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In the last decade, significant progress has been made in the many-body Hamiltonian formulation of liquid
dynamics theory. Earlier analysis of experimental data for a wide variety of elemental liquids had provided the
reliable but qualitative description of the atomic motion: vibrations in a representative 3N -dimensional potential
energy valley, plus transits, in which atoms cross the intersections between these valleys. Recent comparisons of
first-principles theory with experiment for several elemental liquids at melt revealed a highly accurate and versatile
theory. In the present work, we report on an extensive quench study of the entire condensed-matter structure-energy
distribution for a metallic Na MD system. With these results, all that was learned from experimental data is
confirmed, refined in detail, and made more accurate. We show the entire structure-energy distribution, composed
of widespread symmetrics and higher lying randoms, we show the increasing dominance of the randoms as N

increases, until the symmetrics vanish completely, and we show the random distribution continue its spectacular
narrowing as N continues to increase. This behavior certifies our early assignment of the random distribution to
the liquid phase and our prediction of macroscopic uniformity of the random structures. Procedures are discussed
to identify and calibrate a single random structure to represent the liquid, and the role of the structure energy
in liquid thermodynamics is described. A comparison with other liquid dynamics theories is observed in the
Introduction, and the relation to the equation-of-state program is noted in the Conclusion.
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I. INTRODUCTION

Much of what is known about condensed matter physics
on the atomic and electronic level is expressed in Hamiltonian
many-body theory. The basic technique is to first construct an
approximate but tractable Hamiltonian for the system under
study, then improve the theory by making an appropriate cor-
rection. While this formulation has provided excellent descrip-
tions of the atomic dynamics in gas and crystal phases, it has
not previously been successfully applied to liquid dynamics.
Under the title of vibration-transit (V-T) theory, our research
is developing this missing application of many-body theory.

V-T theory has been developed over many years, with
improvements along the way. By now its major principles
are settled. The atomic motion consists of two components,
normal-mode vibrations in a representative 3N -dimensional
potential energy valley, plus transits, which carry atoms across
the intersections between these valleys. The vibrational motion
makes by far the dominant contribution to thermodynamic
functions and is treated by a first-principles tractable Hamilto-
nian. This dominant part of the theory is 100% predictive in all
applications. The transit motion is treated by a two-parameter
representation of a small portion of the many-body potential
energy surface. This approximation produces the two key prop-
erties needed by a liquid dynamics theory: equilibrium melting
upon increasing temperature from zero and the concomitant
appearance of self diffusion.

In two broad fields of application, namely thermodynamics
and time correlation functions, V-T theory is now capable
of producing highly accurate results when compared with
experimental or MD data for elemental liquids. The thermo-
dynamic functions studied include the internal energy and

the entropy, and the zero-pressure liquid density and bulk
modulus. The calculations are done with density functional
theory and also with interatomic potentials. These comparisons
give us an unprecedented description of the atomic motion
in the monatomic liquid. Evidence supports application of
the same theory to liquid metallic alloys and molecular liq-
uids. These thermodynamic studies will be referenced in the
appropriate places in the following Sections.

In time correlation functions, V-T theory accurately ac-
counts for MD data for the same Na system studied here
[1,2]. The vibrational Hamiltonian is identical in both fields of
application. The physical description of transits is also the same
in both fields, but the transit calibration parameters differ. This
is normal because equilibrium and nonequilibrium processes
measure different facets of the same atomic motion. We shall
defer further comment on this work, since it is beyond our
present scope.

From earlier times, and continuing today, liquid dynamics
has a long history of theoretical study. Different formulations
have been made, and much has been learned. The development
of pseudopotential theory, and its application to the calculation
of interion potentials in nearly-free-electron (NFE) metals
[3–5], provided a paradigm shift in liquid dynamics theory.
The NFE metals provided then, as they still do, the most
accurate and complete compilation of experimental data for
elemental liquids. The natural inclination was to construct the
theory of liquid thermodynamic functions in terms of interion
potentials and multi-ion spatial correlation functions [6,7].
This formulation was ultimately placed on a first-principles
basis [8]. The work has been continued through a wide variety
of applications in liquid dynamics theory [9,10]. Liquid state
theories of the critical behavior were reviewed [11].
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Another formulation, the ‘phonon theory of liquid
dynamics,’ was recently reviewed in extensive detail [12]. In
this program, the atomic motion consists of two components,
oscillatory and diffusive. The oscillatory contribution is Debye
theory for N longitudinal and 2N transverse modes [13].
Diffusive motion is then accounted for by removing the lowest-
frequency transverse modes, those with ω < ωF , where ωF (T )
is the Frenkel frequency [14], of diffusive origin. A modifica-
tion of the diffusive contribution has recently been presented
[15,16]. The theory compares favorably with experimental data
for constant volume specific heat of elemental and molecular
liquids [17]. Moreover, the theory is applied to an extremely
wide range of physical systems, including quantum liquids,
glasses, and supercritical fluids.

There are two ways to compare V-T theory with the
studies just mentioned. All are the same in their motivation to
understand and be able to calculate thermodynamic properties
of liquids. On the other hand, their techniques for achieving this
goal are as different as one can imagine, from the beginning.
This is the normal theoretical response to a complex problem.

