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Fingerprints of Berry phases in the bulk exciton spectrum of a topological insulator
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We examine excitons formed in the bulk of a topological insulator as the system is tuned via a parameter
between topological and trivial insulating phases, arguing that nontrivial topology has fingerprints in the spectrum
of these excitons. The closely related hydrogen atom problem is well known to have a degeneracy due to a hidden
symmetry, and the changes to the excitonic spectrum that we find can be understood as a result of breaking of
this underlying symmetry due to the Berry phase. Furthermore, this phase is found to affect the spectrum in the
topological parameter regime much more strongly than in the trivial regime. We first construct a semiclassical
model of the system to develop qualitative intuition for the effects at play, then we move to a more robust numerical
simulation of the full quantum system, working with the Bernevig-Hughes-Zhang model of a two-dimensional

topological insulator.
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I. INTRODUCTION

Since the discovery of topological insulators (TIs), much
work has been done exploring how these new materials can be
used to realize exotic new physical phenomena [1,2]. One of
their defining features is the fact that these materials support
robust conducting Dirac states on their surfaces, which them-
selves have been the focus of a great amount of research. From
the perspective of exciton physics in particular, there have been
investigations into the impact that exciton physics at the surface
of topological insulators may have on the materials’ optical
properties [3,4], as well as the possibility of exotic interaction
effects such as chiral excitons [5] or as a platform for potential
realizations of excitonic condensation [6,7]. Another work
examined the impact of exciton condensation on the quantum
spin Hall effect [8].

Something that has been largely overlooked is how the
topological nature of these materials manifests in the properties
of the bulk. Far away from the surface, though global properties
are different, the band structure of a topological insulator is
qualitatively very similar to that of a trivial insulator or even a
semiconductor with a large band gap. Consequently, optical
and transport properties are naively expected to be similar
as well, and indeed electrical conductivity through the bulk
is exponentially small in the size of the gap for both trivial
and topological insulators. Only a few studies have been done,
however, exploring the effect of nontrivial topological charac-
ter on other physical phenomena in the bulk. One such study
examined the polarization properties of a two-dimensional
(2D) topological model, concluding that features of the optical
conductivity of this model, including a plasmon resonance
absent in graphene or usual two-dimensional electron gasses
(2DEGs), provide a way to identify its topological character
via bulk measurements [9]. Another work found that phonon
linewidths of bulk optical phonons contain information on band
inversions in the electronic spectrum [10]. Here we add to this
line of inquiry, investigating how the properties of excitons
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formed from the bulk bands of a topological insulator depend
on the topological character.

We consider excitons in the bulk of a 2D model that
can be continuously tuned between topologically trivial and
nontrivial parameter regimes—the well-studied Bernevig-
Hughes-Zhang (BHZ) model [11], developed to describe the
band-inversion physics and resulting topological phase of 2D
Hg(Cd)Te quantum wells. It is given by the Hamiltonian

hy 0O
Hguz(p) = ( P ),
0 h”;p
hy =€l +dp -2, dp=(Ap., —Apy, Mp), (1)

where €, = C — Dp? is the electron-hole asymmetry, M), =
M — sz is the momentum-dependent Dirac mass, T is the
vector of Pauli matrices, i is the unit matrix, and A, B,
C, D, and M are material parameters. The Hamiltonian is
invariant under both time reversal and inversion, discussed
in Appendix A. Importantly for our purposes, the masslike
parameter M is related to the thickness of the quantum well and
can be tuned between positive and negative values. Changing
this sign changes the relative sign of the p = 0 and p — o0
limits of the mass term M), corresponding to two topologically
distinct phases. Though excitons have not been observed in
the quantum wells described by this model, because of its
simplicity it provides the ideal theoretical testbed for our
analysis.

