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In the framework of the Landau-Ginzburg-Devonshire (LGD) approach we studied finite-size effects of the
phase diagram and domain structure evolution in spherical nanoparticles of a uniaxial ferroelectric. The particle
surface is covered by a layer of screening charge characterized by finite screening length. The phase diagram,
calculated in coordinates particle radius and screening length has a wide region of versatile polydomain structures
separating single-domain ferroelectric and nonpolar paraelectric phases. Unexpectedly, we revealed a region
of irregular labyrinthine domains in the nanoparticles of uniaxial ferroelectric CuInP2S6 with the first-order
paraelectric-ferroelectric phase transition. We established that the origin of labyrinthine domains is the mutual
balance of LGD, polarization gradient, and electrostatic energies. The branching of the domain walls appears
and increases rapidly when the polarization gradient energy decreases below the critical value. Allowing for the
generality of the LGD approach, we expect that the gradient-induced morphological transition can be the source
of labyrinthine domain appearance in many spatially confined ferroics with long-range order parameter, including
relaxors, ferromagnetics, antiferrodistortive materials, and materials with incommensurate ferroic phases.

DOI: 10.1103/PhysRevB.98.054101

I. INTRODUCTION

The ferroic materials described by Landau theory of sym-
metry breaking have a substantial impact on fundamental
science and various applications. Different types of topolog-
ical defects in different ferroics (ferromagnets, ferroelectrics,
ferroelastics) are even more numerous and enigmatic than
different types of symmetry breaking, and consequently they
become one of the key fundamental problems and hot topics
in the scientific community [1,2].

Complementary to the topological point defects [1], domain
walls can be considered as extended two-dimensional topolog-
ical defects in ferroics (see, e.g., Chap. 8 in Ref. [2] and refer-
ences therein). Vortices and vertices composed by the closure
of four domain walls have been observed experimentally and
described theoretically in a bulk and nanosized ferroelectrics
[3–7]. Stable surface-induced labyrinthine domain structures
were observed by piezoresponse force microscopy (PFM) in
ergodic ferroelectrics relaxors and explained by the presence of
a higher-order term in free-energy expansion that gives rise to
the polarization modulations [8]. Fractal domain structures are
sometimes observed in multiferroic thin films [9] and near the
surface of relaxors close to the relaxor-ferroelectric boundary
[10], but the labyrinthine domains with a single characteristic
length scale were observed by PFM in ergodic relaxors only
[8]. These labyrinthine structures can coexist with classical
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ferroelectric domains closer to the ferroelectric composition
limit [11,12]. The labyrinthine domain structure was predicted
theoretically in thin films of incommensurate ferroelectrics
[13] and bilayered ferroelectrics [14], being similar to those
observed in ultrathin magnetic films [15].

However, we did not find any experimental observation or
theoretical prediction of labyrinthine domains in the nanoparti-
cles of ordered ferroelectrics, the intriguing polar and dielectric
properties of which attract permanent attention of researchers.
Classical examples are the unexpected experimental results of
Yadlovker and Berger [16–18], which reveal the enhancement
of polar properties of cylindrical nanoparticles of Rochelle salt.
Frey and Payne [19], Zhao et al. [20], Drobnich et al. [21],
Erdem et al. [22], and Golovina et al. [23–25] demonstrate
the possibility to control the phase transitions (including new
polar phases appearance) for BaTiO3, S2P2S6, PbTiO3, and
KTa1-xNbxO3 nanopowders and nanoceramics by finite-size
effects.

The theory of finite-size effects in nanoparticles allows one
to establish the physical origin of the polar and dielectric
properties anomalies, and phase diagrams changes appeared
under the nanoparticles sizes decrease. Using the continual
phenomenological approach Perriat et al. [26], Huang et al.
[27,28], Wenhui Ma [29], Eliseev et al. [30] and Morozovska
et al. [31–33] have shown that the changes of the tran-
sition temperatures and the enhancement or weakening of
polar properties in single-domain spherical and cylindrical
nanoparticles are conditioned by various physical mechanisms,
such as correlation effect, depolarization field, flexoelectricity,
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electrostriction, surface tension, and Vegard-type chemical
pressure.