Condensed matter theory defines a structure as a stable
quenched configuration, i.e., a configuration in which the force
on every atom is zero and the system potential energy is a local
minimum. For some years now, the atomic motional contribu-
tion to liquid thermodynamics in V-T theory has been resolved
into three components: (a) The liquid-structure configuration
and potential energy, which defines the classical ground state,
(b) the contribution from the vibrational normal modes in a 3N -
dimensional liquid valley, and (c) the transit contribution. At
this point we are preparing a detailed description of the theory
and its application to thermodynamics, for each of the compo-
nents (a), (b), and (c). Topic (a) is treated in the present work.

Our description of the liquid atomic motion is derived from
several accurate analyses of experimental thermodynamic data
for elemental liquids and crystals. This analytic research is
briefly summarized over its 20 year timeline in Sec. II. Along
with this analysis, we developed a description of the liquid
potential energy surface (PES), referred to as the “Hypothesis,”
capable of rationalizing the experimental data.

Section III reports the results of an extensive quench study
for liquid Na. We see the entire condensed-matter distribution
of potential energy structures, the low-lying symmetric struc-
tures inhabited by the stable crystal and metastable amorphous
solids, and the narrow high-lying random-structure distribution
that dominates with increasing N , until the entire PES belongs
to them. The random potential energy valleys are the domain
of the liquid state.

In Sec. IV, the role of the random structure in the liquid
ground state is defined for classical mechanics. For the ran-
dom structure distribution of Sec. III, the control of finite-N
errors in molecular dynamics (MD) calculations is illustrated.
Procedures required to identify and calibrate a single random
structure for V-T theory are discussed.

The theory we are constructing is unique in its basic physical
concepts. For further clarification, in Sec. V, points of progress
in this study are summarized in terms of those underlying
concepts. Accurate ab initio calculations of thermodynamic
properties for several elemental liquids are mentioned. Ben-
eficial application of V-T theory to equation-of-state work is
discussed.

II. INFORMATION FROM EXPERIMENTAL DATA

The first episode in the development of the present liquid
dynamics theory consisted of an extensive and long-running
analysis of experimental thermodynamic data for elemental
liquids. The analysis covers 41 elements for which highly
accurate experimental data are available, distributed over 14
groups of the Periodic Table. The elements represent a wide
range of electronic structures and interatomic potentials, in-
cluding the rare gases, nearly-free-electron metals, s-p electron
metals, and transition metals. By finding common behavior
among such a physically diverse collection of elements, we
are able to establish theory at a broadly general level. The
primary experimental data set is the entropy S as a function
of temperature T at fixed volume V . The data are corrected
from the volume at zero pressure to the volume of the liquid at
melt, Vlm, by using additional thermodynamic data at T > Tm.
The reason for this correction is that we want to extract
the Hamiltonian parameters, such as system energy levels,
and these parameters are constant, independent of T , for a
liquid system at constant V . Here we shall summarize the
foundational-level description of the liquid atomic motion, as
derived from the early analysis of experimental data.

In a study of the melting of elements at high pressure P ,
Stishov discussed the changes of V and S upon melting at
constant P , and also discussed anomalous melting curves,
where Tm decreases with P [18]. In our study experimental
melting entropy data, we corrected the crystal entropy to the
volume Vlm, as mentioned above, and determined the entropy
difference between liquid and crystal at Tm and Vlm, denoted
as �S(Vlm, Tm) [19]. This entropy difference showed two
well-separated distributions. For 18 metallic elements with
highly accurate data, the normal distribution has mean and
standard deviation given by

�S(Vlm, Tm) = (0.80 ± 0.10)kB. (1)

For the elements studied the entropy of the liquid at melt is
Sl

m ≈ 10kB . Hence the mean �S(Vlm, Tm) is very small at
around 0.08Sl

m, and the distribution width is extremely small
at around 0.01Sl

m. The distribution is amazingly narrow for
any physical parameter of a collection of liquids. In addition,
10 transition metals having less accurate data overall show a
distribution mean close to that in Eq. (1) but with larger scatter
(for the entire data set, see Table 22.1 of Ref. [20]).

The accurate melting analysis was done for 34 elements,
of which six are anomalous [19]. For those six, �S(Vlm, Tm)
ranges from 1.48kB for Sn to 3.85kB for Ge. These values are
very large compared to the normal melting value, Eq. (1), and
are widely spread. To rationalize this behavior, we observed
that the electronic structure is unchanged (changed) between
crystal and liquid in normal (anomalous) melting. This corre-
lation significantly increases our understanding of the physics
of melting. The bimodal �S distribution was not resolved
in earlier studies because it is masked by the scatter of the
experimental data at constant P (Ref. [18]; see also Ref. [7]).

Eventually, with the start of a Hamiltonian formulation of
liquid dynamics, we directed our analysis of experimental data
toward sorting out the relation between the atomic motion
and the PES. This sorting-out process is chronicled by the
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“Hypothesis,” a developing list of characteristics of the PES
that is indicated by experimental data.

