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Mesoscopic real-space structures in spin-glass aging: The Edwards-Anderson model
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Isothermal simulational data for the three-dimensional Edwards-Anderson (E-A) spin glass are collected at
several temperatures below Tc and, in analogy with a recent model of dense colloidal suspensions, interpreted
in terms of clusters of contiguous spins overturned by quakes, i.e., nonequilibrium events linked to record-size
energy fluctuations. We show numerically that to a good approximation, these quakes are statistically independent
and constitute a Poisson process whose average grows logarithmically in time. The overturned clusters are local
projections on one of the two ground states of the model, and grow likewise logarithmically in time. Data
collected at different temperatures T can be collapsed by scaling them with T −1.75, which we relate, on the
one hand, to the geometry of configuration space and, on the other, to experimental memory and rejuvenation
effects. The rate at which a cluster flips is shown to decrease exponentially with the size of the cluster, as recently
assumed in a coarse-grained model of dense colloidal dynamics. The evolving structure of clusters in real space
is finally associated to the decay of the thermo-remanent magnetization. Our analysis provides an unconventional
coarse-grained description of spin-glass aging as statistically subordinated to a Poisson quaking process and
highlights record dynamics as a viable common theoretical framework for aging in different systems.
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I. INTRODUCTION

Intensely investigated in the last few decades, the multi-
scale dynamical process called aging is widely observed in
glassy systems subject to a change of an external parameter,
e.g., a thermal quench. While spin glasses [1–4], colloidal
suspensions [5], vortices in superconductors [6], magnetic
nanoparticles in a ferrofluid [7], and ecosystems [8,9] may have
little in common in terms of microscopic variables and interac-
tions, strong similarities emerge in their aging phenomenology.
For example, one-point averages feature a logarithmic time
dependence [10] which entails an asymptotically vanishing
rate of change of the corresponding observables and clarifies
why aging systems deceptively appear in equilibrium for
observation times shorter than their age. Second, two-time
averages, such as correlation and response functions, often
possess an approximate dependence on the single scaling
variable t/tw [11]. Interestingly, this property is shared by the
probability that a species is extant at times tw and t > tw in a
model of biological evolution [9].

Thermal-relaxation models associate the multiscaled nature
of aging processes to a hierarchy of metastable components
of configuration space [12–14], often described as nested
“valleys” of an energy landscape. Local thermal equilibration
is described in terms of time-dependent valley occupation
probabilities [15], which are controlled by transition rates
over the available “passes.” When applied to a hierarchical
structure, such description gradually coarsens over time as
valleys of increasing size reach equilibrium. That barrier
crossings are connected to record values in time series of
sampled energies [16,17] is a central point in record dynamics
(RD), a coarse-grained description of aging which uses the
statistics of nonequilibrium events called quakes to describe
aging in different settings [18–21].

In connection with spin glasses, RD has predictions de-
scribing thermo-remanent magnetization (TRM) data [19]
and explaining their observed subaging behavior [11], i.e.,
their deviation from t/tw scaling. In this work, we explicitly
check its basic assumptions and use it to provide a different
perspective on an iconic model of glassy behavior, i.e., the
Edwards-Anderson (E-A) spin glass [22].

Usually more reliant on system-specific details than their
more abstract configuration space counterparts, real-space
models often build on the properties of domains whose time-
dependent linear size l(T ,t) characterizes the aging process;
see, e.g., [7,23]. Independent of the mechanism assumed
for domain growth, degrees of freedom belonging to the
same domain are assumed to fluctuate around their thermal
equilibrium state, while those located in different domains
have, for a fixed time scale, frozen relative orientations. The
functional form of l(T ,t) can be extracted from simulational
data using a four-point equilibrium correlation function [23].

Specifically in the spin-glass droplet model [1], domains
are defined in terms of projections onto the two available
ground states. Since the time growth of l(T ,t) minimizes the
free energy by decreasing the domain wall length, the droplet
model views domain growth in a spin glass as homologous to
the scale-free coarsening process of a ferromagnet at its critical
temperature.

Note, however, that while the interior of a ferromagnetic
domain only harbors local excitations of the ground state,
analyses of small short-range spin-glass systems [24] indicate
that each domain accommodates a multitude of metastable
configurations. The same conclusion can be reached from a
more recent enumeration of all the metastable configurations
of E-A models of different linear sizes [25]. It thus seems
questionable that domain walls provide the main contribution
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to free-energy barriers in a spin glass. Finally, the droplet model
leaves no room for the temporally intermittent and spatially
heterogeneous events now recognized as key features of glassy
dynamics [26].

From data analyses, real-space length scales in aging sys-
tems are linked to the equilibrium correlation length of their
metastable states, and recent numerical [27,28] and experimen-
tal [29,30] efforts utilize correlation and response functions to
describe the growth of correlated domains. Inspired by a recent
model of colloidal aging [31,32], we use a different approach
to identify growing real-space structures in the E-A spin glass
and argue that these are the coarsening variables controlling
aging by linking them to TRM data.

In models of dense colloids [31,32], clusters of contiguous
particles, which gradually grow by accretion and suddenly
collapse through quakes, fulfill this dynamical role, while
the microscopic particle motion is only described statistically
through a size-dependent cluster collapse rate. The crucial
assumption that this rate decreases exponentially with clus-
ter size, corresponding to the likelihood of a spontaneous
fluctuation of that size, reproduces the available numerical
and experimental evidence on dense hard-sphere colloids. In
addition, pertinent RD predictions, including a logarithmic
time growth of the average cluster size, are obtained. A
recent reanalysis [33] of experimental evidence shows that
the quaking rate in dense colloidal suspensions decreases as
1/t , which is the basic claim from which RD predictions
flow. The experimental evidence was confirmed with molecular
dynamics simulations of such a colloid [34].

To buttress our hypothesis, we analyze, as anticipated,
the dynamics of the E-A spin glass [22], a model with
quenched randomness microscopically very different from a
dense colloid. Its very well-studied behavior is usually asso-
ciated with two competing theoretical approaches [1,35,36]
which, in spite of their differences, share conceptual roots in
the equilibrium statistical mechanics of critical phenomena.
A unified description of aging phenomenology requires, we
believe, a much stronger focus on the statistics of the rare
nonequilibrium events that drive the dynamics in the full range
of parameters, e.g., temperature or density, where aging is
observed.

Our simulations show that (i) the energy changes associated
to quakes stand out from the overwhelming majority of energy
fluctuations, (ii) quakes are statistically uncorrelated and occur
at a rate which is constant in logarithmic time, as predicted
by RD, and (iii) suitably defined clusters grow on average in
proportion to ln t . The last result concurs with the behavior
observed in [31,32] for a model of colloids. Provided that
the cluster-size distribution is sufficiently peaked around its
mean, it also supports the latter model hypothesis that clusters
are overturned at a rate exponentially decreasing with their
size. Last but not least, our analysis provides an approximate
description of spin-glass dynamics in terms of flipping clusters
which is more complete than previously available and covers
the TRM decay behavior.

The rest of the paper is organized as follows: In Sec. II, the
E-A model definition is stated for the reader’s convenience.
In Sec. III, we summarize the theoretical concepts used in our
data analysis. Our numerical results are presented in Sec. IV
and a real-space coarse-grained description of the E-A spin-

glass dynamics is given in Sec. V. Finally, Sec. VI highlights
similarities between our observed T scaling of energy fluctu-
ations and experimental memory and rejuvenation properties
of spin glasses. Section VII provides a summary and draws
conclusions.

II. MODEL

We consider an Ising E-A spin glass [22] placed on a cubic
grid with linear size L = 20 and periodic boundary conditions.
Each of the 2N configurations is specified by the value of N =
L3 dichotomic spins and has, in zero magnetic field, an energy
given by

H (σ1,σ2, . . . ,σN ) = 1

2

N∑
i=1

∑
j∈N (i)

Jijσiσj , (1)

where σi = ±1 and where N (i) denotes the six nearest neigh-
bors of spin i. For j < i, theJij ’s are drawn independently from
a Gaussian distribution with zero average and unit variance.
Finally, Jij = Jji and Jii = 0. All parameters are treated as
dimensionless. This model has a phase transition from a
paramagnetic to a spin-glass phase at critical temperature,
which in Ref. [37] is estimated to be Tc = 0.9508. The same
reference reviews the different Tc estimates found in the
literature.

III. METHOD OF ANALYSIS

Starting from a configuration previously equilibrated at tem-
perature T0 = 1.25, the system is instantaneously quenched
at time t = 0 down to T < 1. The ensuing aging process is
then followed for five decades in time. For aging temperature
T = 0.3,0.4,0.5,0.6,0.7,0.75, and 0.8, 512 independent sim-
ulations are carried out and special events, i.e., the quakes, are
extracted from the trajectories thus obtained. After defining a
detection criterion (see below), we check that quake events
are uncorrelated and Poisson distributed with an average
proportional to ln t . We then identify clusters of spins that
move in unison during the quakes, and from those construct
the average cluster size, Scl(t), as a function of time.