Important quantities to consider in the context of topological
insulators are the Berry connection, the Berry curvature, and
the resulting Berry phase. It has been well established that
Berry physics can lead to a shift and splitting of otherwise
degenerate exciton energy levels even in a system with trivial
topological character [12,13], i.e., without the usual hallmarks
of topological phases such as protected edge states and a
nontrivial topological index such as the Chern number. It is
therefore reasonable to expect that similar effects will be seen
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FIG. 1. Then = 1 energies for excitons formed from the particles
in the upper BHZ block as a function of the dimensionless parameter
y = sgn(M)(kex/ky)* o< M, scaled by the n = 1 2D hydrogen en-
ergy. The quantities k, and k., are defined following Eq. (7). The
sign of y determines the topological phase, as labeled. The inset
shows the single n = 0 state for the same range of y, scaled by the
n = 0 hydrogen energy. There is a clear qualitative difference in the
behavior of the energy levels on either side of the transition, with
a crossover between them. In the topological phase there is a large
splitting of states due to Berry physics that is absent in the trivial
phase. Furthermore, the m = 0 states change energy quickly above
the topological transition. Energies are obtained using the effective
fine-structure constant @ = 0.4.

in the topological phase of the BHZ model, which displays all
of these features as a direct result of Berry physics.

We find that these expectations are indeed true, with key
features of our main results given in Fig. 1; the hierarchy
of exciton energy levels is drastically altered as one moves
from the topologically trivial phase through the topological
transition into the nontrivial phase. Within the topological
phase, states with opposite orbital angular momentum are well
split from each other and the m = 0 angular momentum state
is pushed to a smaller binding energy than the rest, all of
which would be degenerate in the absence of Berry curvature.
In the trivial phase, however, all states are nearly degenerate,
with the splitting decreasing the further one tunes away from
the topological transition. Though there is no sharp feature
at the topological transition itself that distinguishes these two
regimes, as one might expect from a topological effect, this
behavior can nonetheless be explained as arising from effects
intimately tied to topological character.

It is worth mentioning for completeness that other phenom-
ena could potentially lead to splitting of exciton states [14],
such as nonparabolicity in the spectrum [15,16], screening
of the Coulomb interaction in 2D systems [17,18], or the
exchange interaction between particles and holes [19]. None
of these, however, are present in the model we use to generate
these results. Moreover, the effect we find is distinct and
distinguishable since none of these other effects are sensitive
to changes in topology, and so they would lead to splitting of
states across the entire parameter range, not just on a single
side of the topological transition.

In Sec. II we begin by presenting an intuitive understanding
of the physics at play in this system, considering a semiclassical

model as well as an effective Hamiltonian for Dirac-like
systems. In Sec. III we formulate the full exciton problem and
discuss further how topological effects will be manifested. In
Sec. IV we discuss the methods used to numerically calculate
the exciton spectra in the regimes of interest, and we present
our main numerical results.

II. SEMICLASSICAL APPROACH

Before presenting the full quantum-mechanical exciton
problem, we discuss its semiclassical counterpart. This not
only gives a clear physical picture of the role of the Berry
phase, but it also captures its effect on the electronic spectrum.
The reason is that the semiclassical method applied to the usual
2D excitonic Coulomb problem reproduces the full spectrum
exactly, and not just the structure of highly excited states. This
remarkable result provides a fair assurance that our analysis
here will provide useful insights into the problem at hand.

We start from the Lagrangian L(re, Iy, Pe, Pn) for the
dynamics of interacting electron and hole wave packets [20—
22] given by

L= (FuPu+Po-Aup, — Eg) = Ve—m). (2)

a=e,h

Here ren) is the location of the electron (hole) wave packet
and pe is its momentum. We approximate their dispersions
as quadratic in the vicinity of band minima as Ej = «a €, +
p?/2m, where €, is the particle-hole asymmetry as defined
after Eq. (1). V(r) = ¢*/er is the Coulomb interaction with
dielectric constant €. The function A, ,, = i(p, «|V,|p, @) is
the Berry connection, calculated from the particle and hole
states of the BHZ Hamiltonian (1). We consider only intrablock
excitons with zero center-of-mass momentum qcy = 0 since
only they are optically active and are probed in experiments.
The resulting Lagrangian for the relative motion of the electron
and hole is given by