It is generally considered that the condensed matter PES
consists of a great many intersecting 3N -dimensional potential
energy valleys. Highly accurate evaluations of the atomic
contribution to constant-volume specific heat were extracted
from experimental data for elemental crystal and liquid phases
at melt (Table I of Ref. [21]; Fig. 23.1 of Ref. [20]). The
result is a uniform value of 3kB for crystal and liquid alike,
with small scatter. Exceptions are rationalized for Si [21] and
Ar [20]. The result implies the atomic motion is nearly pure
harmonic vibrations. This is understood for the crystal, for
which the atoms vibrate in a single harmonic valley. To explain
the same apparent behavior for the liquid, the supposition was
made that the liquid potential energy valleys are uniform in
their statistical mechanical properties (Paragraphs (a) and (b)
of Sec. III, also Sec. VI, of Ref. [21]). The result is then
rationalized by considering the liquid potential energy valleys
to be harmonic.

In the same research report, the concept of transits was
introduced [21]. However, the proper statistical mechanical
treatment of transits was not developed until much later [22].
By then, the atomic motion was given two components,
vibrations and transits, and statistical mechanical functions
were composed accordingly. For example, the atomic motion
contribution to entropy is Svib + Str . Then, through an analysis
of high-T experimental entropy for elemental liquids at Vlm,
Str (Vlm, Tm) was identified with �S(Vlm, Tm) of Eq. 1 (Sec.
IIIA of Ref. [22]). This holds for normal and anomalous melters
alike. The current Hypothesis statement follows.

A. Hypothesis

The entire complement of potential energy valleys falls
in two classes, random and symmetric. The random valleys
are maximally disordered within the constraints of boundary
conditions and interatomic potentials. The maximal disorder
implies that, among the total complement of structure energies,
the randoms lie at the highest energies. Maximal disorder also
implies that the random valleys are of overwhelming numerical
superiority and that they all have the same macroscopic
statistical mechanical averages. The latter property is abbre-
viated by saying that the random valleys are ‘macroscopically
equivalent.’ This equivalence means that all random valleys
have a common value of the structure potential, hence that the
distribution of random-structure potential energies has zero
width. This conclusion logically extends to all macroscopic
statistical mechanical properties, and it implies that one can
use a single random valley for liquid statistical mechanical
calculations in a sufficiently large system. The characteristics
just mentioned are evaluated in the thermodynamic limit,
N → ∞, and are subject to finite-N corrections.

In contrast, the symmetric valleys have some remnant of
crystalline symmetry. All symmetric proportions are allowed,
from a very minor content to single crystals. With exceptions of
zero statistical weight, the symmetric structures lie in a broad
distribution below the random distribution. The symmetrics
are also relatively few in number and make no contribution to
statistical mechanics except at very small N , or very small T ,
well below Tm.

FIG. 1. Distribution of structure potentials �0 at N = 367, from
1008 quenches. �0 is measured from the bcc crystal. The dominant
high-lying distribution consists of random structures, down to the first
empty bin, and symmetric structures lie between bcc and the random
distribution.

III. STRUCTURE-ENERGY DISTRIBUTION

An initial study of the N dependence of the distribution
of the Na structure potential, �0, has been presented [23,24].
Similar computations are extended here, in order to reveal
previously unresolved characteristics of the �0 distribution.
1008 quenches are carried out from computer generated initial
stochastic configurations at eight values of N , ranging from
367 to 9883. Quenching from stochastic configurations is
described in Refs. [23–25]. Here we make use of a well tested
ion pair potential for Na [26,27] to determine the forces. We
note though the technique has been used for density functional
theory (DFT) calculations of the liquid cold curves, i.e., the
�0 vs V curves, for Na and Cu [28].

Figure 1 shows the complete structure distribution for N =
367. The figure carries essential information on the statistical
mechanics of a monatomic system and illustrates in detail
the Hypothesis stated at the end of Sec. II. The numerically-
dominant high-lying narrow peak is the random distribution.
The bcc crystal is the lowest-lying structure, and the bcc
phase is stable at T � Tm. Between crystal and liquid lie the
symmetric structures, characterized by varying degree of rem-
nant crystalline symmetry. The symmetric valleys host single
crystals, polycrystals, and amorphous solid states. Except for
the stable crystal, the symmetric states are all metastable at all
T . The entire random distribution is the domain of the liquid
phase.

Two more structure distributions at increasing N are shown
in Figs. 2 and 3. While the mean of the random distribution
changes little with increasing N , its width decreases strongly.
This property is encoded in the Hypothesis. From quantitative
error estimates in Sec. IV, it is shown that the “sufficiently large
system” is easily accessible to present day MD calculations.

A visual of the narrowing of the random structure distribu-
tions from our lowest to highest N is shown in Fig. 4. This
image directly shows the statistical concentration of random
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FIG. 2. Distribution of �0 at N = 500. From Fig. 1, the random
distribution narrows and the number of symmetrics decreases.

information as more samples are drawn (see the discussion of
Fig. 6).