The waiting time method [38] (WTM), a kinetic Monte
Carlo (MC) algorithm which performs single spin flips with
no rejections, is used in all simulations. Similarly to the more
widely used Metropolis algorithm and its more recent variants,
e.g., parallel tempering [39], the WTM fulfills the detailed
balance condition and is, by design, guaranteed to eventually
sample the equilibrium distribution of the problem at hand. Its
performance in exploring the E-A energy landscape at low T

was compared in Ref. [17] to that of extremal optimization
[40]. These two very different methods extracted the same
geometrical features from the landscape, e.g., that a record
high-energy barrier must be scaled in order to find a lower value
of the lowest energy seen “so far,” or “best-so-far energy” Ebsf ,
to which we shall return. Being calculated along the trajectories
as differences between the energy of the current state and the
Ebsf , the above barriers differ conceptually from the overlap
barriers investigated in Ref. [41], which describe displacement
fluctuations in thermal equilibrium.
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In a jammed system as an aging spin glass, Metropolis
executes a large number of unsuccessful trials (and the ac-
ceptance rate drastically declines), which the WTM avoids by
rank ordering the execution time of all possible moves and then
executing the one with the lowest execution time. Specifically,
flipping spin i at energy cost δi is associated to a waiting time
wi , and the intrinsic time variable t (flipping time) of the WTM
is a real positive number which sums up, at any point of the
simulation, the times spent “waiting” for all previous flips.
Each waiting time is drawn from an exponential distribution
with average

〈wi〉 = exp

(
δi

2T

)
. (2)

Hence, as long as its local environment remains unchanged, the
thermal flips of each spin are a memoryless Poisson process
with the above average. This seems a physically appealing
description of systems with many coupled degrees of freedom
and implies that when a spin is reversed, only the waiting
and flipping times of that spin and its neighbors need to be
recalculated, while all others can stay put.

Both the WTM and the Metropolis algorithm lack a physical
timescale, and their ability to empirically describe aging
processes depends on the temporal scale invariance of such
processes, combined with the fact that both methods seek the
pseudoequilibrium states in which aging systems dwell most
of the time. Once the Metropolis algorithm has had a chance
to query every spin, it flips a set of spins similar to that flipped
by the WTM. For times of the order of a MC sweep or larger,
the two methods are equivalent and our t corresponds to the
number of MC sweeps [38].

The sequence of flips is, however, clearly different since
Metropolis chooses the “next” flip candidate at random, while
each choice of the WTM can be influenced by the last flip:
Eq. (2) implies that any negative “barrier” δi which arise after
a move creates a locally unstable situation where the involved
spins quickly flip. This process can iteratively generate a
series of negative δi values in a local neighborhood, triggering
event cascades whose short duration allows one to time-stamp
quakes with high resolution. The latter feature is important
when assessing the temporal statistics of the quakes. Besides
being computationally inefficient at low T , a Metropolis
algorithm would express “times” as an integer number of
sweeps, which is at variance with time being a real variable in a
Poisson process. In contrast, WTM readily resolves subsweep
timescales.

For short time intervals and at low temperatures, the WTM
dwells in real-space neighborhoods of local energy minima,
and the sampled energy changes feature a previously unnoticed
temperature scaling, which is found in most of our figures and
explained in Sec. IV C in terms of the distribution of single flip
energy changes available near local energy minima.

A. Clusters and domains

A local energy minimum configuration consists of disjoint
groups of contiguous spins, i.e., our clusters, whose orientation
is either the same or the opposite as one of the two ground
states if one neglects, as we presently do, the spins on the
cluster boundaries. Since each cluster may contain subclusters

FIG. 1. Depiction of the domain hierarchy in a hyperplane of
a three-dimensional (3D) Edwards-Anderson spin glass during the
aging process. Each numbered area represents spin clusters with the
same configuration as one of the two ground states of the E-A spin
glass. With the exception of area 12, which has two colors, each cluster
is surrounded by a region of the opposite color and takes up this color
when overturned by a quake. In this picture, randomly fluctuating,
isolated spins have been suppressed. A quake event amounts to filling
in one of the innermost domains through flipping all its spins, thereby
coarsening the otherwise self-similar spatial hierarchy of domains
within domains.

of opposite orientation, a partially nested structure is generated,
reflecting the degree of hierarchical organization of the sys-
tem’s configuration space [14,24]. The situation is illustrated
in Fig. 1, using two dimensions for graphical convenience.
Excess energy relative to the ground state stems from cluster
interfaces and can be reduced in a thermally activated process
overturning gradually larger clusters. The free-energy cost of
such reversals is mainly associated with barriers in the bulk of
each cluster, as we will explain below. In contrast, the cost of
overturning a ferromagnetic domain is mainly associated with
the domain’s interface.

Quickly reversible single spin flips similar to “in-cage
rattlings” in a colloid are excluded from cluster configurations.
Their long-term effects are subsumed into the statistics of the
quakes which provide the elementary moves, i.e., cluster flips,
of the coarse-grained dynamics we are about to describe. Since
spins move together in a quake, the final configurations of two
successive quakes are compared, and all spins which changed
orientation are identified and grouped into clusters of spatially
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contiguous elements. Finally, clusters with less than five spins
are discarded to minimize the risk of erroneously counting
reversible moves as part of a quake.

B. Quake-detection protocol

The observation of nonequilibrium phenomena is funda-
mentally tied to choosing the correct time and length scales.
This certainly applies to the aging process. On very large
scales, macroscopic variables seem to change in a smooth and
gradual manner. On intermediate scales, aging systems appear
in a state of quasiequilibrium punctuated by increasingly
rare, intermittent quakes that significantly (i.e., irreversibly)
relax the system and lead to overall structural changes. The
importance of these events for the progression of the aging
process was highlighted in [42] using a system-wide approach.
However, since quakes unfold almost instantaneously on an
intermediate timescale, a more detailed investigation is needed
to explore the spatial dynamic that facilitates the quake. In
the following, we outline a protocol to zoom in more closely
into a narrower time window, as illustrated in Fig. 3, where
the quake’s footprint is measured from the difference between
the configuration it generates and that it inherits from the
previous quake; see Fig. 1. This contrasts with equivalent
aging experiments on structural glasses such as colloids, where
spatial traces of quakes are faint.

Our method of data analysis identifies quakes on the fly
from an evolving trajectory and treats them, approximately,
as instantaneous events. The identification process involves a
number of computational choices, which are all based on the
following assumptions: Using ln(t) rather than t as the indepen-
dent variable transforms the quakes into a memoryless Poisson
process. Accordingly, successive quakes are statistically inde-
pendent and, if tk is the time of occurrence of the kth quake,
the “logarithmic waiting times” �lnk = ln(tk) − ln(tk−1) =
ln(tk/tk−1) are independent stochastic variables with the same
exponential distribution. Correspondingly, the logarithmic rate
of quakes is constant.

In Refs. [42,43], energy differences were sampled over time
intervals of duration δt , chosen much smaller than the system
age but larger than the decay time of the energy autocorrelation
function. On this intermediate timescale, intermittent events
were distinguished from equilibrium fluctuations based on
their correspondence to rare, negative, and numerically large
energy changes without resolving the quake event itself. In
our case, we provide precise values for the onset times of
quakes by explicitly connecting them to the extremal value
of the “energy barrier” function discussed in Refs. [16,17].
For that purpose, energy changes in close proximity to local
energy minima are monitored by choosing δt now much
shorter than the energy autocorrelation decay time, such that
neither equilibrium fluctuations nor quakes can unfold within
a single δt . Energy changes measured within such a short δt

without reference to barrier height feature a perfect normal
distribution over many orders of magnitude; see Fig. 4. That the
width of this distribution scales anomalously with temperature
confirms that the sampled energy changes are not equilibrium
fluctuations.

