUKLA PHYSICAL REVIEW B 98, 054206 (2018)

Substitution of Eqs. (18) and (19) in Eq. (6) gives, for
U0 �= 0,

Y ≈ − 1

2γ N2
ln

[|1 − γ w2|2 |1 − γ σ 2|2 |1 − 2γ σ 2|(N2−1)

×|t |2z | cos η sin η + η0|z U 2
0

] + const. (20)

with η0 the same as in Eq. (13) and z as the number of
nearest neighbors. As clear from the above, Y now depends
on the hopping parameters t and η, disorder w as well as
average strength U0 of the interaction. The above form of
Y can now be used to understand the localization tendencies
of the eigenfunctions when interactions strengths Uk become
nonzero (e.g., the case discussed in Ref. [15]). This however
requires a theoretical formulation of the localization length or
inverse participation ratio in terms of Y which is discussed in
Sec. IV B.

Note that the form of Y in Eq. (20) is similar to Eq. (13) but
the statistical fluctuations at a given energy in the two cases can
be significantly different. This is because a comparison of the
fluctuations of two different systems requires a prior rescaling
leading to the same background behavior on which fluctuations
are imposed. As discussed later in Sec. IV as well as in Ref. [1],
the rescaling depends on the local mean level spacing which is
in general different for noninteracting and interacting cases.

As mentioned above, the nonzero on-site energies (i.e.,
Vkk �= 0) in Eq. (15) may in general lead to correlated di-
agonals. Assuming Gaussian distributed on-site energies, the
ensemble density for such cases can again be described by
Eq. (14). As mentioned below Eq. (14), Y for these cases can
then be defined following the steps given in Ref. [44].

B. Lattice with more than two electrons

The case discussed above corresponds to an electron density
(number of electrons per site) ηe = 2/N which approaches
zero in the thermodynamic limit N → ∞. To analyze cases
with finite electron density, we now consider a two-body
Hamiltonian H representing dynamics of M interacting elec-
trons in a periodic lattice of N unit cells, with S sites per unit
cell. With V and U as single particle and two particle parts of
H , one can write

H =
N∑

r,s=1

Vrs c†r cs + 1

2

N∑
r,s,t,u=1

Urstu c†r cs c†u ct (21)

with Vrs ≡ 〈r|V |s〉 and Ursuv ≡ 〈rs|U |uv〉 and |r〉, |s〉, |u〉,
|v〉 as the single particle states. Further assuming p orbital
per site, the total number of single particle states in the
lattice are N = p SN . It is then appropriate to represent H

in a M-particle Foch basis labeled by μ ≡ |n1; n2 . . . nN 〉,
consisting of the occupation numbers nr of the single particle
states labeled by |r〉 with r = 1 → N . Due to two body
selection rules, H in the Foch basis is a sparse matrix with the
total number of independent matrix elements as N2(N2 + 1)/2
where N2 again corresponds to the size of two-particle basis
space: N2 = N (N − 1)/2. Thus H in the M-particle Foch
basis is subjected to additional matrix constraints which in
general lead to matrix element relations.

As an example, one can again consider the lattice with
Hamiltonian in Eq. (15) but now with M electrons. With

μ ≡ |n1s1 ; n2s2 . . . nNsN
〉, ν ≡ |n′

1s1
; n′

2s2
. . . n′

NsN
〉, the nonzero

matrix elements for H in this case are of the following two
types:

(i) Diagonals Hμμ

Hμμ =
N∑

r=1,s=±1

nrs εr + 1

2

N∑
r=1

∑
s,s ′=±1

nrs nrs ′ Ur (1 − δss ′ )

(22)

(ii) Off-diagonals Hμν with n′
ps = nps + 1, n′

ts = nts − 1,
n′

rs = nrs ∀r �= p, t

Hνμ = (−1)q
′
p+qt (1 − nps ) nts Vpt δss ′ (23)

with qj = ∑j−1
k=1 nksk

. Assuming independent Gaussian dis-
tributed on-site energies with zero mean and variance w2 and
nonrandom nearest neighbor hopping t , Eqs. (22) and (23) give
the mean and variance of the nonzero matrix elements:

bμμ = 〈Hμμ〉 = 1

2

N∑
r=1

∑
s,s ′=±1

nrs nrs ′ Ur (1 − δss ′ ),

bμν = 〈Hμν〉 = (−1)q
′
p+qt (1 − nps ) nts Vst δss ′ ,

vμμ = 〈
H 2

μμ

〉 − 〈Hμμ〉2 = w2
N∑

r=1,s=±1

nrs,

vμν = 〈
H 2

μν

〉 − 〈Hμν〉2 = 0. (24)

Further, as clear from Eq. (22), many diagonals may have
contributions from a common set of variable εr but are uncor-
related, i.e., 〈HμμHνν〉 = 〈Hμμ〉.〈Hνν〉 (for on-site energies ε

and interaction strengths Uk as independent random variables
with zero mean). The ensemble density ρ(H ) can then again
be described by the real-symmetric version (q = 1) of Eq. (14)
with indices {k, l} replaced by {μ, ν}. The parameter Y for this
case can now be obtained by substituting Eqs. (24) in Eq. (6).

A technically useful point worth indicating here is the
following. Although for clarity of presentation we assumed a
Gaussian distribution of on-site energies, it is not necessary.
In fact, Hμμ being a sum over many independent random
variables, the central limit theorem predicts it to be Gaussian
distributed for a wide range of the distributions of on-site
energies if N is large.