In contrast to the random structure distribution, the sym-
metric distribution remains broad as N increases, as shown
in Figs. 1 and 2. However, while the numbers of random and
symmetric valleys both increase dramatically as N increases,
the numerical dominance of the randoms also increases dra-
matically, so that the number of symmetrics appearing in a
fixed number of quenches soon vanishes. Starting with Fig. 1,
the number of symmetric structures decreases in Fig. 2, and the
last observed symmetric structure lies just below the narrowing
random peak in Fig. 3. At larger N , no symmetric structures
are found in 1008 quenches.

For theoretical work, we need to make a practical quanti-
tative separation between symmetric and random structures.
The symmetric character we have observed in quenched
Na structures varies right across its allowed range, from a

FIG. 3. Distribution of �0 at N = 1844. From Fig. 2, the random
distribution narrows further and only one symmetric is found.

FIG. 4. Random �0 distribution to a common scale from 1008
quenches at N = 367, 500, 1844, and 9883. The narrowing with
increasing N reduces liquid statistical mechanics to a single random
valley. All histograms are drawn to the same vertical and horizontal
scales, and each histogram has the same total count, hence has the
same area. The �0 scale is shown for the far right histogram, and
both scales for the first three histograms are marked in Figs. 1–3,
respectively.

macroscopically distorted single crystal to a nearly-random
structure with one or two deformed nearest neighbor bcc
configurations. We denote these structures, respectively, as
global and local symmetrics. In Fig. 1, the broad symmetric
distribution consists of global symmetrics; the excess wing
on the low-energy side of the random distribution consists of
a symmetry spread and includes the local symmetrics. Our
technique for separating symmetric and random structures is
to divide them at the first empty histogram bin below the
random peak. The technique is nonsubjective. It has error, but
only as a finite-N effect. Figures 1–3 show that the separation
bin, the empty bin, moves up in potential energy as the
distribution narrows. Hence the symmetric contamination of
the random distribution goes to zero as N increases. Symmetric
contamination is barely apparent in Fig. 3 and is not apparent
in the larger-N distributions (see Fig. 4).
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FIG. 5. Dots are the mean random-structure potential energy,
〈�r

0〉, graphed against N . The width bars are the �r
0 std dev at each

N .

IV. CALIBRATION OF THE STRUCTURE THEORY

Let us denote a single random structure potential by �r
0

and its average over the random distribution by 〈�r
0〉. The

most accurate estimate we have for the liquid structure po-
tential is 〈�r

0〉. However, each �r
0 corresponds to a specific

configuration, in which the atomic equilibrium positions RK

are recorded, K = 1, . . . , N . We need to keep this stable
equilibrium configuration, as it is an essential part of the
vibrational normal-mode theory, which in turn provides our
entire vibrational formulation. But the structure configuration
is lost in 〈�r

0〉. We therefore choose a structure whose potential
is close to 〈�r

0〉 and denote it as the liquid structure with
a superscript l. �l

0 is now the liquid structure potential and
carries with it a tabulation of the structure configuration.
This information will be the starting point of our vibrational
Hamiltonian. In that formulation, �l

0 is the classical ground-
state energy, purely potential. For the quantum ground-state
energy, the vibrational zero point energy is added to �l

0.
The internal energy in V-T theory, UV T , has three major

contributions, plus terms that are small at T � Tm, as follows:

UV T (V, T ) = �l
0(V ) + 3kBT [1 + . . . ] + Utr (V, T ). (2)

Here 3kBT is the classical vibrational contribution, [1 + . . . ]
represents the vibrational quantum corrections, and Utr (V, T )
is the transit contribution. Notice we omit explicit considera-
tion of the electronic thermal excitations in the present work.
At T � Tm, 3kBT dominates Eq. (2). Figure 5 shows the mean
and std dev of the �r

0 distributions vs N . The std dev measures
scatter in the quench data. The scatter error at the largest N is
0.1% of 3kBTm, and this percentage decreases as T increases.
This error is insignificant for most applications. At N = 500,
the scatter error is still only 1.0% of 3kBTm. Two conclusions
follow. (a) In MD calculations, only a modest N is required
to reduce the �r

0 scatter error to a negligible level. (b) The
first two terms on the right side of Eq. (2) have only numerical
error; formal theoretical error is all contained in Utr , and Utr is
small, being �0.1(3kBT ). Hence a simple approximate transit
theory will in general be accurate enough. This condition is a
benefit of the many-body Hamiltonian formulation.

Figure 6 shows the �r
0 std dev on a log-log graph and

its straight line fit. The graph reveals the operation of the

FIG. 6. Dots are the �r
0 std dev at each N , graphed against N on

a log-log scale. Dashed straight line is a fit to the dots and has slope
−0.489.

central limit theorem, as follows. For an N -atom structure,
let us define the single atom potential as φK,K = 1, . . . , N ,
and set �0 = N−1 ∑

K φK . The key assumption of the central
limit theorem is that the φK are randomly drawn from a
fixed distribution, for every N . Then the theorem states that
the �0 distribution is proportional to exp(−N�2

0/2σ 2), with
variance σ 2/N , σ = constant. This rationalization is justified
by Fig. 6, because the std dev is found proportional to N−α ,
where α = 0.489. α lies close enough to 0.5 to invoke the
theorem. The practical significance of Fig. 6 is that it allows
us to estimate computational error as a function of N . The
theoretical significance of Fig. 6 is its implication that the std
dev goes to zero as N goes to infinity. This was assumed in
the Hypothesis, in order to establish macroscopic uniformity
of the random valleys (Sec. II).