In contrast, to capture an actual quake, we have to use a spe-
cific trigger, described in Figs. 2 and 3. Following Refs. [16,17],

Ei-1
Ei

Bi-1 Bi

FIG. 2. The instantaneous energy E(t) of the system fluctuates
widely while decaying slowly overall (left panel). The lowest energy
Ebsf (t) = mint [E(t)] and the highest barrier maxt [E(t) − Ebsf (t)]
ever seen up to time t are marked by E and B, respectively. In
Refs. [16,17], intermediate records were stricken (crossed-out green
letters) and the last B record before the next E, or the last E record
before the next B, were kept to coarse grain the states visited into
“valleys” entered and exited at barrier crossings Bi−1 and Bi and to
demarcate the catchment basin of the local minimum at Ei (right
panel). Here, we focus on the record-producing parts of the trajectory
enclosed in the shaded boxes. In the lower box, E(t) begins to undercut
the previous minimum, Ei−1, until Ei is reached and, in the upper box,
it exceeds the previous barrier record (up arrow) until Bi is reached.

we consider the barrier function b(t) = E(t) − Ebsf (t), where
Ebsf (t) = mint [E(t)] is the lowest energy ever seen up to
time t . According to Ref. [16], the entry and exit times of
a trajectory in and out of a valley in the energy landscape can
be evinced from the sequence of configurations where b(t)
and Ebsf (t) reach their maxima and minima, respectively. As
the description in Fig. 2 demonstrates, the most recent barrier
record Bi only becomes recognized as such when the next
minimum is reached and, correspondingly, the latest Ei is
certified as such only after b(t) achieves a new record. Thus,
this classification scheme requires a priori knowledge of the
entire time series of energy values, which we want to avoid.
Furthermore, we do not only focus on exit and entry points
of valleys in configuration space, but wish to identify the
spatially localized nonequilibrium events which provide the
path approaching Ei and Bi , respectively, marked by a shaded
box in the insets of Fig. 2. Approaching Ei , E(t) achieves a
sequence of new Ebsf (t) after the latest record barrier crossing.
In turn, the function b(t) reaches new records after the latest
minimum Ebsf (t) become fixed and Bi is approached. Typical
sequences of E(t) within those regimes are depicted in the main
panels of Fig. 3. For either regime, we stipulate that if Ebsf (t) or
b(t) achieve a new record value at t = tr , a quake is unfolding.
As soon as t then reaches the upper boundary of the subinterval
containing tr , i.e., t � tr < t + δt , that quake is deemed to have
ended and the system’s configuration is saved. We then repeat
this procedure for the next record, until Ei or Bi , respectively,
is reached and continue the process in valley i + 1 at later
times. From the energy differences δEq(i), i = 1,2, . . . ,N ,
between the current and the previously saved configurations,
one easily finds the total energy change connected to the quake
and the positions of the participating spins. The statistical error
in the procedure comes from unrelated spins which flip and
participating spins which flip twice.

The above detection scheme allows a precise assessment of
quake times and does not use threshold values to discriminate
quakes from quasiequilibrium thermal fluctuations. The arbi-
trary subdivision of the observation interval into subintervals of
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FIG. 3. On-the-fly detection of quakes while reaching new energy
minima Ei (top panel) or barrier records Bi (bottom panel). Within
the respective ranges (shaded boxes in insets), a progression of new
records, either of Ebsf (t) (top) or of b(t) (bottom), is reached through
quakes. In the top (bottom) panel, once the energy signal reaches
below (above) the previous record, a quake event commences, marked
by a colored horizontal line. To capture the footprint of such a quake,
we record the spin configuration at the end of those time intervals
δt that contain a record (vertical dashed lines). The spin-orientation
changes between consecutive quakes provide the spatial extent of the
intervening quake. The subinterval duration δt used in the simulation
is δt = 0.999.

length δt determines when a quake ends, but has only a minor
effect on the measured values of interquake times, which are
typically much longer than δt . Finally, reaching the different
energy records which define our quake-detection technique
also requires tortuous paths, which are tantamount to entropic
barriers. These are not shown in Figs. 2 and 3, but are important
for the dynamics, as argued in Sec. IV C.

To conclude, the WTM is ideally suited for our mea-
surements. It produces equivalent physical results to random
sequential MC, yet, WTM focuses more efficiently on the few
active spins that drive the dynamics. By ranking degrees of
freedom by their time for change, it targets on exactly those

Mathematical symbols used

T ,t Temperature and time
δt Short time interval
� Energy change over δt

�q Quake-induced energy change
�ln Logarithmic waiting time
rq Logarithmic quaking rate
Rq(t) Quaking rate = rq/t

rcl Logarithmic rate of cluster growth
nq(t) Number of quakes up to time t

FA(x) PDF of stochastic variable A

spins connected within a quake and is able to time-stamp
quakes with high accuracy.

IV. NUMERICAL RESULTS

After the initial quench T = 1.25 → T < 1, the system is
aged up to time tw = 100 without taking any data. Data are
taken in the interval [tw,105] which is subdivided into 105

subintervals of duration δt = 0.999. This duration is an upper
bound for the temporal resolution of quake times, as explained
in Sec. III B. As mentioned, 512 independent simulations are
carried out for statistical reasons, all starting from the same
equilibrium configuration.

The first two sections below detail different types of simu-
lational results, and the last section rationalizes the T scaling
form used to collapse all our data. All quantities specified
below are dimensionless.

A. Energy-fluctuation PDFs

Energy fluctuations sampled during isothermal aging at
constant temperature T have probability distribution func-
tion (PDFs) which change widely with T . As one would
expect, the fluctuations are smaller the lower the temperature.
Interestingly, their scaling is not linear in T , as would be
the case when dealing with equilibrium energy fluctuations,
but involves instead the power law T α , where α = 1.75. Let
T −α� denote the scaled energy changes (per spin) sampled
at temperature T over an interval of a very short duration,
δt = 0.999. The length of this interval, which is much shorter
than those considered in [42] and far too short to straddle
equilibrium like energy fluctuations, provides an upper bound
for the duration of “instantaneous” quakes.

The seven estimated PDFs of T −α�, sampled at seven
different aging temperatures T = 0.3,0.4, . . . ,0.7,0.75, and
0.8 are plotted in Fig. 4 using a light color (yellow) and using, in
order of increasing T , squares, circles, diamonds, hexagrams,
pentagrams, and down- and up-pointing triangles as symbols,
respectively. The dotted line is a fit of all these scaled PDFs to
a Gaussian of zero average. We note that the data collapse is
excellent and that the standard deviation of the Gaussian, σG ≈
6.2 × 10−3, is much smaller than unity, with the statistical
spread of the coupling constants Jij . This confirms that the
sampled energy changes are strongly constrained, as expected.

Quake-induced energy changes �q occur over the time
intervals of varying length which stretch from one quake to the
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FIG. 4. Seven PDFs of energy fluctuations � collected at aging
temperatures T = 0.3,0.4, . . . ,0.7,0.75, and 0.8 are collapsed into
a single Gaussian PDF by the scaling � → T −α�, α = 1.75, and
plotted using a logarithmic vertical scale. The data plotted with
yellow symbols are fitted by the Gaussian shown as a dotted line.
This Gaussian has average μG = 0 and standard deviation σG ≈
6.2 × 10−3. Data plotted with red symbols represent quake-induced
energy fluctuations �q and, for negative values of the abscissa, have
estimated probabilities close to the exponential PDF shown by the
line.

next. Positive and negative values of �q are associated with the
system’s energy increasing or decreasing beyond its previous
maximum or minimum, respectively. The average effect of a
quake is, however, an energy loss.

The empirical PDFs of T −α�q are shown using the same
symbols as for the Gaussian changes, but a darker color (red).
For negative values of the abscissa, these PDFs feature the
exponential decay given by the fitted line, which is reminiscent
of the intermittent tail seen in [42]. In this case, the scaling with
T −α narrows but does not fully eliminate the spread of the data.
Isothermal aging was considered in [16] for various spin-glass
models and the height of the energy barriers separating the
neighboring “valleys” illustrated in Fig. 3 was studied at
different temperatures. Those data were collapsed by T 1.8

scaling, a result which seems in reasonable agreement with
our present findings and is likely to have the same origin.

Consider now the times of occurrence t ′ and t of two
successive quakes, t > t ′, and form the logarithmic time dif-
ference �ln = ln(t) − ln(t ′) = ln(t/t ′) > 0, called, for short,
log waiting time. If quaking is a Poisson process in logarithmic
time, the corresponding PDF, F�ln(x), is theoretically given by

F�ln(x) = rqe
−rqx, (3)

where rq is the constant logarithmic quaking rate. The applica-
bility of Eq. (3) has already been tested in a number of different
systems, including spin glasses [43].

The upper panel of Fig. 5 shows the empirical PDFs of our
logarithmic waiting times, sampled at different temperatures
and collapsed through the scaling �ln → T −α�ln. The result-
ing PDF is fitted by the expression FT −α�ln(x) = 0.81e−1.57x ,
which covers two decades of decay. Its mismatch with the
correctly normalized expression (3) stems from the systematic
deviations from an exponential decay visible for small-x
values. These deviations arise in turn from quakes which

FIG. 5. Upper panel: Symbols show the PDF of scaled “log-
arithmic waiting times” T −α�ln, α = 1.75, for the seven aging
temperatures T = 0.3,0.4, . . . ,0.7,0.75 and 0.8. Dotted line: fit to
the exponential form y(x) = 0.81e−1.57x . Inset: the normalized auto-
correlation function of the logarithmic waiting times is very close to
a Kronecker δ function, C�ln(k) ≈ δk,0. The data shown are collected
at T = 0.3, but similar behavior is observed at the other investigated
temperatures. Lower panel: The number of quakes occurring up to
time t is plotted with a logarithmic abscissa, for all T values, with
the steepest curve corresponding to the lowest temperature. Inset: The
quake rate, obtained as the logarithmic slope of the curves shown in
the main figure, is plotted vs T −α , where α = 1.75. The dotted line
is a fit with slope 1.11.

occur in rapid succession, and produce values ln(tk/tk−1) ≈ 0.
The effect, which is most pronounced at early times in the
simulation, roughly doubles the assessed number of quakes
and correspondingly lowers the fitted prefactor from ≈1.6 to
≈0.8. It furthermore produces nonzero correlation values in
the series of logarithmic waiting times at k = 1 and, to lesser
extent, k = 2.