Although not relevant for our analysis, another point worth
mentioning here is that the H matrix in the many body
Foch basis need not be a two body random matrix ensemble
(TBRME); the latter is defined as the one with all two-body
matrix elements belonging to a Gaussian orthogonal ensemble
(GOE) which requires the variances of all the diagonal same
and two times that of the off-diagonals [52]). This is however
not the case for the Hamiltonian (21) which has many zero two
body matrix elements due to finite range hopping.

IV. DIFFUSION OF LEVEL DENSITY AND INVERSE
PARTICIPATION RATIO

The solution of Eq. (5) for a desired initial condition at
Y = Y0 gives Y dependence of the ensemble density. By an
appropriate integration, this can further be used to derive the
Y -dependent formulation of the ensemble averaged measures;
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here we consider the formulation for the level density and the
inverse participation ratio.

A. Level density

The Y -dependent ensemble averaged level density R1(e; Y )
can be defined as R1(e; Y ) = ∑

n〈δ(e − en)〉 = ∑N
n=1

∫
δ(e −

en) ρ(H ; Y ) dH . A direct integration of Eq. (5) over N − 1
eigenvalues and entire eigenvector space leads to an evolution
equation for R1 which occurs at a scale Y ∼ N�2

e with
�e(e) as the local mean level spacing in a small energy-range
around e:

∂R1(e)

∂Y
= ∂

∂e

[
e −

∫
de′ R1(e′)

e − e′

]
R1(e). (25)

The solution of the above equation, also known as Dyson-
Pastur equation, depends on the initial condition R1(e; 0) and
can be given as R1(e; Y ) = 1

π
limε→0 G(e − iε; Y ) [48,53]

where

G(z; Y ) = G(z − YG(z; Y ); Y0). (26)

For later reference, it must be noted that the limit Y → ∞
corresponds to a semicircle level density [expected as ρ(H )
approaches GOE/ GUE in the limit]. But this limit is never
reached if R1(e; Y0) = δ(e) [53].

B. Inverse participation ratio

At the critical point, the fluctuations of eigenvalues are
in general correlated with those of the eigenfunctions. The
spectral features at the criticality are therefore expected to man-
ifest in the eigenfunction measures too. As shown by previous
studies [39], this indeed occurs through large fluctuations of
their amplitudes at all length scales and can be characterized
by an infinite set of critical exponents related to the scaling of
the ensemble averaged, generalized inverse participation ratio
(IPR), i.e., moments of the wave-function intensity with system
size.

The ensemble average of an IPR 〈Iq〉(e) at an energy
e is defined as 〈Iq〉(e) = 〈Iq (ek )δ(e − ek )〉 with Iq (ek ) =

∑
n |ψnk|2q as the IPR of the eigenfunction ψk at the energy

ek , with components ψnk , n = 1 → N in a N -dimensional
discrete basis. Clearly 〈Iq〉(e) ≈ 1 if the typical eigenfunctions
in the neighborhood of energy e are localized on a single
basis state, 〈Iq〉(e) = 1/Nq−1 for the wave dynamics extended
over all basis space. At transition, it reveals an anomalous
scaling with size N : 〈Iq〉(e) ∼ N−(q−1)Dq/d with Dq as the
generalized fractal dimension of the wave-function structure
and d as the physical dimension of the system. At the critical
point, 0 < Dq < d, with Dq as a nontrivial function of q.

For energy ranges with almost constant level density, it is
useful to consider a local spectral average of IPR in units of the
mean level spacing �(e) = (R1(e))−1; it is defined as 〈Iq〉 =
R1(e)

N
〈Iq〉 where 〈Iq〉 = 1

2De

∫ e+De

e−De
〈Iq〉 de. As described in

Refs. [47,49], the diffusion equation for 〈Iq〉 can be given as

∂〈Iq〉
∂�I

≈ (aq 〈Iq−1〉 − bq 〈Iq〉)

+ E2
c

4qN

[(
e + 2N

Ec

)
∂

∂e
+ ∂2

∂e2

]
〈Iq〉, (27)

with

�I = 4N |Y − Y0|
E2

c

, (28)

and aq (e, Y ) = (2q−1)〈u〉
N

, bq = 1 + E2
c

4qN
, and 〈u〉(e; Y ) as the

ensemble averaged local intensity at energy e and parameter Y .
Here Ec is an important system-specific energy scale beyond
which energy levels are uncorrelated; it can usually be approx-
imated by the Thouless energy Eth. The latter corresponds to
the energy scale that separates the GOE/GUE type of spectral
behavior from system specific behavior [51]. For an energy
regime with fully localized and extended dynamics, Eth ∼ �e

and O(N0), but for a partially localized regime it is believed
to be Eth ∼ �(e) ND2/d [with �(e) as the mean level spacing
at energy e] [51]. For the Rosenzweig-Porter model [Eq. (7)],
the study [49] gives Eth ∝ N1−γ0 [with �(e) ∝ N−γ0/2, D2 =
(2 − γ0)/2]; note here d = 1.

