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We analyze a simple implementation of an absorption refrigerator, a system that requires heat and not work
to achieve refrigeration, based on two Coulomb-coupled single-electron systems. We analytically determine the
general condition to achieve cooling-by-heating, and we determine the system parameters that simultaneously
maximize the cooling power and cooling coefficient of performance (COP) finding that the system displays a
particularly simple COP that can reach Carnot’s upper limit. We also find that the cooling power can be indirectly
determined by measuring a charge current. Analyzing the system as an autonomous Maxwell demon, we find
that the highest efficiencies for information creation and consumption can be achieved, and we relate the COP
to these efficiencies. Finally, we propose two possible experimental setups based on quantum dots or metallic
islands that implement the nontrivial cooling condition. Using realistic parameters, we show that these systems,
which resemble existing experimental setups, can develop an observable cooling power.
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I. INTRODUCTION

Absorption refrigerators, also known in literature as self-
contained or autonomous refrigerators, are systems that extract
heat from a cold thermal bath only by exploiting the incoherent
interaction with two other thermal baths held at higher tem-
peratures. No work is provided to the system, i.e., cooling is
achieved by heating. The exploration for solid-state implemen-
tations of absorption refrigerators has been recently attracting
considerable attention [1–18]. The question of identifying the
smallest absorption quantum refrigerators was addressed by
Linden et al. in Ref. [2], where systems such as two qubits,
a qubit and a qutrit, or a single qutrit were considered. It has
been later shown that these “minimal” systems can operate
at Carnot efficiency [3,4], and the role of quantum coherence
and entanglement has been addressed [7,8,11–13,15]. Besides
being of fundamental interest in quantum thermodynamics,
absorption refrigeration is also appealing for practical reasons:
waste heat can be used to achieve cooling at the nanoscale
without providing work or requiring any external control of
the system. There are already a few experimental proposals
[5,19–26], but the only experimental realization so far has been
performed with trapped ions [27]. In Ref. [25], in particular,
it was pointed out that the very simple setup consisting of two
capacitively coupled quantum dots could act as an absorption
refrigerator, and the conditions under which its coefficient of
performance (COP) can reach Carnot’s limit were discussed
(no entanglement or quantum coherence is required).

In this paper, on one hand, we analyze in detail a setup
consisting of two capacitively coupled quantum dots. More
precisely, we derive the general conditions under which the sys-
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tem operates as an absorption refrigerator, and determine the
optimal system parameters which simultaneously maximize
the cooling power and the COP. We find that, under these con-
ditions, the system exhibits a particularly simple refrigeration
COP, which can indeed reach Carnot’s upper limit, and that the
cooling power is directly proportional to a measurable charge
current [25], allowing for an indirect measurement of a heat
flow (notice that heat currents can be also measured directly
in metallic islands (MIs), e.g., in Ref. [28]). Furthermore, we
analyze the system as an autonomous Maxwell demon [29–36],
finding that it can operate attaining the highest efficiencies for
information creation and consumption, and determining the
expression that relates its COP to these efficiencies. Finally, we
propose two experimental realizations, based either on quan-
tum dots (QDs) or metallic islands, which can implement the
nontrivial requirements for the system to behave as an absorp-
tion refrigerator. We demonstrate that these systems, which
closely resemble existing experimental setups [28,37–45], can
attain an observable cooling power using realistic parameters.

II. IDEAL SETUP

The system under investigation, depicted in Fig. 1(a),
consists of two electronic reservoirs [upper left (L) and
upper right (R)] tunnel coupled to a QD, denoted by 1. A
second QD, 2, capacitively coupled to 1, is tunnel coupled
to a third electronic reservoir (C). The number of electrons
occupying each Coulomb-blockaded QD can be controlled
through a gate of capacitance Cgi and applied voltage Vgi ,
with i = 1, 2. Reservoir L is kept at a higher temperature,
TL = T + �T , with respect to the other reservoirs which are
kept at temperature TR = T and TC = T − �TC. The heat
current leaving reservoir α = L,R,C is denoted by Ih

α , and the
charge current flowing between reservoirs L and R is denoted
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FIG. 1. Panel (a): schematic representation of the system. Panel
(b): the Fermi distribution of the leads (red upper left, gray upper
right, and blue lower left) is shown vertically. The thick black lines
represent the transition energies �U1(n2) and �U2(n1) [Eq. (2)] that
are measured with respect to the common chemical potential of the
leads (black dashed line). Panel (c): sequence of system states and
electron transitions that provide cooling when conditions (7) and (8),
represented by the red crosses, are satisfied. The black horizontal
lines represent the actual transition energies as determined by the
occupation of the other QD, while the gray horizontal lines represent
the transition energies when the other QD has opposite occupation.
δQα , for α = L, R, C, represents the heat extracted from reservoir α

during the corresponding electron transition.

by I . We describe the transport in the entire system using a
master equation approach in the sequential tunneling limit.
Although we expect higher order tunneling processes, such as
cotunneling, to decrease the cooling power, these corrections
are suppressed if the conductances of the junctions are much
smaller than the conductance quantum and temperature is not
too small. The electrostatic energy of the system is given by