2
) . p
L=r~p+p~Ap—ﬂ—V(r), 3)

where 1 = m/2 is the reduced electron-hole effective mass,
and the corresponding energy is independent of electron-hole
asymmetry €, of the BHZ model; A, = A p + Ap _p is the
Berry connection for the relative electron-hole motion, which
for the BHZ model is found to be (see Appendix B)

My, \Zxp
A:—s+—p> , 4
b ( dyl ) p?

where s = sgn M /B with the corresponding Berry curvature

el ) 5)

These two functions contain the topological information of two
particle states within the model, with the integral of the Berry
curvature over all momentum space giving the Chern number,
atopological invariant that distinguishes topological and trivial
phases. Note that the Berry connection is not gauge-invariant,
changing by the divergence of a scalar function if the state
vectors are transformed by multiplication with a momentum-
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dependent phase, but the Berry curvature is invariant under
such transformations.

The Euler-Lagrange equations obtained from (3) are given
by

p=-V,V@®), i=24V,v@r) x D 6)
n

The term containing the electron-hole Berry curvature is
the anomalous velocity. Examining these equations in polar
coordinates shows that the anomalous velocity contributes only
to the angular motion of the exciton, with left-spinning and
right-spinning states affected exactly oppositely, breaking the
symmetry between them that is present in the absence of the
Berry curvature. In particular, the anomalous velocity changes
the usual expression detailing the conservation of angular
momentum to

by,
L,=[rxpl,+ —1%Z. @)
2
Here @, is the Berry phase acquired by traversing a circular
trajectory with momentum p. From this observation, one can
anticipate that states with opposite angular momenta will not
have the same energy in this system, unlike the case for the 2D
hydrogen atom.

We can begin to get a more quantitative intuition for how
topologically relevant physics comes into play through the
function ®. To do so, we compare two momentum scales. The
first is the topological scale k., = /|M/B]. In the topological
regime, since M and B have the same sign, the momentum-
dependent Dirac mass My = M — Bk* changes sign at this
momentum, making it the most relevant momentum scale in
the context of topological effects. The Berry curvature reaches
its maximum value near this momentum in the topological
phase, and it is the point at which the function ®, grows toward
approximating the Chern number. In the trivial regime, though
this is a well-defined momentum, there are no effects of note
at this scale. The second scale is the characteristic momentum
for excitonic physics, related to the inverse Bohr radius of
the exciton, kex = 1/ap = pe?/e. In the topological phase, if
the excitonic momentum is small compared to the topological
scale, then the Berry phase term is likewise small. This is
always the case in the trivial phase since the Berry curvature
is small for all reasonable momenta (see Appendix B). If the
ratio of these two scales becomes even moderately sized in the
topological phase, however, then the Berry phase will become
a nontrivial perturbation to the angular momentum. Though it
is not immediately apparent how such a shift will affect the
exciton spectrum, it is clear that any effect will only occur in
the topological phase when k. / k. becomes sufficiently large.

Additional insight can be gained by changing coordinates,
rewriting the angular momentumas L, = (R x p),. Here R =
r — A, and p are the canonical coordinates of the problem,
and the shift in the position coordinate is the momentum space
equivalent of the Peierls substitution, which takes the Berry
connection correctly into account. Using these coordinates,
the equations of motion (6) can be derived from the effective
Hamiltonian H(R, p) given by

p
Hesr = ﬂ + V(R + Ap) (8)

Expanding in the Berry connection and taking into account
its solenoidal distribution in momentum space, we get Hep =
Hy + AH, where Hy is the Hamiltonian of the usual Coulomb
problem,

L2 e? ©)
2uR?  €R’

_ Pk

Hy =
0 2

with pr = p - R, and A H is the correction due to the presence
of the Berry curvature given by

AH ( n M”) < L (10)
=(s+ L )— .
|d,| ) €R (Rp)?