Treating closely spaced quakes as parts of the same dy-
namical event leads to the corrected number of quakes, nq(t),
occurring up to time t , which is shown in the bottom panel
of Fig. 5 for seven different aging temperatures. The steepest
curve corresponds to the lowest temperature. The red dotted
lines are linear fits of nq(t) vs ln t , and the inset shows that
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FIG. 6. The average cluster size vs the logarithm of time. The
data set, from bottom to top, is obtained at aging temperatures
T = 0.3,0.4,0.5,0.6,0.7,0.75, and 0.8. The red lines are linear fits
of the data vs ln t . The inset shows the slope of the linear fits vs T 2α,

α = 1.75.

the logarithmic slope of the curves is well described by the
function rq = 1.11T −1.75. We note that the logarithmic quake
rate as obtained from the exponent (not the prefactor) of the
fit y(x) = 0.81e−1.57x is rq = 1.57T −1.75. The two procedures
followed to determine the quaking rate are thus mathematically
but not numerically equivalent: in the time domain, they give
the same T −1.75/t dependence of the quaking rate, but with
two different prefactors. The procedure using the PDF of
the logarithmic waiting times seems preferable due to better
statistics.

Glossing over procedural difference, we write rq = cT −1.75

where c is a constant, and note that in our RD description,
the number of quakes occurring in the interval [0,t) is then
a Poisson process with average μN (t) = cT −α ln(t). Quali-
tatively, we see that lowering the temperature decreases the
logarithmic waiting times and correspondingly increases the
quaking rate. The quakes involve, however, much smaller
energy differences at lower temperatures. Considering that
T −α � T −1, we see that the strongest dynamical constraints
are not provided by energetic barriers. As detailed later, they
are entropic in nature and stem from the dearth of available
low-energy states close to local energy minima. Finally, our
numerical evidence fully confirms the idea that quaking is a
Poisson process whose average is proportional to the logarithm
of time. In other words, the transformation t → ln t renders the
aging dynamics (logarithmic) time homogeneous and permits
a greatly simplified mathematical description.

B. Growth and decay of real-space clusters

The mean cluster sizes shown in Fig. 6 are calculated as
follows: Spins reversed by a quake are grouped into one or
more spatially disjoint sets, each comprising adjacent spins.
Each set is a cluster, and a first average cluster size Cj (t) is
computed as the arithmetic mean of the sizes of all clusters
generated at time t during the j th simulation. In a second step,
our data are temporally coarse grained by placing logarith-
mically equidistant time points t1,t2, . . . ,tn within the chosen
observation interval, and by treating the quakes occurring in

the same logarithmic time bin as simultaneous. The averaged
cluster size S̃cl(tk) is then calculated as the arithmetic mean of
all the Cj (t)’s for which tk−1 < t < tk+1. This whole procedure
is repeated for different values of the aging temperature T .
It follows that S̃cl(tk) is the average cluster size, conditional
to a quake happening near tk . Multiplying the result with
the corresponding probability rq yields the (unconditional)
average cluster size Scl(tk).

Figure 6 shows that

S̃cl(t) = rcl(T ) ln t = c′T 2α ln t ⇒
Scl(t) = cc′T α ln t, (4)

where c and c′ are positive constants. The rate at which
clusters are overturned in real time, as opposed to logarith-
mic time, is Rq(t) = rq/t = cT −α/t . Inserting t = exp( SclT

−α

cc′ )
from Eq. (4), we then obtain

Rq(t) = cT −α exp

[
−Scl(t)T −α

c′c

]
, (5)

which provides the anticipated exponential relationship be-
tween the typical cluster size and the rate at which clusters
of that size are overturned. Equation (5) does not prove that
a specific cluster will be overturned at a rate exponentially
decreasing with its size, but is compatible with that statement,
if the spatial distribution of cluster sizes is narrow.

C. Origin of T scaling

To rationalize the T scaling of our data, we note that the
conditional waiting time W |x for a spin to carry out a move
with energy change x is exponentially distributed with average
e− x

2T [see Eq. (2)], i.e.,

pW |x(t) = e
−x
2T exp(−te

−x
2T ). (6)

The scaled energy changes T −α� shown in Fig. 4 have a
Gaussian distribution indicating that � is a sum of several
independent terms, all sampled over short time spans of
the order of one. Consequently, the positive energy changes
selected must be of the order of x ≈ T , and the negative ones
are simply their reversals. Let g(x) be the probability density
that an energy difference x is associated to moves out of a given
configuration. If the configuration is a local energy minimum,
very few “freewheeling” spins are present and, for numerically
small values of x, g(x) is zero for x � 0 and increases with
x for x > 0. For configurations neighboring a local energy
minimum, negative x are available corresponding to moves
back to the minimum and the form of g is reversed. Glossing
over the difference between local energy minima and their
neighbors, we now assume that g(x) ≈ |x|β for β > 0 and, for
x ∝ T , find � ∝ T 1+β , which implies that the T dependence
of the sampled energy differences can be removed by scaling
them with T −α , with α = β + 1.

Energy changes from one quake to the next are plotted
in the same figure and have been similarly scaled. The T −α

scaling does not fully collapse their PDFs as expected since
the time difference between successive quakes is stochastic
and typically much larger than one. The result indicates,
however, that a trajectory triggering a quake mainly consists
of a sequence of flips associated to small and reversible energy
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Mathematical symbols in this section

λi ith eigenvalue in corr. decay
wi Weight of the corresponding term
rq(s) Logarithmic rate of quakes hitting cl. of size s

b Logarithmic rate of quakes per spin
κs(t) No. of quakes hitting cl. of size s in [0,t)
p(s) Prob. that a cl. of size s flips when hit
ncl(s,t) No. of clusters of size s present at time t

μs(tw,t) Average no. of hits to cl. of size s in [tw,t)
μs Same as above

changes with the “correct” T scaling, rather than fewer but
larger energy changes associated to long waiting times. In other
words, entropic barriers play a large role in the dynamics.

Since, as we just argued, the overwhelming majority of the
moves is associated with small time changes, the time between
two quakes is a sum of a varying, but large number of short
waiting times and inherits their T α dependence. The number of
quakes preceding an arbitrary fixed time t is then proportional
to T −α , as directly confirmed by the inset in the lower panel
of Fig. 5 and indirectly by its upper panel since the contents of
the figures are mathematically equivalent.

V. SPIN CLUSTERS AS DYNAMICAL VARIABLES

The real-space clusters discussed in the previous section
are mesoscopic objects which grow logarithmically in time. In
this mainly theoretical section, we use them as coarse-grained
variables and show that their dynamics explains the fit of
TRM data provided in [19] as well as other features of these
macroscopic data. A table is included summarizing the notation
used in this section.

Adapting Eq. (5) of Ref. [19], TRM data are described by
the following equation:

MTRM(t,tw) = A0

(
t

tw

)λ0(T )

+ A1

(
t

tw

)λ1(T )

+ A2

(
t

tw

)λ2(T )

,

(7)
where the prefactors Ai and the exponents λi are positive and
negative quantities, respectively. Using that λ0 is numerically
very small, one further expands the first power law, obtaining

MTRM(t,tw) = A0 + a ln

(
t

tw

)
+ A1

(
t

tw

)λ1(T )

+A2

(
t

tw

)λ2(T )

, (8)

where a = λ0A0 ≈ −1 is independent of temperature in the
available data range. Furthermore, λ1(T ) and λ2(T ) are weakly
decreasing functions of T , with ranges close to −1 and −6,
respectively. Clearly, the logarithmic approximation to the first
power law eventually fails as t/tw → ∞. However, for the data
range analyzed in [19], the logarithmic term is dominant and
the two remaining power-law terms only provide fast decaying
transients.

Since the gauge transformation σi → σi(tw)σi, Jij →
σi(tw)σj (tw)Jij maps the thermo-remanent magnetization
(TRM) into the correlation function C(tw,t) = ∑

i〈σ (tw)σ (t)〉,

modulo multiplicative constants, the two functions hold, for
our purposes, equivalent information and will be used inter-
changeably in the discussion.

Equation (8) was justified in [19] by the RD assumption that
aging is logarithmic-time homogeneous and by then applying
a standard eigenfunction expansion [44] for the magnetization
autocorrelation function, alias TRM, namely,

C(t,tw) ∝
∑

i

w(i) exp[λi ln(t/tw)] =
∑

i

w(i)

(
t

tw

)λi

, (9)

where wi � 0 and λi � 0. In view of the limited accessible
range of ln(t/tw), most modes in Eq. (9) will either be frozen
or have decayed to zero, leaving only a few active terms with
an observable time dependence, precisely as assumed in (8).

The approach leading to Eq. (9) implicitly describes the
effects of the quakes by an unspecified master equation, with
time replaced by its logarithm. As a consequence, the expo-
nential decays seen in many relaxation processes are replaced
by power laws, with no connection to a critical behavior. Con-
tinuing along this line, we now construct the relevant master
equation and relate its eigenvalues λi to real-space properties
uncovered in our numerical investigation. Specifically, we shall
use that (i) quakes are statistically independent events inducing
cluster flips and (ii) they constitute a Poisson process. Since
spatial extensiveness then follows, the rate of quakes hitting a
subsystem, e.g., a cluster, is proportional to the volume of the
latter.