U (n1, n2) = EC1(n1 − nx1)2 + EC2(n2 − nx2)2

+EI(n1 − nx1)(n2 − nx2), (1)

where ni (for i = 1, 2) is the number of electrons in QD
i, nxi = VgiCgi/e, and ECi = e2/(2Ci ) is its charging energy.
Ci is the capacitance of QD i to its surroundings, and EI

is the intersystem charging energy which is controlled by
the capacitive coupling between the QDs. By assuming that
ECi � kBT and constraining the values of nxi to an ap-
propriate range, we can restrict our analysis to four charge
states, described by n1, n2 = 0, 1. The “transition energy,”
i.e., the energy necessary to add an electron to QD 1 (2),
which also depends on the occupation of QD 2 (1), is given
by �U1(n2) = U (1, n2) − U (0, n2) [�U2(n1) = U (n1, 1) −

U (n1, 0)]. Since �Ui (1) − �Ui (0) = EI, we can write

�Ui (n) = θiEI + (n − 1)EI, (2)

where

θ1 = 1 − nx2 + EC1

EI
(1 − 2nx1), (3)

θ2 = 1 − nx1 + EC2

EI
(1 − 2nx2) (4)

can be varied using the gate voltages. The transition energies
are schematically represented in Figs. 1(b) and 1(c) as thick
black lines. Let �in

L/R(n2) [�out
L/R(n2)] be the rate of electrons

tunneling from (to) reservoir L/R to (from) QD 1, and let
�in

C (n1) [�out
C (n1)] be the rate of electrons tunneling from (to)

reservoir C to (from) QD 2. Note that the tunneling rates satisfy
the detailed balance conditions

�out
α (n) = exp

[
δα (n)

kBTα

]
�in

α (n), (5)

where δL(n) = δR(n) = �U1(n) and δC(n) = �U2(n). The
currents can be calculated by specifying the tunneling rates
for each process and by determining the probability Pn1,n2

for the two QDs to have occupation numbers n1 and n2 (see
Appendix A). We also use Eq. (5) to express �in

α (0) in terms of
�out

α (0) and �out
α (1) in terms of �in

α (1). We emphasize, however,
that the results we present in the next section do not depend on
the specific form of the rates, as long as Eq. (5) is satisfied. Only
a quantitative description of the cooling power will explicitly
depend on the rates.

III. OPTIMAL RATES FOR COOLING POWER AND COP

The COP for refrigeration is defined as

η = Ih
C

Ih
L

, (6)

where Ih
L > 0 is the input heat and Ih

C > 0, the cooling power,
is the heat extracted from reservoir C (their expressions are
reported in Appendix A). Considering generic rates that are
only constrained by satisfying the detailed balance condition
[Eq. (5)], we find that the cooling power is maximized, at fixed
values of EI, θ1, and θ2, when

�in
L (1) = 0, (7)

�out
R (0) = 0, (8)

and �out
L (0), �in

R (1), �out
C (0), �in

C (1), are as large as possible
(see Appendix B for details). In this situation [i.e., when
Eqs. (7) and (8) hold and when θi > 1/2; see Appendix A
for details] the condition for the positivity of Ih

C reduces to the
simple inequality

θ1 > θ∗
1 ≡ 1 + 1

ηh
Cηr

C

, (9)

where ηh
C = 1 − T/TL and ηr

C = TC/(T − TC). Remarkably,
in this situation the COP is also maximized (at least for
�TC = 0), and takes a particularly simple (i.e., independent
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of temperatures) form

η = 1

θ1 − 1
, (10)

that only depends on θ1 (which is determined by both gate
voltages Vg1 and Vg2). Note that Eq. (9) implies that �U1(1) >

0 and �U1(0) > 0, i.e., both transition energies are above the
common chemical potential of the reservoirs [46], as shown in
Fig. 1(b). This observation holds also for generic rates that do
not satisfy Eqs. (7) and (8) (see Appendix B for details).

Equation (10) implies that the input heat is always smaller
than the cooling power for θ1 < 2, and η is a decreasing
function of θ1. The COP η takes its maximum value when
θ1 = θ∗

1 [see Eq. (9)], the smallest value of θ1 for which the
system behaves as a refrigerator, giving

ηmax ≡ ηh
Cηr

C, (11)

as expected for absorption refrigerators. Indeed, Eq. (11)
states that ηmax can be interpreted as the combination of
two 2-terminal reversible machines each operating at Carnot’s
efficiency. The first one is a reversible Carnot heat engine that
produces work by using the temperature difference between
reservoirs L and R, with ηh

C = 1 − T/TL, while the second one
is a reversible Carnot refrigerator operating between reservoirs
C and R that is powered by the work of the heat engine, with
ηr

C = TC/(T − TC). ηmax is the highest COP allowed by the
second principle of thermodynamics, as can be proven by
imposing energy conservation and zero entropy production,
which read

Ih
L + Ih

R + Ih
C = 0, (12)

Ih
L

TL
+ Ih

R

TR
+ Ih

C

TC
= 0. (13)

Finally, when the COP is given by Eq. (11), we find that the
cooling power vanishes.