Examining this correction term, we see that it acts as a pertur-
bation to the 2D hydrogen atom problem and will generically
split energy levels with differing angular momentum, which
we determined to be the effect of the Berry phase above.

The expression for A H we find here is a generalization of
a correction derived previously using the Foldy-Wouthuysen
transformation in the particular case of a constant Berry curva-
ture [13,23]. The Foldy-Wouthuysen transformation produces
a consistent quadratic approximation to a Hamiltonian with a
linear dispersion at high energies. Because we have approxi-
mated the dispersion as purely quadratic in our semiclassical
analysis thus far, we have missed the Darwin term, which
has the form Hparwin = $R2: V2V (R), where . = Q.(p = 0).
This term gives an effective shift of the angular momentum
by a value of % in the perturbation to the hydrogen atom
problem. This shift leads to an asymmetric splitting of states
with opposite angular momentum as well as a shift for the
m = (0 state, which, in this effective Hamiltonian picture,
would otherwise remain unaffected by Berry physics.

III. EXCITONIC STATES

Excitons are two-particle electron-hole bound states formed
due to Coulomb interactions. Only excitons with zero total
momentum qcy = 0 are optically active and will be considered
here. Excitonic states can be written

X)) = ) al . ax— 10). an
k

Here C\” is the wave function of the exciton in momentum
space, |0) is the state with filled valence bands and empty
conduction bands, and alt,a,i (ax ;) creates (destroys) the
single-particle state |k, «, i), where o = & labels the band
and { = 1, 2 labels the block of the BHZ Hamiltonian from
which the state is taken. When rotated to the band basis, each
of the two 2 x 2 blocks of the BHZ Hamiltonian produces a
single conduction and valence band, hosting the electrons and
holes that are the building blocks of excitons. When i = j,
the electron and hole come from the same block (intrablock
excitons), while the case of i # j corresponds to an interblock
exciton. In general, intrablock excitons are optically active
while interblock excitons require some degree of inversion
symmetry breaking to be accessible via optical means. We
do not consider such symmetry breaking in our model, but we
calculate interblock exciton energies nonetheless as a point of
comparison.
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The exciton wave function satisfies a Schrodinger-like
equation in momentum space given by

20di| €y = Y U w RCY = (B, + Ex)C”. (12)

v
Here E, = 2|M| is the energy gap and Ex < 0 is the exciton
binding energy. The screened Coulomb interaction is given by
Uy = 2me?/eq, with € being the effective dielectric constant
of the surrounding medium, and 2|dx| = Ej 4 ; — Ex — j isthe
two-particle free dispersion, independent of the particle-hole
asymmetry. Finally, 7@/ is a function resulting from the
rotation from the original basis of the Hamiltonian to the band
basis, and its importance will be discussed at length.
In our further analysis, we will approximate the two-particle
dispersion with a constant parabolic dispersion,
2|d 2|M K ith M
Al = 20M| 4+ 5 with = 55,

This changes the features of the spectrum in the topological
phase, which for the unmodified BHZ model develops a
degenerate band minimum at a finite momentum for large
enough |M|; in a more accurate approximation there is a value
of M for which the effective mass near k = 0 changes sign
within the topological phase. This alone can lead to large
effects on excitonic properties but is completely unrelated to
the topological transition. Since smooth deformations of the
band structure leave topological properties unchanged, the
above simplification is one way to remove this parametric
dependence of the model on M while leaving topological
properties intact. This allows us to more easily isolate the effect
of topology alone.