We shall now discuss the procedures required to identify
and calibrate a single liquid structure. We first consider normal
melting elements and work at fixed volume. Na is known to
be NFE, in bcc and liquid phases. We verified this as a check
on our DFT calculations by comparing the electronic density
of states (DOS) for bcc and random structures. To search for
random structures, one begins with a set of quenches, say 10,
at fixed V and N . The quenched �r

0 should lie in a distribution
above the stable crystal �c

0 by very approximately kBTm and of
width small compared to kBTm. Any apparent symmetrics are
to be removed from the random distribution. Suspicious results
are to be checked with additional independent quenches. It is
always a good idea to do some testing of quenched structures.
Several sensitive tests are illustrated in Ref. [29].

An alternative procedure works when V is to be varied. For
Na and Cu, from one DFT quench at each of a set of volumes,
the �r

0 vs V points lie on a smooth curve with very little scatter
[28]. This also demonstrates a narrow �r

0 distribution. At this
point, the quenched structures may all be designated liquid
structures, and each structure configuration may be used to
calibrate �l

0 and the vibrational normal mode theory.
The situation with anomalous melting can present a problem

when theoretical calculations are done by DFT. For example,
α-Ga is a partially covalent crystal, which melts to an NFE
liquid. The problem is that quenches from the liquid can arrive
at structures that are correct amorphous solids but do not have
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the liquid electronic structure. This does not happen in Ga.
For verification, we compared several definitive theoretical
quantities from a set of quenched structures with the same
quantities at the crystal structure. The quantities include the
electronic DOS and the vibrational DOS (see Supplemental
Material for Ref. [29]. It was verified in detail that the quenched
structures are appropriate liquid structures.

However, the problem does appear in Si and Ge, the
two most anomalous melters. DFT quenches from the NFE
liquid arrive at structures with distorted covalent bonding,
representative of the real amorphous solid [30]. The problem
is not fatal but is beyond the scope of our discussion.

V. DISCUSSION AND CONCLUSION

For many years, our goal has been to construct a Hamil-
tonian formulation of monatomic liquid dynamics. This goal
requires only a single construction: a tractable approximate
many-body potential energy function. From the early years,
mentioned in Sec. II, we did not think in terms of the general
potential energy function �(r1, . . . , rN), which depends on the
instantaneous positions rK of the atoms. Rather, we started
with the conventional description of the many-atom PES as a
collection of intersecting 3N -dimensional potential valleys.
We then analyzed experimental thermodynamic data for a
collection of elemental liquids to see what could be discovered
about the macroscopic physical character of these potential
energy valleys. This quest is minimally outlined in Sec. II. The
information obtained from experimental data is primarily about
the atomic motion. In all cases, it has eventually been possible
to assign the information to vibrations or transits (Sec. II). The
vibrations and transits then imply information about the under-
lying potential energy valleys, and this information is compiled
in the Hypothesis (Sec. II). The Hypothesis is the template for
the tractable many-body potential energy. Its variables are not
the atomic positions but are the 3N -dimensional intersecting
harmonic potential energy surfaces.

The study of quenched structures in Sec. III provides direct
information about the potential energy valleys, as follows.

(1) The study measures the complete condensed matter
structure distribution and its N dependence, for a physically
realistic interatomic potential for Na at the volume of the liquid
at melt. The result stands alone as an MD observation of the
many-body PES.

(2) The result verifies the Hypothesis accurately and in
detail. In 8064 quenches, not one structure fails to follow the
description at the end of Sec. II. Because the Hypothesis is
based on experimental data from elemental liquids covering
a broad range of bonding types, we expect the quench study
of Sec. III to represent elements across a large portion of the
Periodic Table.

(3) Our primary interest is the liquid state. However, seeing
the entire potential surface helps to clarify the liquid domain
and its boundary. By convention, condensed matter physics
identifies a phase by its structure. For example, bcc Na is a
material phase, and its definition applies at all (V, T ), whether
the phase is stable or metastable. In this convention, we identify
the liquid domain as the random valley distribution, for all
(V, T ).

Section IV begins the calibration of V-T theory. To keep
the logic clear, we shall define exactly what is to be calibrated,
though it transcends what is calibrated here. Let us define the V-
T potential �V T (V ), a tractable approximation to the potential
recorded in the Hypothesis. �V T (V ) has three components:
the liquid structure potential �l

0(V ), the harmonic potential
�vib(V ), defined at the structure and extended to infinity, and
correction to the extended harmonic potential to account for
the intervalley intersections, denoted �tr (V ). Calibration of
�l

0(V ) is described in Sec. IV. Notes are presented on how
to identify and calibrate a single liquid valley. Ultimately, a
data base on liquid calibration parameters will greatly enhance
the general capability of calculating liquid properties. The
corresponding much simpler data base for crystals is widely
used. In this respect, an attractive property of V-T theory is
that calibration of the liquid parameters at one volume enables
calculation of thermodynamic properties at all temperatures,
for that volume. This is another benefit of the many-body
Hamiltonian formulation.