Another remarkable consequence of conditions (7) and (8),
also noted in Refs. [25,48], is that

Ih
C = EI

e
I. (14)

Since the coupling between the upper and lower systems EI

is a measurable system parameter, Eq. (14) allows an indirect
measurement of the cooling power simply by measuring the
charge current in the upper system.

A simple picture of these results can be given using the
energy scheme of Fig. 1(b) and the conditions (7) and (8) [rep-
resented by red crosses in Fig. 1(c)]. The sequence of electron
transitions that leads to the removal of heat from reservoir
C is shown in Fig. 1(c) and represented by blue arrows. For
each step the heat exchanged in the corresponding transition
is indicated as δQα [e.g., in the first step δQL = �U1(0) =
(θ1 − 1)EI is the input heat provided by L and associated to an
electron tunneling from L to QD 1, an event which can only
occur when QD 2 is unoccupied]. In one cycle, an electron
is transferred from L to R, and an amount δQtot

C = EI of heat
is extracted from C: this statement is equivalent to Eq. (14).
Moreover, we notice that an amount δQtot

L = (θ1 − 1)EI of
input heat is provided by L. Computing the COP over one
cycle as δQtot

C /δQtot
L yields precisely Eq. (10). Equations (7)

FIG. 2. The coefficient of performance, COP, [panel (a)] and the
heat currents in units of �kBT [panels (b) and (c)] are plotted as a
function of θ1, when Eqs. (7) and (8) are satisfied. Panel (b) refers
to �TC = 0, while panel (c) refers to �TC = �T/5. The parameters
are �out

C (0) = �in
C (1) = �out

L (0) = �in
R (1) ≡ �, θ2 = 1, EI = 6kBT ,

and �T/T = 1/10. Since all rates are proportional to �, the heat
currents depend linearly on the rate, so the plots in panels (b) and (c)
do not depend on the value of �.

and (8) guarantee that the system can only evolve along the
cycle represented in blue arrows in Fig. 1(c), or in the opposite
direction, which leads to heating of reservoir C. Cooling is
obtained when the system evolution along the blue arrows
prevails over the opposite direction, and this happens when
Eq. (9) is satisfied.

In Fig. 2 we plot the cooling power Ih
C and input heat

Ih
L , as functions of θ1, for the case �TC = 0 [panel (b)]

and �TC = �T/5 [panel (c)] by imposing that Eqs. (7) and
(8) are satisfied. The COP, given by a particularly simple
law [Eq. (10)], is plotted in Fig. 2(a). The gray region in
Figs. 2(b) and 2(c) denotes the values of θ1 where the system
does not act as a refrigerator for reservoir C [according to
Eq. (9), θ∗

1 = 1 for �TC = 0 and θ∗
1 � 1.2 for �TC = �T/5

and �T/T = 1/10]. Figure 2(b) shows that the cooling power
is zero when θ1 = θ∗

1 = 1 [where the COP diverges, see panel
(a)] and it is maximum when θ1 � 1.2, where η ≈ 5 [see panel
(a)]. Figure 2(c), relative to �TC = �T/5, shows that both the
maximum cooling power and the corresponding COP decrease,
with respect to the �TC = 0 case, since we are refrigerating a
colder system. The value of the cooling power weakly depends
on θ2 in the range between 0 and 1.
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FIG. 3. Left: schematic representation of the system, where 1,
2, and 3 represent either QDs or MIs. Right: representation of the
transition energies in the case of the system with QDs. See Fig. 1 for
details.

IV. EXPERIMENTAL PROPOSALS

The experimental realization of the proposed absorption
refrigerator relies on the ability of implementing the crucial
conditions (7) and (8). Such conditions could be, in principle,
implemented by properly engineering the tunneling barrier
which couples QD 1 to its reservoirs, in order to obtain
tunneling rates for QD 1 that depend on the occupation of
QD 2. In this section, we make use of an additional QD [48] to
implement the crucial condition (7) that is found to be sufficient
for obtaining heat extraction.

In the setup, schematically pictured in Fig. 3, we introduce
an additional QD (3), tunnel coupled to 1, and we require
that its transition energy �U3 is aligned with �U1(0) [see
Fig. 3(b)]. This way, the “energy filtering” effect of QD 3 is
used to suppress �in

L (1) with respect to �out
L (0). To perform a

quantitative analysis, we study the dynamics of the system of
the three QDs altogether under the assumption that the coupling
between QDs 1 and 3 is much weaker than the coupling
between such QDs and their reservoirs. The electrostatic
energy of the system [see Eq. (1) for two QDs] now takes
the form

U (n1, n2, n3) = EC1(n1 − nx1)2+EC2(n2 − nx2)2

+EC3(n3−nx3)2+EI(n1 − nx1)(n2 − nx2),

(15)

where we have added the third term, relative to the
additional QD (3). Analogously to the two-QD case, we
define �U1(n2) = U (1, n2, n3) − U (0, n2, n3), �U2(n1) =
U (n1, 1, n3) − U (n1, 0, n3), and �U3 = U (n1, n2, 1) −
U (n1, n2, 0), which can be written as