For energy regimes around e where the approximation e + 2N
Ec

≈ 2N
Ec

is valid, Eq. (27) can be solved by the Fourier transform
method. As in general Ec ∼ Eth ∼ N−a with a � 0, the above approximation is usually valid for the bulk of the spectrum. To
proceed further, we assume the validity of the above approximation and consider the Fourier transform Fq (ω) = ∫ 〈Iq〉(e) eiωe de

of Eq. (27). This can be given as

Fq (ω,�I ) ≈ e−
(
bq− iωEc

2q
+ ω2E2

c
4qN

)
�I

[
Fq (ω, 0) +

∫ �I

0
dr Cq−1(ω, r ) e

(
bq− iωEc

2q
+ ω2E2

c
4qN

)
r

]
, (29)

where Cq (ω, r ) = ∫
aq 〈Iq〉(e,�I ) eiωe de. An inverse Fourier transform of Eq. (29) now leads to, for �I > 0,

〈Iq〉(e,�I ) =
√

qN

�I E2
c

[
e−bq �I

∫
dx e

− qN

�I E2
c

(
e−x− �I Ec

2q

)2

〈Iq〉(x, 0)

+
∫ �I

0
dr

∫
dx e−bq (�I −r ) e

− qN

E2
c �I

(
e−x− (�I −r )Ec

2q

)2

〈Iq−1〉(x,�I ) aq (x)

]
. (30)
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Based on the behavior of 〈Iq〉(x, 0) and 〈Iq−1〉(x,�I ), the above equation can further be reduced to a simple form. For example,
for cases where both vary slower than the Gaussian in the integrals, one can write

〈Iq〉(e,�I ) = √
π

[
e−bq �I Ĩq (0, 0) +

∫ �I

0
dr e−bq (�I −r ) Ĩq−1(r,�I ) ãq (r )

]
, (31)

where Ĩq (r,�I ) ≡ 〈Iq〉(e − (�I −r )Ec

2q
,�I ) and ãq (r ) = aq (e − (�I −r )Ec

2q
). Further noting that the main contribution to the integral

in Eq. (31) comes from the neighborhood of r ∼ �I , it can be approximated as

〈Iq〉(e,�I ) ≈ √
π

[
e−bq �I Ĩq (0, 0) + (

1 − e−bq �I
)

Ĩq−1(�I ,�I ) ãq (�I )
]

= √
π

[
e−bq �I 〈Iq〉(e, 0) + (

1 − e−bq �I
)

aq (e) 〈Iq−1〉(e,�I )
]
. (32)

The above approximation however is not applicable for the cases where 〈Iq〉 undergoes a rapid variation with energy. For
example, with 〈Iq〉(e,�I )=R1(e, Y ) 〈Iq〉(e,�I ), the initial conditionIq (e, 0) = I0 δe0 (forq > 1) andR1(e, 0) = Nδ(e) leads to

〈Iq〉(e,�I ) = 1

R1

√
qN

�I E2
c

[
N I0 e−bq �I e

− qN

�I E2
c

(
e− �I Ec

2q

)2

+
∫ �I

0
dr

∫
dx e−bq (�I −r ) e

− qN

E2
c �I

(
e−x− (�I −r )Ec

2q

)2

〈Iq−1〉(x,�I ) R1(x) aq (x)

]
(33)

with R1 ≡ R1(e; �I ) outside the square bracket.

It is worth emphasizing here that Eq. (30) is applicable for
an arbitrary dimension and band type (i.e., dispersive or flat,
single particle or many particle). But it may lead to different
physical behavior based on Y as well as initial conditions.

V. IMPLICATIONS FOR WEAKLY DISORDERED
FLAT BANDS

In the absence of disorder, the flat band is degenerate, say
at energy e = 0. The onset of disorder results in lifting of the
degeneracy and an increase of the width of the flat band. For
cases in which disorder w is the only parameter subjected to
variation, Eq. (6) gives

Y − Y0 ≈ 1

γ N
ln |1 − γ w2|, (34)

where Y0 corresponds to the flat band with disorder w = 0.
With Y parameters given by Eqs. (9)–(13), the above result can
easily be confirmed for cases (a)–(e) in Sec. II. An important
point worth indicating here is the following: Y − Y0 is the same
irrespective of whether the disorder is varied in on site energy
[as in cases (a)–(d)] or in the two-body interaction [as in case
(e)]. Another point to note is that Eq. (34) is not applicable
if the interaction strength (if nonrandom) or its average value
changes.

Following from Eqs. (25) and (27) along with Eq. (34), a
variation of disorder therefore leads to an evolution of R1(e) as
well as 〈I2〉. As both these measures are needed to seek critical
statistics, here we consider the solutions of Eqs. (25) and (27)
in the weak disorder limit. For simplification and without loss
of generality, we set γ = 1.

A. Level density

A rescaling of e → e
w

in Eq. (25), and the replacement
R1(e) → N

w
f1(x) with x = e

w
, leads to

w|1−w2|
2

∂f1(x)

∂w
= ∂

∂x

[
w2

N
x −

∫
dy

f1(y)

x−y

]
f1(x). (35)

For w � 1, and in the large N limit, the above equation
can further be approximated as [

∫
dy

f1(y)
x−y

] f1(x) ≈ constant

(neglecting terms w
∂f1

∂w
and w2x

N2 ). The latter implies disorder
as well as size independence of f1(x).