Since this model has rotational symmetry, we can perform
a full multipole decomposition, writing the exciton wave
function as

13)

Cu=)_ Culk)e™, (14)

where ¢ is the angle of k from the k, axis. The eigenvalue
equation itself becomes

k2

ﬂcm(k) =Y Uk, K)C(K') = ExCp (), (15)
m

with US| the effective interaction in the m channel, given by

Uik, K'Y =Y Up (k, KV Epe(k K)). (16)

Being the index related to rational invariance, m is acomponent
of the angular momentum of the exciton, specifically the
component related to the relative motion of its constituents
(see Appendix A for the full angular momentum). It should be
noted that the choice of the underlying spinor wave functions of
electrons and holes is not unique (see Appendix B), and one can
change them up to an arbitrary gauge transformation. Though
gauge transformations leave all observables unchanged, they
can in general uniformly shift the label m by any integer,
making this label of excitonic states ambiguous and dependent
on gauge choice. The gauge that we employ is chosen to reduce
to the normal labeling of states for the 2D hydrogen atom in
the limit M B — —oo, infinitely far into the trivial regime.

The function .7:1?{(), =k, +, ik, +, i)k, —, jlk,—, j)
results from the change to the band basis and is given by the
overlaps of electron and hole spinor wave functions. We can
explicitly write this function as
Ok 50k
cos® —

2

FD = 6D g2

4 i GHD@—00) G2 %k -2 b

- 6 o
+ 2ez.s(<.0k—<ﬁk/) cos 7 cos K sin X Sin K ,
2 2 2
O O 26 . 5O
FU2 = cos? = co + sin® = sin”* —
k.k 2 B 2 2

Ok O . Ok . Ok
+2cos > cos > sin > sin > cos(pk — @), (17)
with FUD = FC2x FU2) = FCD " cos@y = My /|dk|, and
s = sgn M. This is the only ingredient in the excitonic eigen-
value equation (12) that reflects the underlying topology, and
it is qualitatively different in trivial and topological regimes.
The topological information carried in these functions can be
seen explicitly by considering their multipole expansions,

11 /
lik) — Z Fo(k, % )elsm(tﬂk lﬂk)
m=0

FlY = Folk, k') + Fay(k, k') + Fy(k, ') cos(pk — @),
(18)

and examining the behavior of the three functions Fj,, in both
the trivial and topological phases. These functions are plotted
in Fig. 2.

Far into the trivial parameter regime, one sees that Fj is
approximately equal to 1 for all values of k, k', while the other
functions are very small. Indeed in the limit M B — —oo,
then Fy — 1 and F,,0 — 0, so F — 1 and the Schrodinger
equation approaches exactly that for the 2D hydrogen atom.

A similar statement cannot be made in the topological
parameter regime, with the behavior of F being fundamentally
nontrivial for all values of the tuning parameter. In this regime,
both Fy and F_, show nontrivial behavior as one or both of
their arguments become large compared to the topological
scale k,. The remaining function F_; does not display such
a drastic change on either side of the topological transition,
though in the topological phase it always reaches the value 1/2
for k = k' = k,. Note that these differences in the qualitative
behavior of these functions are indeed tied directly to the
topological character of the respective phases. There is a
sudden transition between one behavior and the other as the
tuning parameter passes through the topological transition,
with the (k, k') — (00, 00) limits of the functions Fj and Fi,
changing discontinuously at that point.

Both to gain further physical insight and to simplify eventual
numerical integration, we rewrite the eigenvalue problem in a
dimensionless form by scaling all momenta by the characteris-
tic exciton momentum, ko, = 1/ap = ue?/e. Since the Bohr
radius is the most natural length scale in the problem, its inverse
gives the most relevant momentum for excitonic physics.
This rescaling naturally results in an equation with only two
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FIG. 2. The multipole coefficients of the overlap function F
plotted as functions of their two arguments k and k', with the infinite
domains k, k' € [0, 0o) projected onto a finite interval. The plots on
the left show the typical behavior of the F’s in the trivial phase, and
those on the right show them in the topologically nontrivial phase.
There is a clear and distinct difference in the qualitative behavior of
these functions on either side of the transition, with a sudden jump
from one behavior to the other at the transition itself.

dimensionless parameters: the relative fine-structure constant
of the material @ = ¢?/€A, and the quantity y = (key/kx)>,
comparing the size of the excitonic and topological momentum
scales, which we use as our tuning parameter.