�U1(n2) = EI(θ1 + n2 − 1),

�U2(n1) = EI(θ2 + n1 − 1),

�U3 = EI(θ3 − 1), (16)

where we have defined the following three independent dimen-
sionless parameters:

θ1 = (1 − 2nx1)EC1/EI + (1 − nx2),

θ2 = (1 − 2nx2)EC2/EI + (1 − nx1),

θ3 = (1 − 2nx3)EC3/EI + 1. (17)

FIG. 4. Cooling power I h
C, relative to the system containing three

QDs and represented in Fig. 3, under resonant condition [�U3 =
�U1(0)]. I h

C is plotted as a function of θ1 for the case �TC = 0
(solid black curve) and the case �TC = �T/10 (dashed red curve),
setting θ2 = 1/2 and imposing θ3 = θ1. The parameters are of the
order of the experimental ones reported in Ref. [44] and read:
EI = 0.72 meV, γL = γR = γC = 0.036 meV, t = 0.016 meV, and
T = �T = 4.17 K.

If we assume that each QD can be only singly occupied,
we can restrict our analysis to the following eight states:
|0, 0, 0〉, |0, 0, 1〉, |0, 1, 0〉, |1, 0, 0〉, |1, 0, 1〉, |0, 1, 1〉, |1,

1, 0〉, and |1, 1, 1〉, where |n1, n2, n3〉 is the state associated to
the set of occupation numbers (n1, n2, n3). The probability pα

for the system to be in the state |α〉 = |n1, n2, n3〉 is calculated
by solving the master equation in the stationary case (see
Appendix C for details)

ṗα =
∑

ν

(−�αν pα + �να pν ), (18)

where �αν is the rate for the transition from state |α〉 to state
|ν〉. The rates �αν which account for the transfer of electrons
between a QD and a reservoir can be expressed as [49]

�αν = h̄−1γλfλ(�Ũαν ), (19)

where γλ is the coupling energy between the reservoir λ =
λ(α, ν) and a QD, where λ = L, R, C depends on the ini-
tial state |α〉 and final state |ν〉. In Eq. (19), fλ(ε) = [1 +
eε/(kBTλ )]−1 is the reservoir Fermi distribution function, while
�Ũαν = Ũ (ν) − Ũ (α) is the transition energy, where Ũ (α) =
U (n1, n2, n3) [see Eq. (15)] with the set of occupation numbers
corresponding to the state |α〉. The interdot transition rates,
which account for the transfer of electrons between QDs 1 and
3 (namely, �(0,0,1),(1,0,0) and �(0,1,1),(1,1,0)), are obtained using
the procedure outlined in Appendix C under the assumption
that the hopping element t is much smaller than the coupling
energy between QDs and reservoirs [50–54].

The relevant heat currents can now be written as

Ih
C,L =

∑
αν

�Ũαν (�αν pα − �να pν ), (20)

where the sum runs over the states specified in Appendix
C. In Fig. 4 we plot the cooling power Ih

C, as a function of
θ1, for realistic parameters and setting θ3 = θ1 in order to
obtain the resonant condition [i.e., �U3 = �U1(0)] which
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approximately implements condition (7). The solid black curve
is relative to the case �TC = 0, while the dashed red curve
refers to �TC = �T/10. Figure 4 shows that in both cases
heat extraction is obtained and that Ih

C takes a maximum value
of the order of 10−2 pW. We notice that, as in the ideal case, the
cooling power is weakly dependent on θ2 in the range between
0 and 1, and that in this case Ih

C is maximized for θ2 � 1/2.
Moreover, we check that when the difference between �U3 and
�U1(0) is not much larger than the coupling energies γL/R/C,
the condition θ3 = θ1 is essentially fulfilled and the curves
in Fig. 4 do not change appreciably. We have demonstrated
that the implementation of the crucial condition (7) alone is
sufficient to obtain heat extraction. Cooling power, as seen
above, is expected to be maximal when the additional condition
(8) is also satisfied. This could be implemented by adding
another filtering QD in series with 1, between R and 1, and
aligning its transition energy to �U1(1). For experimental
purposes, however, a simpler system is desirable, especially
because the transition energies of the different QDs need to be
tuned by individual gates (not shown in Fig. 3), an operation
that is further complicated by possible cross-couplings arising
between them.

Metallic islands

We will now explore the possibility of replacing the QDs
in the setup depicted in Fig. 3 with MIs. These are systems
still characterized by a large charging energy but, as opposed
to QDs, they present a continuous distribution of energy levels
(the level spacing is much smaller than kBT ) so that electrons
within the island are thermalized and distributed according to
the Fermi distribution. Due to the absence of discrete levels,
the sharp “filtering effect” discussed above in the QD system
and exploited to satisfy the crucial conditions (7) and (8) is not
possible. As we will show below, however, heat extraction can
nonetheless be obtained in the setup depicted in Fig. 3, where
1, 2, and 3 are now usual metals and reservoir R (gray element)
is superconducting. Our aim is to approximately satisfy Eq. (7)
by properly tuning the chemical potential of MI 3. Conversely,
by exploiting the superconducting gap of reservoir R, we aim
at approximately satisfying Eq. (8) in order to suppress the
electron transfer with energy near �U1(0). Unlike the case
with QDs, here the detailed balance condition [Eq. (5)] is not
satisfied by the rates between islands at different temperatures.
As we shall see, however, this has only minor consequences.