Notably the depolarization field always decreases ferro-
electric polarization and transition temperature, especially
under the presence of imperfect screening [34–36]. For the
majority of models the particles were covered with perfect
electrodes so that their single-domain state would be stable.
Only a few models describing the imperfect screening effect
in nanoparticles have evolved [34–36].

To fill the gap in the knowledge, below we analyze the
phase diagram and domain structure evolution in spherical
nanoparticles of uniaxial ferroelectric CuInP2S6 (CIPS). We
assumed that the particle surface is covered by a layer of
screening charge characterized by finite screening length. The
imperfect screening and finite-size effects are studied using
the Landau-Ginzburg-Devonshire (LGD) approach combined
with the electrostatic equations. We revealed that a regu-
lar stripe domain structure transforms avalanchelike into a
labyrinth pattern with a gradient term decrease below the
critical value and classified the event as a gradient-induced
morphological transition.

The applicability of the LGD approach for thin films and
nanoparticles with radius less than 2–10 nm is corroborated
by the fact that the critical sizes of the long-range order
appearance and properties calculated from atomistic [37–41]
and phenomenological [30–33,42,43] theories are in a good
agreement with each other as well as with experimental
results for nanosized ferromagnetics [44] and ferroelectrics
[16–20,22,45]. Both atomistic simulations and LGD descrip-
tion are absent for CIPS nanoparticles.

II. THEORETICAL APPROACH

Let us consider a CIPS nanoparticle of radius R with a
one-component ferroelectric polarization P3(r) directed along
the crystallographic axis 3 [Fig. 1(a)]. The particles are covered
by a layer of screening charge with a surface charge density
σ characterized by a nonzero screening length λ. The specific
nature of the surface charge can be, e.g., Bardeen-type surface
states [46]. The screening charges can be localized at surface
states caused by the strong band bending via depolarization
field [47–51], at which λ can be much smaller (�0.1 nm)
than a lattice constant (∼0.5 nm) [34]. Concrete expression
for λ can be derived in, e.g., the Stephenson-Highland ionic
adsorption model [52–54], by the linearization of σ , as
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FIG. 1. Labyrinthine domains in a spherical CIPS nanoparticle.
(a) Polar cross-section, (b) semispherical view, and (c) equatorial
cross-section. Radius R = 10 nm, screening length λ = 0.03 nm,
room temperature 293 K. CIPS parameters are listed in Table I.

σ ≈ −ε0ϕ/λ, where λ−1 ≈ ∑
i

(eZi )2

4ε0AikBT
[1 − tanh2( �G00

i

2kBT
)], Zi

is the ionization number of the surface ions, 1/Ai is their
saturation densities, �G00

i is the free energy of the surface
ion formation, and ε0 is a universal dielectric constant. In the
general case λ depends on temperature T and screening charges
nature. Since we do not know the temperature dependence
of λ, we performed calculations for λ changing in the range
10−3 − 1 nm.

For a layered perovskite with layers plane (001) and fer-
roelectric dipoles directed in the out-of-plane direction, we
can assume that the dependence of the in-plane components
of electric polarization on the electric field Ei is linear,
Pi = ε0(εb − 1)Ei (i = 1, 2), where an isotropic background
permittivity εb is relatively small, εb � 10 [55]. Polariza-
tion component P3(r) contains background and soft mode
contributions. The electric displacement vector has the form
D = ε0εbE + P inside the particle and D = ε0εeE outside it;
εe is the relative dielectric permittivity of external media equal
to unity for air or vacuum.

The Euler-Lagrange equation for the ferroelectric polar-
ization P3(r) follows from the minimization of LGD free
energy functional G = GLandau + Ggrad + Gel + Ges+flexo, that
includes Landau energy GLandau, polarization gradient energy
contribution Ggrad, electrostatic contribution Gel, and elastic,
electrostriction, and flexoelectric contributions Ges+flexo (see,
e.g., [30,35,56]):
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∫
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∫
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Ges+flexo =
∫

|�r|<R

d3r

[
− sijkl

2
σijσkl − Qij3σijP

2
3

−Fijk3

(
σij

∂P3

∂xk

− P3
∂σij

∂xk

)]
. (1d)