Alternatively, R1(e, Y ) can directly be determined from
Eq. (26) as follows. The level density for a flat band in the
absence of disorder can be expressed as a δ function or its

Gaussian limit R1(e; 0) = N δ(e) = limσ→0
N√

2πσ 2
e− x2

2σ2 . The
initial condition on G(z; Y ) with z = e − iε then becomes

G(z; Y0) = lim
σ→0

N
√

2πσ 2

ε e
e− z2

2σ2 . (36)

For the above initial condition, Eq. (26) gives

G(z; Y ) = lim
σ→0

N
√

2πσ 2

ε e
e− (z−(Y−Y0 ) G)2

2σ2 . (37)

As both σ → 0 and w → 0 in the above equation, σ can be
replaced by w [note σ is an arbitrary parameter in Eq. (36)].
The solution of the above equation can then be given as (for z

satisfying w2G2, zG � z2

w2 )

G(z; Y ) = lim
w→0

N
√

2πw2

ε e
e− z2

2w2 . (38)

The above in turn gives, for w � 1,

R1(e; w) = N√
2πw2

e− e2

2w2 . (39)

The above form of R1(e) is also confirmed by the numerical
analysis of the two-dimensional chequered board lattice with
N sites displayed in Fig. 2: As shown in Fig. 2(b), a rescaling
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FIG. 2. Ensemble averaged level density N−1 R1(e): The figure
displays the response of the level density of the two-dimensional
checkerboard lattice of linear size L with on-site Gaussian disorder.
As mentioned in example (c) of Sec. II A, the lattice consists of a flat
band and a dispersive band; the choice of parameter ε = 2t gives a
flat band at e = 0 and a dispersive band at e > 0. (The numerical data
is obtained for t = 1, M = 2, N = L2 with L = 34.) (a) R1(e)/N
for both flat and dispersive bands subjected to various disorders
w, with W = w2 (the dispersive band behavior is displayed more
clearly in the inset on a semilog scale). (b) R1(e)/N for the disorder
perturbed flat band with respect to scaled energy ew = e/

√
w for

various disorders. Clearly in terms of the rescaled energy, the level
density in the perturbed flat band is disorder independent. For a clear
visualization, the Gaussian fit for various disorder is not displayed
here but is shown in Ref. [1] by the solid line fits in parts (a) of
Figs. 2, 3, 4, and 5. The latter also confirms the size independence of
R1(e)/N for all energy ranges.

of e by w results in convergence of R1(e) behavior for different
weak disorders to a single Gaussian curve.

For w > 1, although the left side of Eq. (35) is no longer
negligible, it is still satisfied, near x ∼ 0, by a solution of
type f (x) = e−x2/2. The latter implies the validity of Eq. (39)
for R1(e) for w > 1 too which is expected on the basis of
analytical continuation of R1(e,w) from w < 1 to w > 1. A

Gaussian behavior of the level density for strong disorder is
also predicted based on previous dispersive band studies of
disordered systems.

B. Inverse participation ratio

In the absence of disorder, the flat band can consist of
localized states and/or compact localized states [25,45,46].
The average IPR for a flat band initial condition at e = 0
and w = 0, equivalently Y = Y0 or �I = 0 [see Eq. (28)], can
then be written as 〈I2〉(e; Y0) = If δe0 with If as the IPR of
typical states at e = 0 (with δe0 = 1 or 0 for e = 0 and e �= 0,
respectively). Further, with the normalization 〈I1〉(e,�I ) = 1
implying 〈I1〉(e,�I ) = R1(e)

N
, Eq. (32) now gives, for �I � 0,

〈I2〉(e,�I ) = 1

R1

√
2N

�I E2
c

×
[
N If e−�I e

− 2N

�I E2
c

(
e− �I Ec

4

)2

+ J0

]
(40)

J0 = 3

N

∫ ∞

−∞
J1(e − x) R1(x) 〈u〉(x), (41)

where J1(y) = ∫ �I

0 dr e−(�I −r ) e
− 2N

E2
c �I

(y− (�I −r )Ec
4 )

2

. The latter
can be expressed in terms of the error function � (defined as
�(u) = 2√

π

∫ u

0 e−x2
dx),

J1(y,�I )

=
√

2π�I

N
e− 4y

Ec
+ 2�I

N

[
�

(√
N�I

8

(
1 + 4

N
− 4y

�IEc

))

−�

(√
2�I

N

(
1 − Ny

�IEc

))]
. (42)

For large N and �I , the above equation can further be
approximated as (using limu→0 �(u) = 0, limu→∞ �(u) = 1)

J1(y,�I ) ≈
√

2π�I

N
e− 4y

Ec
+ 2�I

N �(y) (43)

with �(y) as the step function: �(y) = 0 or 1 for y < 0 and
y > 0, respectively.

As discussed in Ref. [47], the local intensity 〈u〉 at energy e

and parameter Y for a Gaussian Brownian ensemble depends
on its initial value at Y = Y0. In the case of a clean flat
band at e = 0 as an initial state at Y = Y0, the local intensity
can be written as 〈u〉(e, Y0) = u0 δ(e). Here u0 is a constant,
dependent on the state of localization of the eigenfunctions
in the flat band. As discussed in Ref. [47], the Y governed
diffusion of the local intensity from this initial condition leads
to 〈u〉(e, y) = u0√

2 π |Y−Y0| exp[− e2

2 |Y−Y0| ] with Y − Y0 given by

Eq. (34). Further noting that R1(e) is a Gaussian too, both 〈u〉
as well as R1 decay rapidly for e �= 0; as a consequence, the
significant contribution to the integral over x in Eq. (40) comes
from the neighborhood of x = 0. The integral J0 can then be
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approximated as

J0 ≈ 3

N
J1(e)

∫ ∞

−∞
dx R1(x) 〈u〉(x)

≈ 3 u0

w

√
π�I

N
e− 4e

Ec
+ 2�I

N �(e). (44)