The present theoretical development is directly applicable to
equation-of-state calculations. The thermodynamic equations
for internal energy and entropy are written in Refs. [28,29].
In these references, structural and vibrational parameters are
calculated from first-principles DFT. The transit contribution
is from Ref. [31]. Calculations for Na and Cu as a function of
volume include the structure potential, pressure, bulk modulus,
and the set of vibrational frequencies [28]. Data compared
with experiment at Tm include the zero-pressure volume, the
energy, entropy, and bulk modulus. The overall accuracy is
phenomenal, being strictly as good as is lattice dynamics for
the crystal (Table V in Ref. [28]). Calculations for crystal and
liquid Ga at melt conditions allowed us to separate the normal
and anomalous contributions to the melting process. Results
for the liquid are again as accurate as for the crystal, and
the thermodynamic changes across melting are very accurate
(Tables II and IV of Ref. [29]).

Further V-T theory is well suited to be applied in general
equation-of-state (EOS) modeling. EOS models are needed
to provide thermodynamic materials properties over broad
ranges of temperature and pressure for various hydrodynamic
simulations including planetary modeling and shock physics
simulations. Here the standard practice is to separate the total
energy into three terms [32]

E = E0 + Ei + Ee , (3)

where E0 is the cold curve or zero temperature compression
curve, Ei is the thermal energy from the ions, and Ee is the
thermal energy due to the electrons. In a multiphase approach
this decomposition is done for each phase including the liquid,
and then the phase boundaries are determined by examining
the Gibbs free energy [33–35]. The cold curve for the liquid
is modeled in the same manner as the solid. That is using
some sort of compression model above ambient density, i.e.,
Murnaghan EOS, and connecting to a gas model below such
as a Lennard-Jones or Van der Waals EOS. This liquid cold
curve is generally regarded as an abstraction and modeling con-
venience and is often determined by extrapolating isotherms
generated from above melt temperature ab initio calculation,
or even just using the crystal cold curve. In contrast V-T theory
provides a clear definition for what the cold curve of a liquid
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physically is and provides the EOS model contribution as
E0 = �l

0. This connection is a main point of this paper. The
theory also provides the ion contribution to the energy Ei , or
atomic motional energy, which is due to the vibrational plus
transit potentials, �vib + �tr .

Current EOS modeling for the liquid is often based on
solidlike Debye models near melt and interpolation to ideal
gaslike behavior at high temperatures [36,37]. Other ap-
proaches include perturbation theory approaches [38–41],
usually of hard spheres, or semiempirical parametrizing of
Van der Waals type equations of state [33,42] which attempt
to extend description to the liquid state. The advantage of V-T

theory is in providing accurate thermodynamics for the EOS
from melt up to temperatures of about 5Tmelt above which one
can connect to higher temperature models.

ACKNOWLEDGMENTS

We would like to thank Sven Rudin and Brad Clements for
helpful and encouraging discussions. This work was performed
under the auspices of Los Alamos National Laboratory, which
is operated by Los Alamos National Security, LLC, for the Na-
tional Nuclear Security Administration of the U.S. Department
of Energy under Contract No. DE-AC52-06NA25396.

[1] D. C. Wallace, G. De Lorenzi-Venneri, and E. D. Chisolm, J.
Phys.: Condens. Matter 28, 185101 (2016).

[2] D. C. Wallace, E. D. Chisolm, and G. De Lorenzi-Venneri, J.
Phys.: Condens. Matter 29, 055101 (2017).

[3] N. W. Ashcroft, Phys. Lett. 23, 48 (1966).
[4] N. W. Ashcroft and D. C. Langreth, Phys. Rev. 155, 682 (1967).
[5] W. A. Harrison, Pseudopotentials in the Theory of Metals

(W. A. Benjamin, New York, 1966).
[6] P. A. Egelstaff, An Introduction to the Liquid State (Academic

Press, New York, 1967).
[7] T. E. Faber, Introduction to the Theory of Liquid Metals

(Cambridge University Press, Cambridge, 1972).
[8] N. W. Ashcroft and D. Stroud, in Solid State Physics, edited by

H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York,
1969), Vol. 33, p. 1.

[9] N. H. March, Liquid Metals (Cambridge University Press,
Cambridge, 1990).

[10] N. H. March and M. P. Tosi, Introduction to Liquid State Physics
(World Scientific, New Jersey, 2002).

[11] A. Parola and L. Reatto, Adv. Phys. 44, 211 (1995).
[12] K. Trachenko and V. V. Brazhkin, Rep. Progr. Phys. 79, 016502

(2016).
[13] K. Trachenko, Phys. Rev. B 78, 104201 (2008).
[14] K. Trachenko and V. V. Brazhkin, Ann. Phys. 347, 92

(2014).
[15] C. Yang, M. T. Dove, V. V. Brazhkin, and K. Trachenko, Phys.