Some of the following arguments rest on unproven hypothe-
ses, i.e., given that a quake hits a cluster of size s, the latter is
assumed to flip with probability p(s), a decreasing function of
s, parametrized by

p(s) = a0 + a1s
−1 + a2s

−2, (10)

where all three coefficients are positive. Further below, we
argue that a0 = a1 = 0.

Let κs(t) denote the number of quakes hitting a cluster of
size s and ncl(s,t) the number of such clusters present at time
t . Finally, smin and smax denote the sizes of the smallest and
the largest clusters in the system. The range of cluster sizes is
constrained by the condition

∑smax
s=smin

s ncl(s,t) = L3. Finally,
the total number of quakes hitting the system between tw and
t is nq(t) = ∑smax

s=smin
κs(t).

Even though the κs(t) presumably share the T −1.75 tem-
perature dependence of nq(t), the T dependence of p(s) is
unknown, as is that of the cluster distribution decay, which
depends on the products κs(t)p(s); see Eq. (11). We therefore
gloss over T dependences, but note that in order to produce
exponents with a weak-T dependence [19], p(s) should in-
crease with T to counteract the strong decrease of the κs(t).
In other words, as the temperature decreases, the number of
quakes increases but their dynamical effect is reduced.

As illustrated in Fig. 1, flipping a cluster, e.g., cluster 8,
eliminates all the subclusters present in its interior, i.e., in this
case, cluster 1. To simplify our treatment, this possibility is
eliminated by assuming that clusters are flipped in order of
increasing size. This is reasonable if, as we shall argue, the
logarithmic rate of cluster flipping decreases with cluster size.
Second, changes in the size of a cluster induced by subclusters
flipping in the cluster’s interior are neglected. The assumptions
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assign a dynamical significance to the hierarchy of cluster
sizes present at t = tw and allows clusters of different sizes
to develop independently of each other.

Having neglected the possibility that clusters flip in the
“wrong” sequence, a cluster which flips contributes with its
own size to the decay of the correlation function. Furthermore,
standard arguments then imply that the number ncl(s,t) of
clusters of size s decays exponentially in κs(t). The correlation
function and, equivalently, the TRM are given by

C(tw,t) ∝
〈

smax∑
s=smin

sncl(s,tw) exp[−p(s)κs(t)]

〉
, (11)

where the constant ensuring the initial normalization has been
omitted and the average 〈·〉 is performed over the distribution
of each κs(t).

The κs(t) are independent Poisson variables with expecta-
tion values

μs(tw,t) = rq(s) ln(t/tw), (12)

where rq(s) is the logarithmic rate of quakes impinging on a
cluster of size s. The extensivity of the quaking rates implies
rq(s) = bs, where b, a positive constant, is the logarithmic
quake rate per spin. As a consistency check, note that∑

s

rq(s)ncl(s,t) = b
∑

s

sncl(s,t) = bL3 = rq, (13)

which is the logarithmic quake rate for the whole system.
Each term of Eq. (11) can be averaged independently using

〈exp[−p(s)κs(t)]〉 = e−μs (tw,t)
∞∑

j=0

μs(tw,t)j

j !
e−p(s)j , (14)

which evaluates to

〈exp[−p(s)κs(t)]〉 = exp[−μs(1 − e−p(s))]. (15)

Expanding e−p(s) to first order, we finally obtain the contribu-
tion

〈exp[−p(s)κs(t)]〉 ≈ exp[−μsp(s)] =
(

t

tw

)−bsp(s)

(16)

to the average correlation function.
Summarizing,

C(tw,t) ∝
smax∑

s=smin

sncl(s,tw)

(
t

tw

)−bsp(s)

, (17)

which has the same structure as Eq. (9), with the weight wi

replaced by the volume fraction sncl(s,tw) occupied by clusters
of size s at time tw and the eigenvalue λi replaced by λs =
−bsp(s) = rq(s)p(s), the flipping rate of clusters of size s.

Noting that Eq. (10) entailsλs = −b(a0s − a1 − a2s
−1), we

set a0 = 0 on physical grounds since the largest clusters would
otherwise contribute to the fastest decay of the correlation func-
tion. The first nonzero term produces then a power-law decay
term, (t/tw)−a1b, while the next term gives a whole family of
power laws with different decay exponents, corresponding to
the cluster-size values initially represented in the system.

To regain the form given in Eq. (7), we set a1 = 0 and obtain
a sum of power laws with exponents of decreasing magnitude,

C(tw,t) ∝
smax∑

s=smin

sncl(s,tw)

(
t

tw

)−a2b/s

. (18)

Exponents corresponding to sufficiently large clusters will, to
first order in −a2s

−1 ln(t/tw), all contribute to the constant and
logarithmic terms A0 + a ln(t/tw) seen in Eq. (8). In summary,
the general form of the time dependence of the TRM data
given in Eq. (8) is accounted for by our qualitative arguments,
provided that a quake flips clusters of size s with probability
p(s) = a2s

−2.
The (mainly) logarithmic decrease of the TRM data is ex-

plained using our E-A model analysis in terms of large clusters
associated with power-law terms with very small exponents,
which can be suitably expanded. A different interpretation
[4] of the same data uses the presence of crystallites of
different sizes, with each size associated to an energy barrier,
and attributes the logarithmic decay of the TRM to a wide
distribution of these barriers. Even though the E-A spin glass
lacks any crystallites, the presence of clusters of different sizes
means that expanding the power laws with small exponents in
Eq. (18) yields, once the fast terms corresponding to small
clusters have decayed,

M(tw,t) ∝ A0 − a ln

(
t

tw

)
, (19)

where a ∝ (a2b). This expression concurs with the analysis
of Ref. [19], based on the measurements of Ref. [45] if a2b is
independent or nearly independent of T . Recalling that b is the
number of quakes per unit volume and per unit (logarithmic)
time, an educated guess is b ∝ T −1.75, in which case the
probability that a cluster of size s flips when hit by a quake
should be p(s) = a2/s ∝ T 1.75/s. Note, however, that the T

dependence of the prefactor of the logarithmic decay is linear
in Ref. [4].

Most commonly denoted by t in the literature, the “observa-

tion time” elapsed after tw is, in our notation, denoted by tobs
def=

t − tw. Interesting geometrical features of the spin-glass phase,
such as the size of correlated domains [28,46], are associated
to the “relaxation rate” SR(tobs,tw), defined as the derivative
of the TRM with respect to ln tobs [3], and in particular to its
broad maximum at tobs ≈ tw. To see the origin of the latter, we
derive the relaxation rate from Eq. (9) as

SR(tobs/tw) ∝ tobs

tw

∑
s

|λs |ws

(
tobs + tw

tw

)λs−1

, (20)

which is the product of an increasing prefactor tobs
tw

and a sum

of decreasing terms ( tobs+tw
tw

)
λs−1

. Each of these terms has a
maximum at tobs/tw = −1/λs and, together, they give rise to
the broad maximum near t = tw experimentally observed for
the relaxation rate [3].

Using λs = −a2b/s and recalling that ws = sncl(s,tw), we
find that the relaxation rate for the value tobs = 2tw commonly
used in the literature is

SR(2) ∝
smax∑

s=smin

ncl(s,tw)3−a2b/s ∝ 〈3−a2b/s〉, (21)
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where the brackets denote an average over the size distribution
of clusters present at t = tw. Importantly, Eqs. (20) and(21)
show that the relaxation rate and its maximum both gauge the
characteristic size of the clusters or domains present in the
system at time tw.

VI. IMPLICATIONS OF T 1.75 SCALING

The T 1.75 dependence of energy changes characterizing
isothermal trajectories at different temperatures (see Fig. 4)
implies that the barriers separating the parts of configuration
space where these trajectories unfold are not easily surmounted
by the thermal O(T ) fluctuations available in quasiequilibrium
states.

This anomalous scaling is briefly mentioned in Ref. [16],
where a slightly different scaling exponent was found. How-
ever, as we argue below, the behavior fits and partly explains
the rejuvenation and memory effects experimentally seen in
spin glasses [47,48] under a change of temperature protocol.

In [47], the imaginary part of the magnetic susceptibility
is measured at high frequency, ω > 1/tw, while the system
is cooled at a constant rate through a range of low tem-
peratures. As such, this protocol produces an out-of-phase
(pseudo)equilibrium magnetic susceptibility χ ′′(ω,T ), which
is utilized as a reference or master curve. Importantly, the
cooling process is halted at temperature T1 and the system
is allowed to age isothermally for several hours, leading to a
decrease or “dip” of the susceptibility away from the master
curve. When cooling is resumed, the measurements soon
return to that curve, which is a rejuvenation effect implying
that states seen during the aging process at T1 have little
influence on those seen at other temperatures. Furthermore, a
second aging stop at a lower temperature T2 produces a second
dip. The striking memory behavior of the system is revealed
when the system, continuously reheated without any aging
stops, retraces the dips of the susceptibility previously created
at T1 and T2. Similar rejuvenation and memory behavior
is observed in TRM traces [48]. These experiments show
that aging trajectories at different, not too close temperatures
are dynamically disconnected. Our numerical data point, as
anticipated, in the same direction and offer at the same time
an explanation of the rejuvenation part of the experimental
findings.