As a check, it is easy to see that, with J0 given as above,
the Eq. (40) gives the correct result for case w = 0. Further
analysis of Eq. (40) requires a prior knowledge of �I and Ec.
Equation (28) along with Eq. (34) gives �I = 4w2

E2
c

and Eq. (39)

gives R1(e) ≈ N√
2πw2

near e ∼ 0. The first term of Eq. (40)

then rapidly decays for e �= w2

Ec
and/or for w � Ec. Assuming

Ec ∼ N−μ with μ > 0, Eq. (40) can now be approximated as

〈I2〉(e ∼ 0) ≈ 6 π u0

N Ec

e
8w2

NE2
c . (45)

In general, Ec is disorder dependent and μ can vary with w.
Thus 〈I2〉 for large w can in general depend on both disorder as

well as size. For small w, however, the approximation e
8w2

NE2
c ∼ 1

(valid for w < N (1−2μ)/2, assuming disorder independence of
Ec for weak disorder) leads to a disorder-independent average
IPR at e ∼ 0

〈I2〉(e ∼ 0) ≈ 6 π u0

N Ec

for w < N (1−2μ)/2. (46)

For e > 0, the energy dependence of Eq. (40) as well as
R1(e) can no longer be neglected. It now leads to

〈I2〉(e) ≈ 6 π u0

N Ec

e
8w2

NE2
c e− 4e

Ec
+ e2

2w2 . (47)

As clear from the above, average IPR now decays exponentially
with increasing energy (with Ec ∼ N−μ with μ > 0).

At this stage, it it relevant to know the size dependence of
Ec. As mentioned in Sec. IV B, Ec ∼ Eth ∼ �(e).ND2/d in the
partially localized regime. The numerics for two-dimensional
chequered board lattice [case (c) in Sec. II, with a flat band
at e = 0 for ε = 2, t = 1] suggests D2 ≈ 1 (see Fig. 4), with
d = 2 and �(e) = R−1

1 (e) ∝ N−1 which gives Eth ∝ N−1/2.
Substitution of the latter in Eq. (46) then gives 〈I2〉 ∝ N−1/2

which is consistent with our numerical analysis [see Fig. 3(c)].
For w > 1, Eq. (34) gives Y − Y0 = − ln |1−w2|

N
. As men-

tioned above, the form of R1(e) for w > 1 in the case of a
single perturbed flat band is the same as that of w < 1. With
�I = 4 ln |1−w2|

E2
c

, Eq. (40) now gives

〈I2〉(e) ≈ 6 π u0

N Ec

e
8 ln |1−w2 |

NE2
c e− 4e

Ec
+ e2

2w2 . (48)

But Ec being disorder dependent, μ for w > 1 need not be
the same as that of w < 1. Thus 〈I2〉 for w > 1 can in general
depend on disorder and energy.

VI. ROLE OF OTHER BANDS IN THE VICINITY

In general, a clean system may contain more than one flat
band as well as dispersive bands. Although for weak disorder,
the neighborhood has negligible influence on the bulk of the flat
band, the strong disorder leads to its spreading and overlap with
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<
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(1/2) N-1/2

FIG. 3. Ensemble averaged inverse participation ratio: (a) energy
dependence of 〈I2(e)〉 for a fixed size L = 34, in weak disorder limit
for energy ranges including both flat as well as dispersive band;
(b) same as part (a) but now includes strong disorder cases too.
Here I2(e) is averaged over the ensemble as well as a small spectral
window around each e and W = w2 with w as the disorder. For weak
disorders w < 1, 〈I2(e)〉 for e > 0 indicates a partially localized
nature of wave functions and is insensitive to disorder strength w.
However as shown in part (b), the disorder induced localization starts
dominating the wave function for w � 1. (c) Size dependence of
〈I2(e, N )〉 for many w for a fixed e = 0 (middle of the flat band).
Here only 10% of the eigenvectors from the middle of the flat band
are used in the analysis. The ensemble size is chosen so as to give
approximately 103 eigenfunctions for averaging for each N . The fit
〈I2〉 ∝ √

N (equivalently L−1 with N = L2 for a 2D chequered board
lattice) suggest the multifractal exponent D2 approximately 1; the D2

numerics shown in Fig. 4 for different weak disorder strengths suggest
D2 ∼ 1.2.
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FIG. 4. Disorder dependence of the fractal dimension Dq : The
eigenvectors for the analysis are taken from the bulk of the flat band,
with W = w2. As shown later in Figs. 2–5 of Ref. [1], Dq is size
independent too.

other bands. For example, for a dispersive band in the vicinity,
it may lead to an increase of the dispersive level density at
the cost of flat band one, eventually leading to a merging of
the bands. If the neighborhood consists of another flat band
separated by a gap, increasing disorder would lead to a rise of
the level density in the gap region followed by a merging of the
Gaussian densities. As discussed below, this may also affect
the average behavior of level density and IPR as well as their
fluctuations.