Here Ei are electric field components related to electric po-
tential ϕ as Ei = −∂ϕ/∂xi . The coefficient α linearly depends
on temperature T, α = αT (T − TC ), where TC is the Curie
temperature. The coefficient β is temperature independent and
negative, since CIPS undergoes the first-order transition to
the paraelectric phase. Coefficient γ and gradient coefficients
g11 and g44 are positive and temperature independent. An
isotropic approximation, g44 ≈ g55, in the (001) plane was
taken for monoclinic CIPS structure. σij is the stress tensor
in Eq. (1d). We omit the evident form of Ges+flexo for the sake
of simplicity, it is listed in Refs. [57–59]. Since the values of
the electrostriction and flexoelectric tensor components, Qijkl
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TABLE I. LGD parameters for bulk ferroelectric CuInP2S6, used in calculations.

εb αT (C−2 m J/K) TC (K) β (C−4 m5 J) γ (C−6 m9 J) g11(m3/F) [62] g44 (m3/F)

7 1.569 × 107 302 −1.8 × 1012 2.2 × 1015 1.0 × 10−10 Vary in the range 0.3–3 × 10−11

and Fijkl , are unknown for CIPS, we performed numerical cal-
culations using the finite element method with the coefficients
varied in a physically reasonable range (|Fijkl| � 1011 m3/C
and |Qijkl| � 0.1 m4/C2). Results proved the insignificant
impact of electrostriction and flexoelectric coupling on domain
morphology [60]. Other LGD parameters for a bulk ferroelec-
tric CIPS were taken from Ref. [61] and are listed in Table I.

Allowing for the Khalatnikov mechanism of polarization
relaxation, the corresponding Euler-Lagrange equation for
P (r3) becomes a time-dependent LGD equation [63]:

�
∂P3

∂t
+ α(T )P3 + β P 3

3 + γ P 5
3

− g44

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
P3 − g11

∂2P3

∂x2
3

= E3. (2)

The Khalatnikov coefficient � determines the relaxation
time of polarization τK = �/|α|, that typically varies in the
range 10−11–10−13 s far from TC . The boundary condition for
P at the spherical surface is natural, ∂ �P/∂n|r=R = 0, where n
is the outer normal to the surface.

Electric potential ϕ satisfies a Poisson equation inside the
particle,

ε0εb�ϕ = − ∂P

∂x3
, (3a)

and Laplace equation outside it,

�ϕ = 0. (3b)

The three-dimensional Laplace operator is denoted by the
symbol �. Equations (3) are supplemented by the condition of
potential continuity at the particle surface, (ϕext − ϕint )|r=R =
0. The boundary condition for the normal components of
electric displacements is [n(Dext − Dint ) + σ ]r=R = 0, where
the surface charge density σ = −ε0ϕ/λ.

In fact the screening length λ decrease improves the screen-
ing conditions, which leads to a decrease in the depolarization
field and hence the domains eventually disappear, giving way
to a more energetically favorable single-domain state (see, e.g.,
Fig. 2 in Ref. [58]).

III. NUMERICAL RESULTS AND DISCUSSION

A. Main features of phase diagrams at different temperatures

Phase diagrams were studied at different temperatures in
the range 300–200 K. Unfortunately we do not know the
temperature dependence of λ, and so we perform all calcu-
lations regarding λ changing in the range 10−3–1 nm. The
phase diagram of CIPS nanoparticles calculated at T = 293
and 200 K in coordinates radius R and screening length λ is
shown in Figs. 2(a) and 2(b), respectively.

At room temperature the phase diagram has an unexpectedly
wide region of stable polydomain states (PDFE) separating
single-domain ferroelectric (SDFE) and nonpolar paraelectric
(PE) phases [see Fig. 2(a)]. The bottom row shows the
typical changes of polarization distribution in the equato-
rial cross-section of the nanoparticle with R = 5 nm, which
happens with increase of λ. A single-domain state is stable
at very small λ < 0.01 nm, a two-domain structure (electric
quadrupole) is stable in the interval 0.01 < λ < 0.017 nm, a
three-domain structure (electric octupole) exists at 0.017 <