As we first considered in Sec. II, we can understand how the
topological nature of the system manifests itself in excitonic
properties by considering the relative size of these momentum
scales, i.e., the size of y. First note that the small momentum
features of the functions in Fig. 2 are very much alike on either
side of the transition. Close to the transition where |y | is small
and small momenta are most important, excitons in both sides
of the topological transition should be qualitatively similar.
Conversely, if |y| is not small, then the nontrivial features of
the F functions near k ~ k, will be relevant in the topological
phase, and excitons should behave quite differently depending
on the sign of y. From this we anticipate that our numerical
analysis will not find a sharp feature in excitonic properties at
the transition itself, instead seeing a gradual crossover between
two behavior regimes.

Another way to see the effects of topology is to note how this
exciton problem compares with the two-dimensional hydrogen
atom. Just as for the 2D hydrogen atom, the eigenstates of the
exciton problem in this model are labeled by two indices, n =
0,1,2,... andm = 0, £1, ..., &£n, the principal and angular
momentum quantum numbers.' For the 2D hydrogen atom, a
hidden SO(3) symmetry [distinct from, but containing SO(2)
rotational symmetry] ensures a perfect degeneracy between
the 2n 4 1 angular momentum states for each n [24,25], with
energies given by

E __M_eél; (19)
)

In our system, though n and m are still good quantum numbers,
the nontrivial overlap function F breaks the SO(3) symmetry,
mixing angular momentum channels of the Coulomb inter-
action and reorganizing the spectrum. The result is that the
different angular momentum states for each energy level n
will have their energies split from each other, as anticipated in
Sec. II. Note that for interblock excitons, states with angular
momentum differing by a sign must still be degenerate due to
time-reversal symmetry, but those with different values of |m|
will generically be split.

In general, the breaking of this symmetry is ensured by
the existence of any nonzero Berry curvature (F # 1), even
in a phase with a trivial Chern number. However, far enough
into the topologically trivial phase, one can consider this
symmetry breaking as just a small perturbation to the 2D
hydrogen atom problem (i.e., F ~ 1+ 8F with §F < 1),
which only introduces a small splitting between the states.
The same cannot be said of the topologically nontrivial phase,
where the behavior of F is fundamentally nontrivial as well, as
described above and in Fig. 2. For this case, the effect cannot
be approximated as a small perturbation to the 2D hydrogen
atom, so we can expect that the splitting between states will
not necessarily be vanishingly small.

! Another common choice of quantum numbers for the 2D problem
isn, =0,1,... and m =0, %1, £2, ..., related to our choice by
n = n, + |m|. For our purposes, n and m as defined in the text will
prove more convenient.

045430-5



ALLOCCA, EFIMKIN, AND GALITSKI

PHYSICAL REVIEW B 98, 045430 (2018)

IV. NUMERICAL ANALYSIS

We discretize the momentum in the integral Schrodinger
equation according to a modified Gaussian quadrature method
(with N = 192 points) thatis designed to handle the divergence
in the Coulomb potential at k = kK’ [26]. Choosing a constant
value o = 0.4 for the effective fine-structure constant, we can
then invert the resulting matrix equation to find the excitonic
spectrum as a function of the parameter y . We scale all energies
that we calculate by the corresponding energies of the 2D
hydrogen atom, i.e., with the same n, defining the effective
mass in Eq. (19) the same way as in Eq. (13) so that the energy
vanishes as y — 0.