The electrostatic energy of the system is equal to the one
relative to the system of three QDs, Eq. (15). Also in this case
we assume that each MI can only be singly occupied so that
our analysis can be restricted to the eight states defined in the
QD case. In the sequential tunneling regime, the stationary
probability pα that the system is in the state α is computed
by solving the master equation (18), where, unlike in the QDs
case, the rate for the transition from state α to state ν is given
by

�αν = 1

e2Rαν

∫
dε Nλ(ε)Nμ(ε − �Ũνα )fλ(ε)

× [1 − fμ(ε − �Ũνα )]. (21)

Here, Rαν is the resistance of the tunneling barrier involved
in the tunneling process, while λ = λ(α, ν) and μ = μ(α, ν)

FIG. 5. Cooling power, relative to the setup depicted in Fig. 3 for
MIs, as a function of θ1 for two different values of �TC, and setting
θ2 = 1/2 and θ3 = θ1 + 1/2. The parameters used are experimentally
relevant (see, for example, Refs. [28,57]) and read: EI = 25 μeV,
� = 35 μeV, γ = 10−3 μeV, T = 100 mK, �T = 200 mK, and
Rαν = 10 k� for all barriers.

identify the indices of the MIs or reservoirs involved in the
tunneling process. In Eq. (21), Nλ denote the normalized
density of states, which takes the value Nλ = 1 for λ =
1, 2, 3, L, C, and

NR(ε) =
∣∣∣∣∣Re

(
ε + iγ√

(ε + iγ )2 − �2

)∣∣∣∣∣, (22)

for the superconducting reservoir [55,56]. Here γ is a phe-
nomenological inverse quasiparticle lifetime, and � is the
superconducting gap. As before, the heat currents Ih

L and Ih
C

are defined as the heat currents extracted from reservoirs L and
C, and are computed in Appendix D.

In Fig. 5 the cooling power is plotted, using realistic
parameters, as a function of θ1, for �TC = 0 (solid black curve)
and for �TC = 5 mK (dashed red curve) and setting θ2 = 1/2.
We assume that MIs 1 and 3 are at temperature T , while
MI 2 is at temperature T − �TC. Aiming at implementing
the condition (7), we place the electrochemical potential �U3

halfway between �U1(0) and �U1(1), i.e., we set θ3 = θ1 +
1/2. In fact, this guarantees that (if kBT � EI) the electron
energy distribution in MI 3 is such that electron transfer to
MI 1 is suppressed in the case where MI 2 is occupied. Note,
however, that the opposite process (electron transfer from 1
to 3) is not suppressed. Indeed, to obtain heat extraction we
need to further assume that electrode R is superconducting.
Figure 5 shows that cooling is achieved in both cases, �TC = 0
and �TC = 5 mK. In the former case, the maximum cooling
power is of the order 10−2 fW, while in the latter heat extraction
is still possible, but the maximum cooling power decreases
roughly by a factor 4. Interestingly, heat extraction occurs
even for θ1 < 1, contrary to the prediction of Eq. (9). This
can be attributed to the fact that the detailed balance condition
(5) is not satisfied for the tunneling rates coupling MIs or
reservoirs having different temperatures. An amount of heat
equal to Ih

C is also extracted from MI 2 (see Appendix D for
details). Naturally no heat is extracted when reservoir R is in
the normal state. We find that Ih

C is maximized when θ2 � 1/2
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and θ3 � θ1 + 1/2, and that its increase with �T is at most
linear. Nevertheless, we wish to point out that there is no simple
condition to identify the optimal values of EI and �. Yet by
scaling all energies and temperatures of a given factor, the
cooling power scales as the square of such factor.

V. MAXWELL DEMON: MUTUAL INFORMATION FLOW

Recent experimental advancements have turned the intrigu-
ing Maxwell demon (MD) thought experiment [58,59] into
real experiments, spurring vast experimental and theoretical
research. A profound relation between information and ther-
modynamics was found [30,60–65] and various manifesta-
tions of MDs have been theoretically [29,32,34–36,47,66–72]
and experimentally [28,31,33,73–85] studied. In autonomous
MDs, where the demon is part of the analyzed system, cooling
has been studied from various standpoints, but, as far as we
know, in all cases a voltage bias was used to “power” the
demon. Conversely, our system does not require work, but it
can be viewed as an autonomous MD since there is no direct
heat transfer between the driving (D) and the cooled (C) system
associated with electron tunneling; the cooling effect can thus
be interpreted as due to information transfer.