A. Level density

As R1(e; Y ) given by Eq. (39) is derived for a δ-function
initial condition, it is applicable only for an isolated flat band.
In the presence of other bands in the neighborhood, Eq. (25)
should be solved for the altered initial conditions. As clear from
the integral in Eq. (25), R1(e; Y ) at energy e can be affected
by other parts of the spectrum, say e′ �= e if R1(e′) is very
large. For weak disorder cases, therefore it is appropriate to
solve Eq. (25) with an initial condition R1(e, 0) valid for all e

ranges. Here we consider two examples:
(i) Two flat bands: For this case, we have R1(e; Y0) =

N
2

∑2
k=1 δ(e − ek ) with e1, e2 as the band locations, satis-

fying the normalization condition
∫ ∞
−∞ R1(e) de = N . The

initial condition on G can now be written as G(z; Y0) =
limσ→0

N
√

2πσ 2

2 ε e

∑2
k=1 e− z2

k

2σ2 where zk = z − ek with z = e −
iε. Equation (26) then gives

G(z; Y ) = lim
σ→0

N
√

2πσ 2

2 ε e

2∑
k=1

e− (zk−|Y−Y0 | G)2

2σ2 . (49)

Using the approximations w2G2, zG � z2

w2 and proceeding
as in the single band case, it can again be shown that in the weak

disorder limit

R1(e; w) = N

2
√

2πw2

2∑
k=1

e− (e−ek )2

2w2 . (50)

For later reference, it is instructive to look at R1 behavior near
e ∼ (e1 + e2)/2:

R1

(
e1 + e2

2
; w

)
= N√

2πw2
e− (e2−e1 )2

8w2 . (51)

Clearly the gap |e1 − e2| is increasingly filled up with levels as
disorder increases (due to level repulsion) and the Gaussians
start merging for w > |e1 − e2| (this is consistent with an
increase of level repulsion with increasing disorder in the weak
disorder limit).

Proceeding along the same lines, the above result can
be generalized to more than two flat bands. As reported in
Ref. [15] for case(e), an onset of disorder indeed gives rise to
three separated Gaussian level densities from three flat bands
(see Fig. 12 of Ref. [15]).

(ii) A flat band at the edge of a dispersive band: For
the combination of a flat band located at e = 0 and a
dispersive band with the level density fd (e), R1(e, Y0)
can be written as R1(e; Y0) = N

2 (δ(e) + fd (e,N )); the
latter satisfies the normalization condition

∫ ∞
−∞ R1(e) de =

N . The initial condition on G(z, Y ) now becomes

G(z; Y0) = limσ→0
N
2 (

√
2πσ 2

ε e
e− z2

2σ2 + fd (z,N )) where
fd (e,N ) = limε→0 fd (z,N ). The latter along with Eq. (26)
then gives

G(z; Y ) = lim
σ→0

N

2

(√
2πσ 2

ε e
e− (z−|Y−Y0 | G)2

2σ2

+fd ((z − |Y − Y0| G,N )

)
. (52)

For w < 1, the Gaussian term in the above equation can be

approximated as e− z2

2σ2 [as fd (e) � δ(e), one can use the same
approximation as in the single band] case. The calculation of
the second term in Eq. (52) depends on the functional form
of fd . Writing fw(e,w,N ) = limε→0 fd (z − (Y − Y0)G,N ),
we have

R1(e; w) = N

2
√

2πw2
e− e2

2w2 + N

2
fw(e,w,N ). (53)

The effect of disorder on the level density for case (c) is
displayed in Fig. 2 (also see Figs. 2(a)–5(a) of Ref. [1]). Clearly
for w < 1, R1/N is independent of disorder w as well as size N

in the flat band but its behavior in the dispersive band depends
on the size.

B. Inverse participation ratio

With spreading and merging of bands, the energy depen-
dence of 〈I2(e,�I )〉 plays an important role in the spectral
statistics. The initial condition needed to determine 〈I2(e,�I )〉
depends on the type of neighborhood. Here again we consider
two examples:

(i) Two flat bands: The average IPR at Y > Y0 can still
be given by Eq. (40) with J0 and J1 given by Eqs. (41)
and (43). But now the initial conditions on IPR and level density
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areI2(e, Y0) = If

∑2
k=1 δeek

and R1(e, Y0) = N
2

∑2
k=1 δ(e −

ek ), respectively. To proceed further, one requires a prior
knowledge of R1(e; Y ) and 〈u〉(Y). For weak disorder w <

1, R1 is given by Eq. (50). As the initial condition on
local intensity in this case can be written as 〈u〉(e, Y0) =
u0

∑2
k=1 δ(e − ek ) with u0 as a constant dependent on the

eigenstates in two flat bands in the clean limit, Eq. (67)
of Ref. [47] gives 〈u〉(e, y) = u0√

2π |Y−Y0|
∑2

k=1 exp[− (e−ek )2

2|Y−Y0| ]
for a Gaussian Brownian ensemble. The above on substitution
in Eq. (33) gives

〈I2〉(e,�I ) ≈ 1

2 R1

√
2N

�IE2
c

×
[
N If e−�I

2∑
k=1

e
− 2N

�I E2
c

(
e−ek− �I Ec

4

)2

+J0

]
,

(54)

where

J0 ≈ 3 u0

w

√
π�I

N

2∑
k,l=1

e− 4(e−ek )
Ec e− 1

2w2 (el−ek )2+ 2�I
N �(e − ek )

(55)

with �I given by Eq. (28).
For e ≈ e1, e2, Eq. (54) again leads to [following the same

reasoning as given below Eq. (44) for case e ∼ 0]:

〈I2〉(e) ≈ 6 π u0

N Ec

e
8w2

NE2
c for e ∼ e1, e2. (56)

Here the result for e ∼ e2 is obtained by neglecting the term
e− 4

Ec
(e2−e1 ); the approximation is valid for Ec ∝ N−μ and e2 −

e1 > 0. Clearly the result for e ∼ e1, e2 for weak disorder w <
1
4 N1−2μ is the same as Eq. (46) for a single band.