λ < 0.019 nm, and 2N-multipolar domain stripes are stable at
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FIG. 2. Phase diagram of CIPS nanoparticles in coordinates
radius R and screening length λ calculated for the gradient coefficient
g44 = 2 × 10−11 m3/F and temperatures 293 K (a) and 200 K (b).
The ferroelectric single-domain (SDFE), ferroelectric poly-domain
(PDFE), and paraelectric (PE) phases are shown by different colors
of the circles. The labyrinthine domains (LD) are located within
dashed light-blue regions. The bottom rows shows typical polarization
distributions in the equatorial cross-sections of the nanoparticles with
radius R = 5 nm and different values of λ (in nanometers). CIPS
parameters are listed in Table I.
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(a) G= 5.98   (b) G= 6.94    (c) G= 7.08     (d) G= 8.50     (e) G= 8.55     (f) G= 9.04

C/m2

Initial distributions at t=0

Final (relaxed) distributions after at t>102
K

FIG. 3. Polarization distributions in the equatorial cross-section of the nanoparticle with R = 10 nm, λ = 0.03 nm, g44 = 2 × 10−11 m3/F,
and room temperature 293 K. Cross-sections (a)-(f) correspond to different morphologies of the domain structure, namely, single-domain state
(a), two-domain (b), three-domain (c), axially symmetric domains (d), multiple stripe domains (e), and labyrinthine domains (f). Top row shows
initial seedings of the distributions shown in the lower row. The scale bar is for polarization P3 in C/m2. Values of the free energy G are listed
below in 10−20 J. CIPS parameters are listed in Table I.

0.02 < λ < 0.035 nm. Coexistence of PDFE and PE phases
when the nanoparticle consists of a PE surface layer and
ferroelectric domain stripes in the core appears at 0.035 < λ <

0.045 nm, and is followed by the size-induced phase transition
into a stable PE phase at λ > 0.045 nm. Unexpectedly, we
revealed a region of stable “labyrinthine” domains (LDs) of
irregular shape (yellow circles) inside the region of regular
domain structures with quadruple two (purple circles) or
multiple (magenta circles) domain stripes. The LD region is
within a dashed parallelogram in Fig. 2(a). We should underline
that LD stability (or more rigorously speaking “long-living”
metastabilty) does not mean their absolute stability, because we
cannot make a sweep over all possible domain configurations
to choose the one or several equivalent ones the energy of which
reaches an absolute minimum.

With the temperature decrease from 293 K (that is very close
to the CIPS Curie temperature 302 K) to 200 K the region of
a SDFE significantly increases towards smaller radii R (up to
the very small R = 1 nm for which LGD applicability becomes
questionable) and higher λ (from, e.g., λ = 0.003 nm at 293 K
to 0.02 nm at 200 K) [compare the size of SDFE regions in
Figs. 2(a) and 2(b)]. The wide region of the PE phase (present
at 293 K) almost disappears with the temperature decreasing
to 200 K leading to the conclusion that the PDFE state can
be stable in ultra-small CIPS nanoparticles (with radius less
than 2 nm) covered by a screening charge [compare the size
of PE regions in Figs. 2(a) and 2(b)]. The shift and increase
of LD region(s) are evident with the temperature decrease
from 300 to 200 K [compare the size and positions of LD
regions in Figs. 2(a) and 2(b)]. The increase of SDFE, PDFE,
and LD regions with temperature T decrease stems from the
well-established fact that the FE phase becomes deeper and
wider with the temperature increase, since the coefficient α =
αT (T − TC ) acquires higher negative values with T decrease
below Curie temperature TC .

The effect of geometric catastrophe can be imagined from
the images of LDs in the nanoparticles of radius 4, 3, and
2 nm for which the number of branches and sharp bendings
of domain walls gradually decreases with the particle radius

decrease from 4 to 2 nm [see right column in Fig. 2(b)].
Eventually the LD disappears for R = 1 nm. Hence the effect
of geometric catastrophe suppresses the LD in small particles.

Note the validity of our prediction regarding LD appear-
ance and PDFE state conservation for nanoparticles of sizes
more than 2R = 4 nm, because they correspond to ten lattice
constants or more. It is general opinion that the LGD approach
can be valid only qualitatively for the sizes less than 10 lattice
constants [16–20,22,30–33], and must be approved by ab initio
calculations.