According to the theoretical framework developed in
Ref. [30], one can write the following inequalities:

Ṡ (r )
D − İ � 0, (23)

Ṡ (r )
C + İ � 0, (24)

where Ṡ (r )
D = −Ih

L /TL − Ih
R/TR and Ṡ (r )

C = −Ih
C/TC repre-

sent, respectively, the entropy variation in the driving and
cooled reservoirs, while İ (−İ) represents the variation of
mutual information between systems D and C due to tunneling
events in D (C). The system behaves as a refrigerator, by
extracting heat from reservoir C, when Ṡ (r )

C < 0, which implies
İ > 0 in order to satisfy Eq. (24). We can thus interpret system
D as a MD which acquires information by monitoring system
C. In turn, system C uses this information as a resource to
decrease its temperature. Equation (24) shows that the cooling
of reservoir C is bounded by Ṡ (r )

C � −İ, while Eq. (23) shows
that reservoirs L and R are bound to dissipate at least Ṡ (r )

D � İ.
This observation motivates the definition of the following
thermodynamic efficiencies [30]:

ηD = İ
Ṡ (r )

D

� 1, ηC =
∣∣Ṡ (r )

C

∣∣
İ

� 1, (25)

where ηD represents the “information generation” efficiency,
and ηC the “information consumption” efficiency. Notice that
by definition 0 � ηD, ηC � 1, and they are equal to 1 when,
respectively, Eqs. (23) and (24) are strict equalities. While η is
a quantity assigned to the entire system, ηD and ηC characterize
the two subsystems, so that they can be viewed as a refinement
to η [30]. By combining Eqs. (6), (12), and (25), the COP η

can be written in terms of the product ηDηC and of ηr
C as

η = ηmax
ηDηC

1 + ηr
C(1 − ηDηC)

. (26)

This is consistent with the fact that, in general, ηD and ηC

individually provide more information than η, which is directly

1.5 2.0 2.5 3.0 3.5 4.0

θ1

0.85

0.90

0.95

1.00

η

ηD

ηC

FIG. 6. The efficiencies ηD and ηC are plotted as a function of θ1

starting from θ1 = θ∗
1 for the case �TC = �T/5. The parameters are

the same as in Fig. 2(c).

related only to their product ηDηC. Using Eq. (26), we notice
that η = ηmax if and only if ηD = ηC = 1. This implies that for
θ1 = θ∗

1 , where the COP reaches Carnot’s limit [see Eq. (11)],
we have that ηD = ηC = 1.

In Fig. 6 we plot ηD and ηC as a function of θ1. As
expected, when θ1 = θ∗

1 , ηD = ηC = 1. For larger values of θ1

the efficiencies decrease, but they remain close to 1. In general,
finding high thermodynamic efficiencies in this model is not
trivial [30,34,72,85].

VI. CONCLUSIONS

We have studied several aspects of a minimal implemen-
tation of an absorption refrigerator based on two Coulomb-
coupled single-electron systems [25]. We have derived the
general condition to guarantee cooling by heating and we
have found the optimal rates that simultaneously maximize
cooling power and COP. A simple relation between cooling
power and charge current is also found. Analyzing the system
as an autonomous Maxwell demon, we have shown that the
efficiencies for information production and consumption can
reach their upper bounds, and we have related the COP to these
efficiencies. Finally, we have put forward two experimental
proposals, based on QDs and MIs. In both proposals we
have introduced an additional QD or MI that implements the
nontrivial condition required to achieve cooling-by-heating.
By plugging in realistic parameters we have shown that
these proposals, which resemble existing experiments, yield
observable heat currents [86,87].
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APPENDIX A: MASTER EQUATION

The probability Pn1,n2 that the system is in a state with n1

and n2 electrons in QDs 1 and 2 is calculated by solving the
following system of equations:

⎛
⎜⎜⎜⎜⎝

−[
�in

L (0) + �in
R (0) + �in

C (0)
]

�out
C (0) �out

L (0) + �out
R (0) 0

0 �in
L (1) + �in

R (1) �in
C (1) −[

�out
L (1) + �out

R (1) + �out
C (1)

]
�in

C (0) −[
�in

L (1) + �in
R (1) + �out

C (0)
]

0 �out
L (1) + �out

R (1)

1 1 1 1

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

P0,0

P0,1

P1,0

P1,1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠. (A1)

The first three equations correspond to the master equations
where the time derivatives Ṗ0,0, Ṗ1,1, and Ṗ0,1 are set to
zero, while the last equation corresponds to the normalization
requirement. The charge current is given by

I = e
[
P0,0�

in
L (0) + P0,1�

in
L (1) − P1,0�

out
L (0) − P1,1�

out
L (1)

]
,

(A2)

where e is the electron charge, and the heat current leaving
reservoir α is given by

Ih
α = P0,0�

in
α (0)�U1(0) − P1,1�

out
α (1)�U1(1)

+P0,1�
in
α (1)�U1(1) − P1,0�

out
α (0)�U1(0), (A3)

for α = L,R, and

Ih
C = P0,0�

in
C (0)�U2(0) − P1,1�

out
C (1)�U2(1)

+P1,0�
in
C (1)�U2(1) − P0,1�

out
C (0)�U2(0). (A4)

Note that one can exploit the symmetry of the transitions
energies with respect to the common chemical potential when
θ1 = θ2 = 1/2 [see Eqs. (2) and Fig. 1(b)] to restrict the
analysis to the range θ1 � 1/2, without loss of generality. In
fact, the heat currents relative to the case θi = θ̄i < 1/2 are
equal to the ones obtained with θi = 1 − θ̄i (> 1/2), while the
charge currents relative to the case θi = θ̄i < 1/2 are equal in
amplitude but with opposite sign with respect to the ones ob-
tained with θi = 1 − θ̄i (>1/2). This can be explicitly verified
by substituting θi → 1 − θi and �in/out

α (n) → �out/in
α (1 − n) in

Eqs. (2), (A1), (A2), (A3), and (A4).