The study [19] for case (d) with two flat bands at e =
e2 = −e1 = 4 gives 〈I2〉 ∝ N−0.83 with fractal dimension
D2 ≈ 2.49 at e = ±4. Using Ec ∼ Eth ∼ �(e) ND2/d with
�(e) ∼ N−1, one has Ec ∼ N−0.17, thus allowing the approx-

imation e
8w2

NE2
c ∼ 1 for w < (1/4)N0.23. Clearly the average

IPR near e ∼ ±4 is independent from disorder but decreases
with increasing size N : 〈I2〉 ∼ N−0.83. A same behavior was
indicated by Ref. [19] too.

With increasing disorder, the Gaussian level densities
spread with their tails overlapping near e ∼ e1+e2

2 (middle of
the gap region). An analysis of Eq. (54) in this region gives,
for e2 > e1,

〈I2〉(e) ≈ 3 π u0

N Ec

e
8w2

NE2
c e

−2(e2−e1 )
Ec e

(e1−e2 )2

8w2

[
1 + e

−(e1−e2 )2

2w2

]
. (57)

Note although the mean level spacing is �(e) ∼ N−1 for
both the regions, D2 is in general energy dependent. As a result
Ec (∼� ND2/d ) in the region e ∼ (e1 + e2)/2 is different from
the centers (i.e., e ∼ e1, e2) of the Gaussian bands. This is also
indicated by the numerical study in Ref. [19]) giving Ec as
N−0.17 and N−0.15 (with D2 = 2.49, 2.55) for e ∼ 4 and e ∼ 0,
respectively.

As clear from Eq. (57), the average IPR has a dif-
ferent disorder dependence in the two energy ranges. At
e ∼ (e1 + e2)/2, 〈I2〉(e,�I ) now decreases with increasing w

for w
√

2 < (e2 − e1) but increasing again for w
√

2 > (e2 −
e1). At w

√
2 ≈ (e2 − e1) and finite N , however, the behavior

at e ∼ (e1 + e2)/2 is almost analogous to that of e ∼ e1, e2 if
Ec has a very weak N dependence. This is again consistent
with numerical study in Ref. [19] for case (d) which indicates
that IPR at w ≈ 36 and at e ∼ 4 seems analogous to that of
e ∼ 0; note Ec values mentioned above indicate a very slow

variation in term e
−2(e2−e1 )

Ec with N .
For w > 1, 〈I2〉 can be obtained by substituting �I ≈

4 ln |1−w2|
E2

c
in Eq. (54). Proceeding again as for w < 1, one

obtains

〈I2〉(e) ≈ 6 π u0

N Ec

e
8 ln |1−w2 |

NE2
c for e ∼ e1, e2 (58)

≈ 3 π u0

N Ec

e
16 ln |1−w2 |

NE2
c e

−2(e2−e1 )
Ec e

(e1−e2 )2

8w2

[
1 + e

−(e1−e2 )2

2w2

]
for e ∼ (e1 + e2)/2. (59)

Following similar steps, the above result can be generalized
for cases with more then two bands. The study [15] analyzes
the disorder sensitivity of 〈I2〉 for case (e) (which has three
flat bands for φ = φ0/2 in the clean limit); their results
again confirm the disorder independence in the weak disorder
limit (see Fig. 11 of Ref. [15]). As the study [15] does not
analyze size dependence of 〈I2〉, we are unable to compare
our theoretical predictions with their results.

(ii) Flat band at the edge of a dispersive band:
The initial conditions on R1, IPR, and 〈u〉 now be-
come R1(e, Y0) = N

2 (δ(e) + fd (e,N )), I2(e, Y0) = If δe0 +
Id θ (e) and 〈u〉(e, Y0) = u0 δ(e) + u1 θ (e) [with θ (e) = 0, 1
for e < 0 and e > 0, respectively, If , Id , u0, u1 as constants
dependent on the eigenstates properties in the clean limit].
R(e, Y ) is now given by Eq. (53) and the above initial
condition on 〈u〉; Eq. (69) of Ref. [47] leads to 〈u〉(e, Y ) ≈

u0√
2|Y−Y0| exp[− e2

2π |Y−Y0| ] + ud (e,w) with ud (e,w) as the local
eigenfunction intensity in the dispersive band. Substitution of
the above in Eq. (40) gives

〈I2〉(e,�I ) ≈ 1

2R1

√
2N

�IE2
c

[
N e−�I

(
If e

− 2N

�I E2
c

(
e− �I Ec

4

)2

+Id gw(e)

)
+ J0

]
, (60)

with gw(e) = ∫ ∞
0 fd (x) e

− 2N

�I E2
c

(e−x− �I Ec
4 )

2

dx and

J0 ≈ 3

√
�I

Nw2

[
u0

√
π + B1 + B2 + B3

]
e− 4e

Ec
+ 2�I

N , (61)

where B1, B2, B3 are integrals dependent on the level density
and local intensity of the dispersive band:

B1 = 2u0w

Ec

√
πN

�I

∫ ∞

−∞
dx fw(x) e

− 2Nx2

�I E2
c
+ 4x

Ec , (62)

B2 = N

∫ ∞

−∞
dx fw(x) ud (x) e− x2

2w2 + 4x
Ec , (63)

B3 =
√

2πw2

∫ ∞

−∞
dx fw(x) ud (x) e

4x
Ec . (64)
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For clarification, here we choose If = 1, Id = 1
N