B. Labyrinthine domains stability and evolution

Polarization distributions in the equatorial cross-section
of the nanoparticle with radius R = 10 nm, screening length
λ = 0.03 nm, and room temperature are shown in Fig. 3. The
top row shows initial seedings of the distributions shown in
the lower row. The energy values computed for the single-
domain [Fig. 3(a)], two-domain [Fig. 3(b)], three-domain
[Fig. 3(c)], axially symmetric domain [Fig. 3(d)], eight-domain
stripe [Fig. 3(e)], and labyrinthine domain structure [Fig. 3(f)]
are G = −5.98,−6.94,−7.08,−8.50,−8.55, and −9.04 (in
10−20 J) at a fixed value of g44 = 2 × 10−11 m3/F. Thus the
“labyrinthine” structure has the minimal energy corresponding
to the optimal balance between the gradient-correlation energy
(1b) tending to minimize the area of the domain walls (and
hence to decrease the number of them) and electrostatic energy
(1c) decreasing with domain width decrease. Note that the
walls of the LD are uncharged in the central part of the
particle and become charged and broadened near its poles (see
yellow-blue regions near the poles in Fig. 1(a) and Fig. S2 in
Supplemental Material [60]), since their broadening causes the
depolarization field decrease [64].

Since the problem (2) and (3) together with boundary
conditions is axially symmetric (about the x3 axis), one should
try to find a solution with the same axial symmetry. Actually,
before we “stumble” into LD and/or curved domain stripes,
we specify the initial distribution of the domain structure in
the form of axially symmetric distributions, e.g., in the form of
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FIG. 4. Evolution of labyrinthine domain structure in a CIPS
nanoparticle with increase of the gradient coefficient g44 (in
10−11 m3/F) (a)–(g) for the screening length λ = 0.03 nm, radius
R = 10 nm, and room temperature 293 K. The scale bar is the
polarization value in C/m2. (h) Dependence of the LD branching
number � on g44. Error bars correspond to different samples of LD
emerging from different initial seeding. Black circles are averaged
value 〈�〉 approximated by the function 〈�〉 = 39(1 − g44/gcr )3/2

with gcr = 2.75 × 10−11 m3/F (blue curve). CIPS parameters are
listed in Table I.

coaxial cylinders shown in the top row of Fig. 3(d). It appears
that all radial structures are less stable than the stripes or
irregular (labyrinth-like) structures [e.g., compare the energies
of the final states in Figs. 3(d)–3(f)]. Radial distributions
can relax to more stable distributions, and the relaxation rate
depends on temperature, particle size, and surface screening
length. To understand why the radial domain structure in the
form of coaxial cylinders has higher energy than the stripes
or LD, one can use simple geometric considerations showing
that when all other conditions are equal (e.g., at the same
distance between the domain walls) the radial domain structure
has higher surface energy than the stripes or labyrinthine
structures.

An example of labyrinthine domains evolution with in-
crease of the gradient coefficient g44 is illustrated in Figs. 4(a)–
4(e). Stable (in comparison with all other simulated domain
structures) labyrinths exist at g44 less than the critical value
gcr ≈ 2.5 × 10−11 m3/F [Figs. 4(a)–4(e)], then they transform
into quasiregular domain stripes [Fig. 4(f)], which in turn
disappear with g44 increase more than 2.75 × 10−11 m3/F
[Fig. 4(g)]. Similarly, we made sampling over 5–20 different

labyrinthine domain patterns for each g44, R, and λ value,
which emerged with computation time from different initial
random distributions of polarization inside the particle (see
Fig. S1 in Supplemental Material [60]). From Fig. S1 we
concluded that the branching number �, defined as the total
number of branched domain walls, dangling branches, sepa-
rated stripes, and loops, decreases sharply with g44 increase. �
varies slightly for different samples far from the critical value
gcr (top lines in Fig. S1), but the variation becomes bigger near
the gcr (bottom lines in Fig. S1).