APPENDIX B: OPTIMAL RATES
FOR COOLING POWER AND COP

By substituting the probability Pn1,n2 , solution of Eq. (A1),
into the expression (A4) for Ih

C and imposing the detailed
balance condition (5), we find that Ih

C > 0 if and only if

�out
L (0)�in

R (1)(e jηh
C(θ1−1) − 1)

−�in
L (1)

[
�out

L (0)(1 − e−jηh
C ) + �out

R (0)(1 − e−jηh
Cθ1 )

]
− [

�out
L (0) + �out

R (0)
][

�in
L (1) + �in

R (1)
]
(e j/ηr

C − 1) > 0.

(B1)

Interestingly, the condition (B1) does not depend on the rates
�

(in/out)
C relative to the cooled system, or on θ2. In Eq. (B1), ηh

C =
1 − T/TL is the Carnot efficiency of a heat engine operating
between L and R, ηr

C = TC/(T − TC) is the Carnot COP of
a refrigerator operating between R and C, and j = EI/kBT .
Restricting to the range θ1 � 1/2 (see Appendix A for details),
the first line of Eq. (B1) is the only term that can be positive,
so that a necessary nontrivial condition to satisfy Eq. (B1) is
that θ1 > 1.

When Eq. (B1) is satisfied, at fixed EI, θ1, and θ2, we find
that Ih

C is a decreasing function of �in
L (1) and �out

R (0), so that
the optimal choice for such parameters is

�in
L (1) = �out

R (0) = 0. (B2)

Now, assuming (B2), Ih
C is an increasing function of the

remaining rates �out
L (0), �in

R (1), �out
C (0), �in

C (1), so that the
optimal choice is to take them as large as possible, compatibly
with the validity of the sequential tunneling picture.

APPENDIX C: DERIVATION OF THE MASTER EQUATION
FOR THE SYSTEM WITH THREE QDs

The Hamiltonian of the system with three QDs can be
represented as

Hsys =
∑

α

εα|α〉〈α|+EI(|1, 1, 0〉〈1, 1, 0|+|1, 1, 1〉〈1, 1, 1|)

+ t (|1, 0, 0〉〈0, 0, 1| + |1, 1, 0〉〈0, 1, 1| + H.c.), (C1)

where εα is the energy of state |α〉 in the absence of coupling, t
is the hopping element between the two tunnel coupled QDs (3
and 1), and EI represents the interdot charging energy between
the capacitively coupled QDs, 1 and 2. Under the assumption
that the hopping element t is much smaller than the coupling
energy between QDs and reservoirs, in Refs. [50–54] it was
shown that the density matrixρ (whose components are defined
as ραβ = 〈α|ρ|β〉) satisfies a modified Liouville equation. In
particular, the diagonal components ραα satisfy [88]

ρ̇αα = −i[Hsys, ρ]αα −
∑

ν

�ανραα +
∑

δ

�δαρδδ, (C2)
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while the off-diagonal components, resulting from coherent
tunneling of electrons between QDS 3 and 1, satisfy

ρ̇αβ = −i[Hsys, ρ]αβ − 1

2

∑
ν

(�αν + �βν )ραβ. (C3)

In Eqs. (C2) and (C3), the first (Liouville) term contains
the system Hamiltonian (C1), while the other terms describe
the coupling of the QDs with the reservoirs. In Eq. (C3),
|α〉 = |0, 0, 1〉 and |β〉 = |1, 0, 0〉 (and vice versa), or |α〉 =
|0, 1, 1〉 and |β〉 = |1, 1, 0〉 (and vice versa), since the only
nonzero off-diagonal terms are the ones related to electron
tunneling between QDs 1 and 3 (with 2 either occupied or
unoccupied). Note that Eqs. (C2) and (C3) depend explicitly
only on the transition rate �αν , from state |α〉 to state |ν〉,
which accounts for the transfer of electrons between a QD
and the corresponding reservoir λ = λ(α, ν). In particular, the
transition rates for tunneling events between 1 and 3, such
as �(0,0,1),(1,0,0) and �(0,1,1),(1,1,0), do not appear in Eqs. (C2)
and (C3). The rates appearing in Eqs. (C2) and (C3) can be
expressed as [49]

�αν = h̄−1γλfλ(�Ũαν ), (C4)

where γλ is the coupling energy between reservoir λ and QD,
fλ(ε) = [1 + eε/(kBTλ )]−1 is the reservoir Fermi distribution
function, while �Ũαν = Ũ (ν) − Ũ (α) is the transition energy,
where Ũ (α) = U (n1, n2, n3) [see Eq. (15)] with the set of
occupation numbers corresponding to the state |α〉.