Our main results are presented in Fig. 1, showing then = 0
state and three n = 1 states for intrablock excitons.” In addition
to these results, we also calculated the corresponding states
for interblock excitons, finding similar effects. The qualitative
behavior of the exciton energy levels in the topologically
trivial and nontrivial regimes is immediately apparent, with
the different angular momentum levels separating from each
other quickly as a function of y in the nontrivial regime, and
converging to the 2D hydrogen energy moving deeper into the
normal regime, as expected based on the discussed properties
of the function F. Furthermore, we find that intrablock exciton
levels with opposite angular momentum split from each other,
while corresponding levels in interblock excitons remain de-
generate as ensured by symmetry. We also note that while there
is a crossover between two behavior regimes, there is no sharp
feature at the topological transition itself, again as anticipated.

The most notable behavior, seen in all cases, is the strong
dependence of the m = 0 state on y, which has considerably
lower energy in the topological regime compared to the trivial
regime. Indeed, for interblock excitons this is the primary
feature we find. Since this effect is found in all cases, it must be
caused by a different mechanism than that causing the splitting
of opposite angular momentum states in the intrablock case,
i.e., the Berry phase. In other words, it is an effect that is
insensitive to time reversal and seems to be strongest for the
cases of zero angular momentum. In particular, the Darwin
term mentioned in Sec. II cannot be the only explanation since
it is proportional to the Berry curvature and therefore cancels
exactly in the interblock case. Unfortunately, we do not yet
fully understand the effect leading to this phenomenon, but the
onset of this energy shift at the transition indicates a topological
origin, perhaps related to the quantum geometric tensor [27]
or moments describing the distribution of Berry curvature in
momentum space, e.g., the Berry curvature dipole [28].

V. CONCLUSIONS

By examining excitonic spectra in the bulk of a model
with nontrivial topology, we have demonstrated that topology
can in principle have strong manifestations in bulk physics.
In particular, we have shown in the BHZ model that the

2The exciton binding energy is identically zero at y = 0 where the
gap closes, and the finite values of the curves in the figure at this point
are due to our choice of scaling; the 2D hydrogen atom energy levels
also vanish at this point, but the limit of the ratio is finite.

degeneracy of 2D excitonic states that would exist in a system
without a Berry curvature is broken due to the inclusion of
such physical effects. In the trivial phase with Chern number
0 the splitting is small, with the Berry phase acting as a small
perturbation to the 2D hydrogen atom problem. On the other
side of the topological phase transition, however, the splitting
is much greater since the effects of nontrivial topology can
no longer be considered as just a small perturbation. Though
there is no sharp feature precisely at the transition point, the
difference in the behavior in the two phases can nevertheless be
understood as a result of a change in the topological character.
As the characteristic excitonic momentum scale becomes
sizable compared to the scale associated with topological
effects, the large momentum differences between the physics of
the trivial and nontrivial phases becomes essential. The resultis
adramatic reorganization of the excitonic spectrum, producing
a hierarchy of states that is utterly distinct for values of the
tuning parameter well into each of the two phases.
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APPENDIX A: SYMMETRIES AND ANGULAR
MOMENTUM

The BHZ Hamiltonian respects both time-reversal and
inversion symmetry, with the two blocks of the Hamiltonian
(1) mapping into each other under time reversal and remaining
unchanged with inversion. This can be explicitly verified
by representing the time reversal and inversion operators,
respectively, as

O=-i6,Kk@land P =101, (A1)

and confirming that they commute with the Hamiltonian. Here
K denotes complex conjugation. The set of single-particle
eigenstates respects these symmetries as well, which one can
straightforwardly verify, finding

Olk, +,i) = ) _ejl—k, £, ),
J

Plk, +,i) = |-k, £, ). (A2)

Here the & labels the conduction and valence bands, while i, j
labels the block of the Hamiltonian that acts on the states.