VII. SUMMARY AND DISCUSSION

This work’s main focus is to buttress record dynamics
(RD) [18–21,33] as a general method to coarse-grain aging
processes, by analyzing numerical simulations from a model
with quenched randomness. Spin glasses are iconic systems,
where a wealth of fascinating phenomena illustrating central
aspects of complexity have been experimentally uncovered
(see Refs. [2,3] and references therein), and the E-A model
was an obvious choice.

For historical reasons, traditional interpretations of both
numerical and experimental spin-glass data rely on adap-
tations of equilibrium concepts, e.g., critical behavior and
other properties of either [2] the Parisi solution [49] of the
mean-field Sherrington-Kirkpatrick (SK) model [50] or [3]
the real-space description of the E-A model [22] proposed

by Fisher and Huse [1]. Since RD relies on the statistical
properties of nonequilibrium events, the picture emerging from
our investigations unsurprisingly differs in some respects from
more established descriptions.

RD tacitly assumes the existence of a hierarchy of free-
energy barriers in configuration space [21,33] which, however,
bears no direct relation to mean-field spin-glass models and
rests on general arguments of a dynamical nature [13,51],
exemplified by a coarse-grained discrete toy model of “valleys
within valleys,” i.e., thermal hopping on a tree structure [14].

A connection between the ultrametrically organized pure
states [49] of the SK model, which are intrinsically stable equi-
librium objects, and the metastable states of real spin glasses
requires a degree of funambulism. The needed tightrope [52]
is provided in Ref. [53], where the spin-glass configuration
space is depicted as a hierarchically organized set of metastable
states.

Treating an aging spin glass as a critical ferromagnet in
disguise is, we argued, a dubious undertaking on two counts:
(i) Even though the energy difference between two metastable
states is associated to a domain wall, the dynamical barriers
that hinder a reversal of the domain orientation are not. They
are instead associated to the interior of the domain. (ii) While
the dynamics of a 3D spin glass looks critical when Tc is
approached from above, once belowTc, thermal equilibration is
chimeric and the physical relevance of the critical temperature
is moot.

Some descriptions (see, e.g., [54]) model aging dynamics
as a random walk in a configuration space fraught with traps
whose exit times feature a long-tailed distribution [55] of
unspecified origin. For a detailed discussion of continuous-
time random walks and “weak ergodicity breaking” vs RD, we
refer to [20]. Here we just note that RD traps all have a finite
depth, i.e., a finite average exit time, but are typically visited
in order of increasing depth. Last but not least, the quake, i.e.,
jump, statistics in RD is predicted from configuration space
properties, rather than simply assumed.

Keeping our focus in mind, the experimental results dis-
cussed in some detail [4,19,47,48] are all directly connected to
our findings. Second, variants of the E-A model, e.g., binary
coupling distributions, are not discussed. Considering RD’s
broad applicability, it seems plausible that such models would
yield qualitatively similar results. Some technical adjustments
would, however, be needed for our definition of clusters, as
the ground state is degenerated beyond a global inversion
symmetry.

In a spin-glass context, RD has been used to describe TRM
experiments [19] and numerical heat-exchange data [42]. In
the present investigation, quakes are operationally defined
by associating them to record values of a suitably defined
“energy barrier” function sampled during the simulations,
as graphically illustrated in Fig. 3. That these quakes are a
Poisson process whose average grows with the logarithm of
time is explicitly verified in Fig. 5, which confirms the basic
assumption on which RD relies.

Neglecting easily reversed single spin excitations pro-
duces the coarse-grained picture we use, where every low-
temperature configuration appears as a collection of adjacent
spin clusters, each oriented as one of the two ground states of
the E-A model. Clusters are identified from simulational data
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as groups of spins which change direction during a quake while
keeping their relative orientations unchanged. On average, the
size of spin clusters overturned at time t grows as ln t , and the
rate at which a cluster is overturned decreases exponentially
with its size. This relation subsumes the effect of both entropy
and energy barriers and establishes a connection with our
model of dense colloids [31,32].

A property of the E-A model seen in Figs. 4 and 5 is that ag-
ing data, e.g., energy differences and logarithmic waiting times,
collected at different (low) temperatures can be collapsed by
scaling them with T −1.75. This property is explained with the
form g(x) ∝ |x|3/4 which, for x ≈ 0, is assumed to describe the
energy changes associated to moves to and from a local energy
minimum configuration. In the simulations, the WTM dwells
near local energy minima, where it repeatedly samples this type
of energy fluctuations. We argue that the dearth of available
moves with a low associated energy change can explain the
rejuvenation part of memory and rejuvenation experiments
[47,48]: Simply put, states explored during isothermal aging at
different temperature are separated by large dynamical barriers
of an entropic nature, and these barriers are not easily over-
come by thermal equilibrium fluctuations, which scale linearly
with T .

Finally, an approximate real-space analytical description is
developed using growing clusters as mesoscopic dynamical
variables. Important elements are that the logarithmic rate of
quakes is an extensive and time-independent quantity and that,
given that a cluster is hit by a quake, it flips with a probability
inversely proportional to its size. Unlike the first assumption,
the second is only supported a posteriori by the formula it
produces, which empirically describes TRM decay data [19].

Importantly, the power-law terms vanish fairly rapidly and
the remaining logarithmic decay, which formally arises by
expanding a possibly large group of power laws with small
exponents, has a prefactor which is T independent, as in the
experimental data analysis of [19] but in contrast with the
formula given in [4]. A similar behavior [6,56] is seen in
the temperature independence of the magnetic creep rate of
high-Tc superconductors.

By focusing on nonequilibrium quakes and their statistics,
several real-space implications are brought forth of the hierar-
chical energy landscape organization which RD relies on, and
a clear relation emerges between configuration and real-space
pictures of spin-glass dynamics, namely, that increasingly
scales in Hamming and Euclidean distance become relevant
as increasing dynamical barriers are overcome.

[1] D. S. Fisher and David A. Huse, Nonequilibrium dynamics of
spin glasses, Phys. Rev. B 38, 373 (1988).

[2] E. Vincent, Ageing, rejuvenation and memory: The example of
spin glasses, Lect. Notes Phys. 716, 7 (2007).

[3] P. Nordblad and P. Svedlindh, Experiments on spin glasses, in
Spin Glasses and Random Fields, edited by A. P. Young (World
Scientific, Singapore, 1997), p. 1.

[4] S. Guchhait, G. G. Kenning, R. L. Orbach and G. F. Rodriguez,
Spin glass dynamics at the mesoscale, Phys. Rev. B 91, 014434
(2015).

[5] G. L. Hunter and E. R. Weeks, Free-energy landscape for cage
breaking of three hard disks, Phys. Rev. E 85, 031504 (2012).

[6] M. Nicodemi and H. Jeldtoft Jensen, Creep of Superconducting
Vortices in the Limit of Vanishing Temperature: A Fingerprint
of Off-Equilibrium Dynamics, Phys. Rev. Lett. 86, 4378 (2001).

[7] P. Jönsson, M. F. Hansen, and P. Nordblad, Nonequilibrium
dynamics in an interacting fe-c nanoparticle system, Phys. Rev.
B 61, 1261 (2000).

[8] N. Becker and P. Sibani, Evolution and non-equilibrium physics:
A study of the tangled nature model, Europhys. Lett. 105, 18005
(2014).

[9] C. W. Andersen and P. Sibani, Tangled nature model of evolu-
tionary dynamics reconsidered: Structural and dynamical effects
of trait inheritance, Phys. Rev. E 93, 052410 (2016).

[10] A. Amir, Y. Oreg, and Y. Imry, On relaxations and aging of
various glasses, Proc. Natl. Acad. Sci. USA 109, 1850 (2012).

[11] P. Sibani and G. G. Kenning, Origin of end-of-aging and
subaging scaling behavior in glassy dynamics, Phys. Rev. E 81,
011108 (2010).

[12] R. G. Palmer, D. L. Stein, E. Abraham, and P. W. Anderson,
Models of Hierarchically Constrained Dynamics for Glassy
Relaxation, Phys. Rev. Lett. 53, 958 (1984).

[13] K. H. Hoffmann and P. Sibani, Diffusion in hierarchies, Phys.
Rev. A 38, 4261 (1988).

[14] P. Sibani and K. H. Hoffmann, Hierarchical Models for Aging
and Relaxation of Spin Glasses, Phys. Rev. Lett. 63, 2853 (1989).

[15] P. Sibani, J. C. Schön, P. Salamon and J.-O. Andersson, Emergent
hierarchical structures in complex system dynamics, Europhys.
Lett. 22, 479 (1993).

[16] J. Dall and P. Sibani, Exploring valleys of aging systems: The
spin glass case, Eur. Phys. J. B 36, 233 (2003).