Rev. Lett. 118, 215502 (2017).
[16] Y. D. Fomin, V. N. Ryzhov, E. N. Tsiok, J. E. Proctor, C. Prescher,

V. B. Prakapenka, K. Trachenko, and V. V. Brazhkin, J. Phys.:
Condens. Matter 30, 134003 (2018).

[17] D. Bolmatov, V. V. Brazhkin, and K. Trachenko, Sci. Rep. 2,
421 (2012).

[18] S. M. Stishov, Sov. Phys. Usp. 11, 816 (1969).
[19] D. C. Wallace, Proc. R. Soc. London, Ser. A 433, 615

(1991).
[20] D. C. Wallace, Statistical Physics of Crystals and Liquids (World

Scientific, New Jersey, 2002).
[21] D. C. Wallace, Phys. Rev. E 56, 4179 (1997).

[22] D. C. Wallace, E. D. Chisolm, and N. Bock, Phys. Rev. E 79,
051201 (2009).

[23] E. Holmström, N. Bock, T. B. Peery, R. Lizárraga, G. De
Lorenzi-Venneri, E. D. Chisolm, and D. C. Wallace, Phys. Rev.
E 80, 051111 (2009).

[24] E. Holmström, N. Bock, T. Peery, E. Chisolm, R. Lizárraga, G.
De Lorenzi-Venneri, and D. Wallace, Phys. Rev. B 82, 024203
(2010).

[25] N. Bock, T. Peery, E. D. Chisolm, G. De Lorenzi-Venneri,
D. C. Wallace, E. Holmström, and R. Lizárraga (2009),
http://meetings.aps.org/link/BAPS.2008.Mar.J9.4.

[26] D. C. Wallace, Phys. Rev. 176, 832 (1968).
[27] D. C. Wallace and B. E. Clements, Phys. Rev. E 59, 2942

(1999).
[28] N. Bock, E. Holmström, T. B. Peery, R. Lizárraga, E. D. Chisolm,

G. De Lorenzi-Venneri, and D. C. Wallace, Phys. Rev. B 82,
144101 (2010).

[29] S. P. Rudin, N. Bock, and D. C. Wallace, Phys. Rev. B 90, 174109
(2014).

[30] S. Rudin (private communication).
[31] D. C. Wallace, E. D. Chisolm, N. Bock, and G. De Lorenzi-

Venneri, Phys. Rev. E 81, 041201 (2010).
[32] S. P. Lyons and J. D. Johnson, Los Alamos Technical Report pp.

LA–UR–92–3407 (1992).
[33] A. B. Medvedev, Combust Explos Shock Waves 50, 582 (2014).
[34] G. A. Cox and M. A. Christie, J. Phys.: Condens. Matter 27,

405201 (2015).
[35] T. Sjostrom, S. Crockett, and S. Rudin, Phys. Rev. B 94, 144101

(2016).
[36] J. D. Johnson, High Press. Res. 6, 277 (1991).
[37] E. D. Chisolm, S. D. Crockett, and D. C. Wallace, Phys. Rev. B

68, 104103 (2003).
[38] G. I. Kerley, J. Chem. Phys. 73, 469 (1980).
[39] G. I. Kerley, J. Chem. Phys. 73, 478 (1980).
[40] G. I. Kerley, J. Chem. Phys. 73, 487 (1980).
[41] M. Ross, J. Chem. Phys. 71, 1567 (1979).
[42] W. Zhong, C. Xiao, and Y. Zhu, Phys. A (Amsterdam, Neth.)

471, 295 (2017).