In addition to these discrete symmetries, the system is also
rotationally invariant so the total angular momentum is also a
good quantum number. Since the system is two-dimensional,
the total angular momentum is equivalent to its z component.
The angular momentum of a particle has three components—
spin, S, = 1 ® 6./2; atomic orbital, K, = diag(0, 1,0, —1);
and orbital, L, = ir x p),—so in total we have J, =
S;+ K.+ L,, and a simple calculation confirms that
[J;, Hguz] = 0.

The eigenstates of Hpyy are also eigenstates of J,, and we
can most easily compute the angular momentum of single-
particle states atk = 0, though the result must hold at all points
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in k space, giving

LIk, £,i) = (=D)"'[1 ¥ L sgn M]k, £, 7). (A3)
Note that this value is simply either % or % up to a sign.

To consider excitons, we must add the Coulomb interaction
to this single-particle Hamiltonian. With regard to symmetry, it
is enough to note that the Coulomb interaction is also invariant
under time reversal, inversion, and rotations, so the states of
the interacting system must obey these symmetries as well. Let
intrablock exciton eigenstates be labeled as |n, m, i), where
n and m are two quantum numbers, and i labels the block
from which we take the particle and hole constituents. In the
center-of-mass frame, these exciton eigenstates are

nom.iy =Y Cimal . ax_l0). (A4)
k
A straightforward calculation shows that
Jn,m, i) =[m + (=1) sgn M]|n, m, i) = jln,m, i),
(AS5)

where the second term in the eigenvalue is the sum of
the spin and orbital angular momenta of the single-particle
bands, Eq. (A3). We see here that m labels the part of the
angular momentum interpreted classically as arising from the
relative motion of the exciton’s constituent particle and hole.
Furthermore, it can be easily verified that time reversal acts
in the expected way, simply flipping the sign of the angular
momentum, J,®|n, m,i) = —j Oln, m,i).

APPENDIX B: BERRY PHYSICS IN THE BHZ MODEL

The spinor eigenstates corresponding to the two bands of
the upper block of the Hamiltonian (1) are

s sl
e T cos &
ko= ),
e % sin 3

Ls—1 .
—e 17 M sin &

|k1 _> = s+l 92 4
e "2 % cos X

2

(BI)

where s = sgn M B and cos 8k = My/|dk|. The states for the
other block can be generated from these by applying the time-
reversal operator, discussed in Appendix A.

Trivial Topological

=Fkex)
w
(aw]

O,k
)
S

O;w L - 1 - - 1 - - - - 1 - - 1 - L w;
1.0 -05 00 05 10

y=sgn(M)(kex/k.)*

FIG. 3. A plot of the z component of the Berry curvature £ (k)
as a function of momentum in both the topological (top) and trivial
(bottom) phases. The Berry curvature £2_(k) is simply related by a
sign. The momentum is measured in units of the topological scale
|k.| = /TM/B]. In the topological regime, the Berry curvature is
peaked near k. and is positive for all values of the momentum, leading
to a nonzero Chern number, while in the trivial regime it takes both
positive and negative values producing a Chern number of 0.

The information about the topology is stored in the Berry
connection of electrons defined in terms of these states as

s +cosbk

Ar(k) =ik, £[Vilk, £) =F T (zxk). (B2
The corresponding Berry curvature for the upper block is
M + BK?
Q. (k) = Vi x Ar(k) = It EcLap (B3)

2d (k)3

It is gauge-independent, and its integral gives the Chern
number distinguishing topological phases. The momentum
distribution of the Berry curvature in the topological and trivial
regimes is presented in Fig. 3. Calculating the same quantities
for the lower block of the Hamiltonian gives the same results
up to overall signs.

When considering the interacting two-particle problem, we
define the particle and hole states as

Ik, e) = |k, +), |k, h) =Clk, —),

using the particle-hole transformation C = K &,. With these
definitions, we can define the Berry connections for particles
and holes in the upper block analogously as in Eq. (B2) to find
Ac(k) =A; (k) and A, (k) = A_(k) = —A.(K).
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