[17] S. Boettcher and P. Sibani, Comparing extremal and thermal
explorations of energy landscapes, Eur. Phys. J. B 44, 317 (2005).

[18] P. Anderson, H. J. Jensen, L. P. Oliveira and P. Sibani, Evolution
in complex systems, Complexity 10, 49 (2004).

[19] P. Sibani, G. F. Rodriguez and G. G. Kenning, Intermittent
quakes and record dynamics in the thermoremanent magneti-
zation of a spin-glass, Phys. Rev. B 74, 224407 (2006).

[20] P. Sibani, Coarse-graining complex dynamics: Continuous time
random walks vs. record dynamics, Europhys. Lett. 101, 30004
(2013).

[21] P. Sibani and H. J. Jensen, Stochastic Dynamics of Complex
Systems: From Glasses to Evolution (Imperial College Press,
London, 2013).

[22] S. F. Edwards and P. W. Anderson, Theory of spin glasses,
J. Phys. F 5, 965 (1975).

[23] L. Berthier and J.-P. Bouchaud, Geometrical aspects of aging
and rejuvenation in the Ising spin glass: A numerical study,
Phys. Rev. B 66, 054404 (2002).

[24] P. Sibani and P. Schriver, Local phase-space structure and
low-temperature dynamics of short-range Ising spin glasses,
Phys. Rev. B 49, 6667 (1994).

[25] S. Schnabel and W. Janke, Distribution of metastable states of
Ising spin glasses, Phys. Rev. B 97, 174204 (2018).

054202-11

https://doi.org/10.1103/PhysRevB.38.373
https://doi.org/10.1103/PhysRevB.38.373
https://doi.org/10.1103/PhysRevB.38.373
https://doi.org/10.1103/PhysRevB.38.373
https://doi.org/10.1007/3-540-69684-92
https://doi.org/10.1007/3-540-69684-92
https://doi.org/10.1007/3-540-69684-92
https://doi.org/10.1007/3-540-69684-92
https://doi.org/10.1103/PhysRevB.91.014434
https://doi.org/10.1103/PhysRevB.91.014434
https://doi.org/10.1103/PhysRevB.91.014434
https://doi.org/10.1103/PhysRevB.91.014434
https://doi.org/10.1103/PhysRevE.85.031504
https://doi.org/10.1103/PhysRevE.85.031504
https://doi.org/10.1103/PhysRevE.85.031504
https://doi.org/10.1103/PhysRevE.85.031504
https://doi.org/10.1103/PhysRevLett.86.4378
https://doi.org/10.1103/PhysRevLett.86.4378
https://doi.org/10.1103/PhysRevLett.86.4378
https://doi.org/10.1103/PhysRevLett.86.4378
https://doi.org/10.1103/PhysRevB.61.1261
https://doi.org/10.1103/PhysRevB.61.1261
https://doi.org/10.1103/PhysRevB.61.1261
https://doi.org/10.1103/PhysRevB.61.1261
https://doi.org/10.1209/0295-5075/105/18005
https://doi.org/10.1209/0295-5075/105/18005
https://doi.org/10.1209/0295-5075/105/18005
https://doi.org/10.1209/0295-5075/105/18005
https://doi.org/10.1103/PhysRevE.93.052410
https://doi.org/10.1103/PhysRevE.93.052410
https://doi.org/10.1103/PhysRevE.93.052410
https://doi.org/10.1103/PhysRevE.93.052410
https://doi.org/10.1073/pnas.1120147109
https://doi.org/10.1073/pnas.1120147109
https://doi.org/10.1073/pnas.1120147109
https://doi.org/10.1073/pnas.1120147109
https://doi.org/10.1103/PhysRevE.81.011108
https://doi.org/10.1103/PhysRevE.81.011108
https://doi.org/10.1103/PhysRevE.81.011108
https://doi.org/10.1103/PhysRevE.81.011108
https://doi.org/10.1103/PhysRevLett.53.958
https://doi.org/10.1103/PhysRevLett.53.958
https://doi.org/10.1103/PhysRevLett.53.958
https://doi.org/10.1103/PhysRevLett.53.958
https://doi.org/10.1103/PhysRevA.38.4261
https://doi.org/10.1103/PhysRevA.38.4261
https://doi.org/10.1103/PhysRevA.38.4261
https://doi.org/10.1103/PhysRevA.38.4261
https://doi.org/10.1103/PhysRevLett.63.2853
https://doi.org/10.1103/PhysRevLett.63.2853
https://doi.org/10.1103/PhysRevLett.63.2853
https://doi.org/10.1103/PhysRevLett.63.2853
https://doi.org/10.1209/0295-5075/22/7/001
https://doi.org/10.1209/0295-5075/22/7/001
https://doi.org/10.1209/0295-5075/22/7/001
https://doi.org/10.1209/0295-5075/22/7/001
https://doi.org/10.1140/epjb/e2003-00340-y
https://doi.org/10.1140/epjb/e2003-00340-y
https://doi.org/10.1140/epjb/e2003-00340-y
https://doi.org/10.1140/epjb/e2003-00340-y
https://doi.org/10.1140/epjb/e2005-00131-6
https://doi.org/10.1140/epjb/e2005-00131-6
https://doi.org/10.1140/epjb/e2005-00131-6
https://doi.org/10.1140/epjb/e2005-00131-6
https://doi.org/10.1002/cplx.20049
https://doi.org/10.1002/cplx.20049
https://doi.org/10.1002/cplx.20049
https://doi.org/10.1002/cplx.20049
https://doi.org/10.1103/PhysRevB.74.224407
https://doi.org/10.1103/PhysRevB.74.224407
https://doi.org/10.1103/PhysRevB.74.224407
https://doi.org/10.1103/PhysRevB.74.224407
https://doi.org/10.1209/0295-5075/101/30004
https://doi.org/10.1209/0295-5075/101/30004
https://doi.org/10.1209/0295-5075/101/30004
https://doi.org/10.1209/0295-5075/101/30004
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1103/PhysRevB.66.054404
https://doi.org/10.1103/PhysRevB.66.054404
https://doi.org/10.1103/PhysRevB.66.054404
https://doi.org/10.1103/PhysRevB.66.054404
https://doi.org/10.1103/PhysRevB.49.6667
https://doi.org/10.1103/PhysRevB.49.6667
https://doi.org/10.1103/PhysRevB.49.6667
https://doi.org/10.1103/PhysRevB.49.6667
https://doi.org/10.1103/PhysRevB.97.174204
https://doi.org/10.1103/PhysRevB.97.174204
https://doi.org/10.1103/PhysRevB.97.174204
https://doi.org/10.1103/PhysRevB.97.174204


PAOLO SIBANI AND STEFAN BOETTCHER PHYSICAL REVIEW B 98, 054202 (2018)

[26] K. S. Schweizer, Dynamical fluctuation effects in glassy col-
loidal suspensions, Curr. Opin. Colloid Interface Sci. 12, 297
(2007).

[27] F. Belletti, A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero, M.
Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-
Mayor, J. Monforte, A. Muñoz Sudupe, D. Navarro, G. Parisi, S.
Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schifano, D. Sciretti, A.
Tarancon, R. Tripiccione and D. Yllanes, An in-depth view of the
microscopic dynamics of Ising spin glasses at fixed temperature,
J. Stat. Phys. 135, 1121 (2009).

[28] M. Baity-Jesi, E. Calore, A. Cruz, L. A. Fernandez, J. M.
Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A. Maiorano,
E. Marinari, V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz-
Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, F. Ricci-
Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A.
Tarancon, R. Tripiccione, and D. Yllanes (Janus Collaboration),
Matching Microscopic and Macroscopic Responses in Glasses,
Phys. Rev. Lett. 118, 157202 (2017).

[29] S. Guchhait and R. L. Orbach, Magnetic Field Dependence of
Spin Glass Free Energy Barriers, Phys. Rev. Lett. 118, 157203
(2017).

[30] Q. Zhai, D. C. Harrison, D. Tennant, E. Dan Dalhberg, G. G.
Kenning and R. L. Orbach, Glassy dynamics in CuMn thin-film
multilayers, Phys. Rev. B 95, 054304 (2017).

[31] S. Boettcher and P. Sibani, Ageing in dense colloids as diffusion
in the logarithm of time, J. Phys.: Condens. Matter 23, 065103
(2011).

[32] N. Becker, P. Sibani, S. Boettcher, and S. Vivek, Temporal and
spatial heterogeneity in aging colloids: A mesoscopic model,
J. Phys.: Condens. Matter 26, 505102 (2014).

[33] D. M. Robe, S. Boettcher, P. Sibani and P. Yunker, Record
dynamics: Direct experimental evidence from jammed colloids,
Europhys. Lett. 116, 38003 (2016).

[34] D. M. Robe and S. Boettcher, Two-time correlations for probing
the aging dynamics of jammed colloids, arXiv:1802.05350.

[35] C. M. Newman and D. L. Stein, Non-Mean-Field Behavior of
Realistic Spin Glasses, Phys. Rev. Lett. 76, 515 (1996).