, assuming
all localized states in the flat band and all delocalized states
in the dispersive band. Assuming Ec ∼ N−μ with μ > 0,
here again �I ∼ N2μ. Clearly, for large N and finite e, the
contribution from the first two terms in Eq. (60) is negligible

which results in 〈I2〉(e,�I ) ≈ 1
R1

√
2N

�I E2
c

J0. Based on e,w,

J0 can further be simplified as follows:
Case w < 1, e ∼ 0: R1(e, Y ) for this case can again be

approximated as R1(e) ≈ N√
2πw2

[see Eq. (53)]. Due to almost
negligible contribution from the dispersive part near e ∼ 0, J0

in Eq. (61) can again be reduced to the same form as in Eq. (44),
leading to 〈I2〉(e, Y ) independent of disorder but not of size:

〈I2〉 ≈ 6 π u0

N Ec

e ∼ 0, w < N1−2μ. (65)

As mentioned below Eq. (48), our numerical analysis of the
two-dimensional chequered board lattice gives Ec ∼ N−0.5

which implies 〈I2〉 ∼ N−1/2, an indicator of partially localized
states.

Case w < 1, e > 0: The dispersive contribution in J0 in
Eq. (61) and e dependence of R1 in Eq. (53) can be ignored.
This results in, for e > w

√
2,

〈I2〉 ≈ 3
√

2

N Ec w fw(e)

[
u0

√
π + B1 + B2 + B3

]
e− 4e

Ec , (66)

which implies an exponential decay away from the center of
the Gaussian band (for Ec ∝ N−μ for μ > 0). This is again
confirmed by our numerical analysis of the chequered board
lattice (see Fig. 3).

Case w>1, e∼0: With R1(e∼0)≈ N

2
√

2πw2
+ N

2 fw(0, w),

�I = 4 ln |1−w2|
E2

c
and using Eq. (61) for J0(e ∼ 0), one has

〈I2〉 ≈ 6
√

π

N Ec

[
u0

√
π + B1 + B2 + B3

]
(1 + w

√
2π fw(0, w))

e
8 ln |1−w2 |

NE2
c . (67)

The numerics for d = 2 chequered board lattice [case (c)],
with w2 = 10 and near e ∼ 0, gives D2 ≈ 0.5 implying Ec ∼
N−0.75 (see Fig. 4). The average IPR in this case is therefore
approaching localized limit 〈I2〉 ∼ N−0.25 and is also disorder
dependent (see Fig. 3).

Case w > 1, e > 0: Here �I and J0 can be given as in the
previous case but now the Gaussian contribution to R1 may not
be ignored. This leads to

〈I2〉 ≈ 6
√

π

N Ec

[
u0

√
π + B1 + B2 + B3

]
(
e− e2

2w2 + w
√

2π fw(e)
) e

− 4e
Ec

+ 8 ln |1−w2 |
NE2

c . (68)

VII. CONCLUSION

Based on representation by a multiparametric Gaussian
ensemble, we derive a complexity parameter formulation of
the ensemble averaged level density and inverse participation
ratio for disordered perturbed flat bands. Our results indicate
a disorder insensitivity of these measures in weak disorder
regime; this is consistent with numerical results for a two-
dimensional chequered board lattice discussed in this paper
and also with a three-dimensional diamond lattice [19] as well
as Aharonov-Bohm cages [15]. A point worth emphasizing
here is as follows: The results obtained here are applicable only
for those cases in which the diffusion of ensemble density can
be represented by Eq. (5), with the initial state of diffusion
corresponding to a macroscopic degeneracy with localized
eigenstates. A macroscopic degeneracy of energy levels (lead-
ing to peaked level density and localized eigenstates) can,
however, arise in situations other than the flat bands [24]. But
that by itself does not ensure the applicability of our theoretical
results.

The complexity parameter formulation of IPR helps in
revealing an interesting tendency of the eigenfunction dy-
namics in the flat bands: The localization due to destructive
interference of the highly degenerate flat band states seems
to weaken with the onset of disorder, resulting in a partially
localized wave packet. It however becomes fully localized
again beyond a critical disorder due to impurity scattering.
The variation of disorder thus leads to a variation of the wave
dynamics from localized→ extended→ localized phases; note
however the wave localization for weak and strong disorders
has different origins. This in turn gives rise to many questions,
e.g., whether it is possible to have a disorder driven transition
in the flat bands. Is it different or analogous to disorder driven
transitions in the dispersive bands and can it be defined in
terms of a single scaling parameter? It is also relevant to know
whether there exists a mobility edge in perturbed flat bands.
We attempt to answer some of these questions in Ref. [1].
As discussed in Ref. [1], the formulation not only helps us in
search of criticality in perturbed flat bands, it also connects the
latter to a wide range of other disordered systems.

In the present work, we have confined ourselves to the
disorder perturbed bands. Previous studies have indicated
many other system conditions which can play an important role
as perturbations, e.g., symmetry or particle interactions. Using
a lattice with pentagon unit cell, the study [17] indicates that a
single particle dispersive band can be converted into a flat band
by an appropriate tuning of electron-electron interactions. As
discussed in Sec. III, the complexity parameter formulation
can also be applied to these cases. But as the initial state
in our Y governed diffusion of the level density and IPR is
chosen to be a flat band (with dispersive band as the end
of diffusion), the consistency of our results with Ref. [17]
requires that a decrease of parameters Uk leads to an increase
of Y . To check this, we need an explicit formulation of Y .
Due to technical complications, the details of this case will be
discussed elsewhere.
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