Examples of � calculation are shown in Fig. 5. A color
image of the complex labyrinthine pattern with dangling
branches, branch seedings, separated island, and separated
curved stripe is shown in Fig. 5(a). Figure 5(b) shows the
black domains with white walls corresponding to the structure
(a). Graphs (c) and (d) with numbered features have been
drawn allowing for the connectivity between different domains
and particle surface in plot 5(b). A proposed algorithm of �

calculation counts all branching points, dangling branches, and
separated stripes ends, which do not cross the particle from
one surface to another one. Meanwhile the straight or slightly
curved stripes (even very small) that cross the particle from
one surface to another one do not contribute to �. However,
the algorithm is not ideal, because the criteria distinguishing
“slightly curved” and “strongly curved” stripes are somehow
voluntary. Actually, for some complex cases, like the one
shown in Fig. 5(a), visual recalculation of � leads to different
results for peculiarities number corresponding to “red” (�r =
7) and “blue” (�b = 9) domains [compare Figs. 5(b) and 5(c)].
To improve the situation we operate with the values averaged
for red and blue domains, e.g., � = 8 corresponds to Fig. 5(a).

Figure 5(e) has no relation to plot (a), but it is characteristic
for the simpler domain patterns close to the transition to LD,
where the accuracy in � calculation is the most important to
establish the critical value gcr correctly [compare Figs. 5(e) and
4(e)]. Figure 5(e) illustrates how the branching point (number
5), dangling branches (numbers 1 and 2), and separated stripe
ends (numbers 3 and 4), which do not cross the particle from
one surface to another one, contribute to � number. The other
four slightly curved stripes, both ends of which are marked
with asterisks “*” at particle surface, do not contribute to �

number.
The sampling-averaged value 〈�〉 is not an integer for fixed

g44. From Fig. 4(h), the dependence of 〈�〉 on the gradient
term g44 is described by the function 〈�〉 = 39(1 − g44/gcr )3/2,
and so it continuously appears at g44 = gcr. Hence we can
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FIG. 5. Examples of � calculation using graph method. (a) A color image of the complex labyrinthine pattern with dangling branch, branch
seeding, separated island, and separated curved stripe. (b) Black domains with white walls corresponding to the structure (a). Graphs (c) and
(d) with numbered features have been drawn allowing for the connectivity between different domains and particle surface in plot (b). Graph (e)
has no relation to plot (a), but it is characteristic for the patterns near the transition to LD state [compare Fig. 5(e) with Fig. 4(e)].
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associate 〈�〉 appearance with a rapid change of the domain-
wall connectivity.

We leave for further studies the question of how the
threshold of labyrinthine domain appearance and the ranges of
their stability at the phase diagram can be derived analytically.

The theoretical prediction of labyrinthine domains re-
quires urgent verification by PFM, that is an ideal tool for
three-dimensional visualization of the domain structure with
nanoscale resolution (see, e.g., [8,63,65–67] and references
therein). We are convinced by a numerical calculation that
qualitatively similar LDs can be realized in other incom-
pletely screened uniaxial ferroelectric nanoparticles, such as
Sn2P2(S, Se)6 and LiNbO3, with the sizes near the first-order
PE-FE transition. Notably the phase diagrams in Fig. 2 can
change drastically for β � 0 corresponding to the second-
order PE-FE transition. A much more complex situation
(corresponding to the balance of labyrinthine domains in the
bulk and vortices at the surface) is expected in multiaxial
ferroelectric nanoparticles with polarization rotation allowed,
such as BaTiO3 and BiFeO3, however we leave a discussion
of these results for further studies.

IV. CONCLUSION

In the framework of the LGD approach combined with the
equations of electrostatics, we studied the finite-size effects
of the phase diagrams and domain structure in spherical
ferroelectric nanoparticles covered by a layer of a screening
charge with finite screening length. The phase diagrams,

calculated in coordinates particle radius and screening length,
has a wide region of versatile polydomain states separating
single-domain ferroelectric and nonpolar paraelectric phases.
Quite unexpectedly we revealed that a regular stripe domain
structure sharply transforms into a labyrinth pattern with a
gradient term decrease below the critical value and named
the event as a gradient-driven transition. Obtained results
calculated for CuInP2S6 can be readily generalized for other
incompletely screened nanoparticles of uniaxial ferroelectrics
with the first-order transition to the paraelectric phase.
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