[36] P. Contucci and C. Giardinà, Perspectives on Spin Glasses
(Cambridge University Press, Cambridge, 2012).

[37] H. G. Katzgraber, M. Körner, and P. Young, Universality in three-
dimensional Ising spin glasses: A Monte Carlo study, Phys. Rev.
B 73, 224432 (2006).

[38] J. Dall and P. Sibani, Faster Monte Carlo simulations at low tem-
peratures. The waiting time method, Comput. Phys. Commun.
141, 260 (2001).

[39] H. G. Katzgraber, S. Trebst, D. A. Huse and M. Troyer,
Feedback-optimized parallel tempering Monte Carlo, J. Stat.
Mech.: Theory Exp. (2006) P03018.

[40] S. Boettcher and A. G. Percus, Optimization with Extremal
Dynamics, Phys. Rev. Lett. 86, 5211 (2001).

[41] B. A. Berg, A. Billoire and W. Janke, Spin glass overlap barriers
in three and four dimensions, Phys. Rev. B 61, 12143 (2000).

[42] P. Sibani and H. J. Jensen, Intermittency, aging and extremal
fluctuations, Europhys. Lett. 69, 563 (2005).

[43] P. Sibani, Linear response in aging glassy systems, intermittency
and the Poisson statistics of record fluctuations, Eur. Phys. J. B
58, 483 (2007).

[44] N. G. Van Kampen, Stochastic Processes in Physics and Chem-
istry (North Holland, Amsterdam, 2006).

[45] G. F. Rodriguez, G. G. Kenning, and R. Orbach, Full Aging in
Spin Glasses, Phys. Rev. Lett. 91, 037203 (2003).

[46] Y. G. Joh, R. Orbach, G. G. Wood, J. Hammann, and E. Vincent,
Extraction of the Spin Glass Correlation Length, Phys. Rev. Lett.
82, 438 (1999).

[47] K. Jonason, E. Vincent, J. Hammann, J. P. Bouchaud, and P.
Nordblad, Memory and Chaos Effects in Spin Glasses, Phys.
Rev. Lett. 81, 3243 (1998).

[48] R. Mathieu, M. Hudl and P. Nordblad, Memory and rejuvenation
in a spin glass, Europhys. Lett. 90, 67003 (2010).

[49] G. Parisi, Order Parameter for Spin Glasses, Phys. Rev. Lett. 50,
1946 (1983).

[50] D. Sherrington and S. Kirkpatrick, Solvable Model of A Spin-
Glass, Phys. Rev. Lett. 35, 1792 (1975).

[51] H. A. Simon, The architecture of complexity, Proc. Am. Philos.
Soc. 106, 467 (1962).

[52] S. L. Ginzburg, Nonergodicity and nonequilibrium character of
spin glasses, Zh. Eksp. Teor. Fiz. 90, 754 (1986) [Sov. Phys.
JETP 63, 439 (1986)].

[53] M. Lederman, R. Orbach, J. M. Hamman, M. Ocio and E.
Vincent, Dynamics in spin glasses, Phys. Rev. B 44, 7403
(1991).

[54] E. Vincent, J. P. Bouchaud, D. S. Dean, and J. Hammann, Aging
in spin glasses as a random walk: Effect of a magnetic field,
Phys. Rev. B 52, 1050 (1995).

[55] J. P. Bouchaud, Weak ergodicity breaking and aging in disor-
dered systems, J. Phys. I (France) 2, 1705 (1992).

[56] L. P. Oliveira, H. J. Jensen, M. Nicodemi, and P. Sibani, Record
dynamics and the observed temperature plateau in the magnetic
creep-rate of type-II superconductors, Phys. Rev. B 71, 104526
(2005).

054202-12

https://doi.org/10.1016/j.cocis.2007.07.013
https://doi.org/10.1016/j.cocis.2007.07.013
https://doi.org/10.1016/j.cocis.2007.07.013
https://doi.org/10.1016/j.cocis.2007.07.013
https://doi.org/10.1007/s10955-009-9727-z
https://doi.org/10.1007/s10955-009-9727-z
https://doi.org/10.1007/s10955-009-9727-z
https://doi.org/10.1007/s10955-009-9727-z
https://doi.org/10.1103/PhysRevLett.118.157202
https://doi.org/10.1103/PhysRevLett.118.157202
https://doi.org/10.1103/PhysRevLett.118.157202
https://doi.org/10.1103/PhysRevLett.118.157202
https://doi.org/10.1103/PhysRevLett.118.157203
https://doi.org/10.1103/PhysRevLett.118.157203
https://doi.org/10.1103/PhysRevLett.118.157203
https://doi.org/10.1103/PhysRevLett.118.157203
https://doi.org/10.1103/PhysRevB.95.054304
https://doi.org/10.1103/PhysRevB.95.054304
https://doi.org/10.1103/PhysRevB.95.054304
https://doi.org/10.1103/PhysRevB.95.054304
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1088/0953-8984/23/6/065103
https://doi.org/10.1088/0953-8984/26/50/505102
https://doi.org/10.1088/0953-8984/26/50/505102
https://doi.org/10.1088/0953-8984/26/50/505102
https://doi.org/10.1088/0953-8984/26/50/505102
https://doi.org/10.1209/0295-5075/116/38003
https://doi.org/10.1209/0295-5075/116/38003
https://doi.org/10.1209/0295-5075/116/38003
https://doi.org/10.1209/0295-5075/116/38003
http://arxiv.org/abs/arXiv:1802.05350
https://doi.org/10.1103/PhysRevLett.76.515
https://doi.org/10.1103/PhysRevLett.76.515
https://doi.org/10.1103/PhysRevLett.76.515
https://doi.org/10.1103/PhysRevLett.76.515
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1016/S0010-4655(01)00412-X
https://doi.org/10.1016/S0010-4655(01)00412-X
https://doi.org/10.1016/S0010-4655(01)00412-X
https://doi.org/10.1016/S0010-4655(01)00412-X
https://doi.org/10.1088/1742-5468/2006/03/P03018
https://doi.org/10.1088/1742-5468/2006/03/P03018
https://doi.org/10.1088/1742-5468/2006/03/P03018
https://doi.org/10.1103/PhysRevLett.86.5211
https://doi.org/10.1103/PhysRevLett.86.5211
https://doi.org/10.1103/PhysRevLett.86.5211
https://doi.org/10.1103/PhysRevLett.86.5211
https://doi.org/10.1103/PhysRevB.61.12143
https://doi.org/10.1103/PhysRevB.61.12143
https://doi.org/10.1103/PhysRevB.61.12143
https://doi.org/10.1103/PhysRevB.61.12143
https://doi.org/10.1209/epl/i2004-10376-1
https://doi.org/10.1209/epl/i2004-10376-1
https://doi.org/10.1209/epl/i2004-10376-1
https://doi.org/10.1209/epl/i2004-10376-1
https://doi.org/10.1140/epjb/e2007-00238-8
https://doi.org/10.1140/epjb/e2007-00238-8
https://doi.org/10.1140/epjb/e2007-00238-8
https://doi.org/10.1140/epjb/e2007-00238-8
https://doi.org/10.1103/PhysRevLett.91.037203
https://doi.org/10.1103/PhysRevLett.91.037203
https://doi.org/10.1103/PhysRevLett.91.037203
https://doi.org/10.1103/PhysRevLett.91.037203
https://doi.org/10.1103/PhysRevLett.82.438
https://doi.org/10.1103/PhysRevLett.82.438
https://doi.org/10.1103/PhysRevLett.82.438
https://doi.org/10.1103/PhysRevLett.82.438
https://doi.org/10.1103/PhysRevLett.81.3243
https://doi.org/10.1103/PhysRevLett.81.3243
https://doi.org/10.1103/PhysRevLett.81.3243
https://doi.org/10.1103/PhysRevLett.81.3243
https://doi.org/10.1209/0295-5075/90/67003
https://doi.org/10.1209/0295-5075/90/67003
https://doi.org/10.1209/0295-5075/90/67003
https://doi.org/10.1209/0295-5075/90/67003
https://doi.org/10.1103/PhysRevLett.50.1946
https://doi.org/10.1103/PhysRevLett.50.1946
https://doi.org/10.1103/PhysRevLett.50.1946
https://doi.org/10.1103/PhysRevLett.50.1946
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://www.jstor.org/stable/985254?seq=1#page_scan_tab_contents
https://doi.org/10.1103/PhysRevB.44.7403
https://doi.org/10.1103/PhysRevB.44.7403
https://doi.org/10.1103/PhysRevB.44.7403
https://doi.org/10.1103/PhysRevB.44.7403
https://doi.org/10.1103/PhysRevB.52.1050
https://doi.org/10.1103/PhysRevB.52.1050
https://doi.org/10.1103/PhysRevB.52.1050
https://doi.org/10.1103/PhysRevB.52.1050
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1103/PhysRevB.71.104526
https://doi.org/10.1103/PhysRevB.71.104526
https://doi.org/10.1103/PhysRevB.71.104526
https://doi.org/10.1103/PhysRevB.71.104526