054201-7

https://doi.org/10.1088/0953-8984/28/18/185101
https://doi.org/10.1088/0953-8984/28/18/185101
https://doi.org/10.1088/0953-8984/28/18/185101
https://doi.org/10.1088/0953-8984/28/18/185101
https://doi.org/10.1088/1361-648X/29/5/055101
https://doi.org/10.1088/1361-648X/29/5/055101
https://doi.org/10.1088/1361-648X/29/5/055101
https://doi.org/10.1088/1361-648X/29/5/055101
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1016/0031-9163(66)90251-4
https://doi.org/10.1103/PhysRev.155.682
https://doi.org/10.1103/PhysRev.155.682
https://doi.org/10.1103/PhysRev.155.682
https://doi.org/10.1103/PhysRev.155.682
https://doi.org/10.1080/00018739500101536
https://doi.org/10.1080/00018739500101536
https://doi.org/10.1080/00018739500101536
https://doi.org/10.1080/00018739500101536
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1103/PhysRevB.78.104201
https://doi.org/10.1103/PhysRevB.78.104201
https://doi.org/10.1103/PhysRevB.78.104201
https://doi.org/10.1103/PhysRevB.78.104201
https://doi.org/10.1016/j.aop.2014.04.025
https://doi.org/10.1016/j.aop.2014.04.025
https://doi.org/10.1016/j.aop.2014.04.025
https://doi.org/10.1016/j.aop.2014.04.025
https://doi.org/10.1103/PhysRevLett.118.215502
https://doi.org/10.1103/PhysRevLett.118.215502
https://doi.org/10.1103/PhysRevLett.118.215502
https://doi.org/10.1103/PhysRevLett.118.215502
https://doi.org/10.1088/1361-648X/aaaf39
https://doi.org/10.1088/1361-648X/aaaf39
https://doi.org/10.1088/1361-648X/aaaf39
https://doi.org/10.1088/1361-648X/aaaf39
https://doi.org/10.1038/srep00421
https://doi.org/10.1038/srep00421
https://doi.org/10.1038/srep00421
https://doi.org/10.1038/srep00421
https://doi.org/10.1070/PU1969v011n06ABEH003777
https://doi.org/10.1070/PU1969v011n06ABEH003777
https://doi.org/10.1070/PU1969v011n06ABEH003777
https://doi.org/10.1070/PU1969v011n06ABEH003777
https://doi.org/10.1098/rspa.1991.0067
https://doi.org/10.1098/rspa.1991.0067
https://doi.org/10.1098/rspa.1991.0067
https://doi.org/10.1098/rspa.1991.0067
https://doi.org/10.1103/PhysRevE.56.4179
https://doi.org/10.1103/PhysRevE.56.4179
https://doi.org/10.1103/PhysRevE.56.4179
https://doi.org/10.1103/PhysRevE.56.4179
https://doi.org/10.1103/PhysRevE.79.051201
https://doi.org/10.1103/PhysRevE.79.051201
https://doi.org/10.1103/PhysRevE.79.051201
https://doi.org/10.1103/PhysRevE.79.051201
https://doi.org/10.1103/PhysRevE.80.051111
https://doi.org/10.1103/PhysRevE.80.051111
https://doi.org/10.1103/PhysRevE.80.051111
https://doi.org/10.1103/PhysRevE.80.051111
https://doi.org/10.1103/PhysRevB.82.024203
https://doi.org/10.1103/PhysRevB.82.024203
https://doi.org/10.1103/PhysRevB.82.024203
https://doi.org/10.1103/PhysRevB.82.024203
http://meetings.aps.org/link/BAPS.2008.Mar.J9.4
https://doi.org/10.1103/PhysRev.176.832
https://doi.org/10.1103/PhysRev.176.832
https://doi.org/10.1103/PhysRev.176.832
https://doi.org/10.1103/PhysRev.176.832
https://doi.org/10.1103/PhysRevE.59.2942
https://doi.org/10.1103/PhysRevE.59.2942
https://doi.org/10.1103/PhysRevE.59.2942
https://doi.org/10.1103/PhysRevE.59.2942
https://doi.org/10.1103/PhysRevB.82.144101
https://doi.org/10.1103/PhysRevB.82.144101
https://doi.org/10.1103/PhysRevB.82.144101
https://doi.org/10.1103/PhysRevB.82.144101
https://doi.org/10.1103/PhysRevB.90.174109
https://doi.org/10.1103/PhysRevB.90.174109
https://doi.org/10.1103/PhysRevB.90.174109
https://doi.org/10.1103/PhysRevB.90.174109
https://doi.org/10.1103/PhysRevE.81.041201
https://doi.org/10.1103/PhysRevE.81.041201
https://doi.org/10.1103/PhysRevE.81.041201
https://doi.org/10.1103/PhysRevE.81.041201
https://doi.org/10.1134/S0010508214050141
https://doi.org/10.1134/S0010508214050141
https://doi.org/10.1134/S0010508214050141
https://doi.org/10.1134/S0010508214050141
https://doi.org/10.1088/0953-8984/27/40/405201
https://doi.org/10.1088/0953-8984/27/40/405201
https://doi.org/10.1088/0953-8984/27/40/405201
https://doi.org/10.1088/0953-8984/27/40/405201
https://doi.org/10.1103/PhysRevB.94.144101
https://doi.org/10.1103/PhysRevB.94.144101
https://doi.org/10.1103/PhysRevB.94.144101
https://doi.org/10.1103/PhysRevB.94.144101
https://doi.org/10.1080/08957959108203212
https://doi.org/10.1080/08957959108203212
https://doi.org/10.1080/08957959108203212
https://doi.org/10.1080/08957959108203212
https://doi.org/10.1103/PhysRevB.68.104103
https://doi.org/10.1103/PhysRevB.68.104103
https://doi.org/10.1103/PhysRevB.68.104103
https://doi.org/10.1103/PhysRevB.68.104103
https://doi.org/10.1063/1.439842
https://doi.org/10.1063/1.439842
https://doi.org/10.1063/1.439842
https://doi.org/10.1063/1.439842
https://doi.org/10.1063/1.439898
https://doi.org/10.1063/1.439898
https://doi.org/10.1063/1.439898
https://doi.org/10.1063/1.439898
https://doi.org/10.1063/1.439844
https://doi.org/10.1063/1.439844
https://doi.org/10.1063/1.439844
https://doi.org/10.1063/1.439844
https://doi.org/10.1063/1.438501
https://doi.org/10.1063/1.438501
https://doi.org/10.1063/1.438501
https://doi.org/10.1063/1.438501
https://doi.org/10.1016/j.physa.2016.12.029
https://doi.org/10.1016/j.physa.2016.12.029
https://doi.org/10.1016/j.physa.2016.12.029
https://doi.org/10.1016/j.physa.2016.12.029