In order to keep the notation compact, we assign an index
to each set of occupation numbers as follows: (0, 0, 0) →
0, (1, 0, 0) → 1, (0, 1, 0) → 2, (0, 0, 1) → 3, (1, 1, 0) →
4, (0, 1, 1) → 5, (1, 0, 1) → 6 and (1, 1, 1) → 7. We
will show now that the interdot tunneling rates, i.e.,
�3,1 ≡ �(0,0,1),(1,0,0) and �5,4 ≡ �(0,1,1),(1,1,0), can be obtained
by using Eqs. (C2) and (C3) [89]. Let us consider the
component (3,3) of Eq. (C2), i.e.,

ρ̇3,3 = −it (ρ1,3 − ρ3,1) − (�3,0 + �3,5 + �3,6)ρ3,3

+�0,3 ρ0,0 + �5,3 ρ5,5 + �6,3 ρ6,6. (C5)

In the steady state (ρ̇ = 0), the components (3,1) and (5,4) of
Eq. (C3) can be written, respectively, as

ρ3,1 = t (ρ3,3 − ρ1,1)

ε3 − ε1 − i �̃(0)

2

(C6)

and

ρ5,4 = t (ρ5,5 − ρ4,4)

ε5 − ε4 − EI − i �̃(1)

2

, (C7)

where �̃(0) = �3,6 + �3,5 + �3,0 + �1,6 + �1,4 + �1,0

accounts for all the processes which lead to the decay of
the states |3〉 and |1〉, and �̃(1) = �5,3 + �5,2 + �5,7 + �4,1 +
�4,2 + �4,7 accounts for all the processes which lead to the
decay of the states |0, 1, 1〉 and |1, 1, 0〉. By substituting
Eq. (C6) into Eq. (C5), with ρ1,3 = ρ∗

3,1, the latter equation
will contain only diagonal elements of the density matrix, thus
representing an ordinary master equation of the form

ṗ3 =
∑

ν=0,5,6

(−�3ν p3 + �ν3 pν ) − �3,1p3 + �1,3p1, (C8)

where pα = ραα represents the probability for the state |α〉. In
Eq. (C8), the two terms (in �3,1 and �1,3) accounting for the
transitions between states |0, 0, 1〉 and |1, 0, 0〉, when QD 2
is unoccupied, now appear. The associated interdot tunneling
rate takes the form

�3,1 = t2�̃(0)

(ε3 − ε1)2 + (
�̃(0)

2

)2 . (C9)

Similarly, using Eq. (C7) in the expression for ρ̇5,5 or ρ̇4,4, one
obtains the interdot tunneling rate

�5,4 = t2�̃(1)

(ε3 − ε1 − EI )2 + (
�̃(1)

2

)2 (C10)

in the case where QD 2 is occupied. Note that both interdot
tunneling rates have a Lorentzian profile.

The relevant heat currents can be written as

Ih
C,L =

∑
α,ν

�Ũαν (�αν pα − �να pν ), (C11)

where the sum runs over the indices (α, ν) =
(0, 2), (1, 4), (3, 5), (6, 7) for the cooling power Ih

C, and over
the values (α, ν) = (0, 3), (1, 6), (2, 5), (4, 7) for the input
heat Ih

L .

APPENDIX D: HEAT CURRENTS IN THE SYSTEM
WITH METALLIC ISLANDS

Since MIs present a continuum of states, the heat exchanged
in a single electron transition is not fixed by the electrostatic
energy difference as in Eq. (20), but it depends on the energy
of the electron that is tunneling. We thus need to define the
following heat rates [90]:

�h,out
αν = 1

e2Rαν

∫
dε ε Nλ(ε)Nμ(ε − �Ũνα )fλ(ε)

× [1 − fμ(ε − �Ũνα )]

and

�h,in
αν = 1

e2Rαν

∫
dε(ε − �Ũνα )Nλ(ε)Nμ(ε − �Ũνα )fλ(ε)

× [1 − fμ(ε − �Ũνα )].

�h,out
αν corresponds to the heat rate extracted from λ(α, ν) (the

reservoir or island from which the electron is tunneling) and
�h,in

αν corresponds to the heat injected into μ(α, ν) (the reservoir
or island to which the electron is tunneling to) when the system
undergoes a transition from α to ν. We thus have that

Ih
C,L =

∑
α,ν

(
�h,out

αν pα − �h,in
να pν

)
, (D1)

where, as in Eq. (C11), the sum runs over the values
(α, ν) = (0, 2), (1, 4), (3, 5), (6, 7), for Ih

C, and over (α, ν) =
(0, 3), (1, 6), (2, 5), (4, 7), for Ih

L . The heat extracted from
MI 2 can also be computed as in Eq. (D1) by summing over
the values (α, ν) = (2, 0), (4, 1), (5, 3), (7, 6).
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