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Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive
tensors for bianisotropic metamaterials and their use in optical force density calculations
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Using a multiple scattering technique, we derived closed-form expressions for effective constitutive parameters
and electro/magneto-strictive tensor components for 2D bianisotropic metamaterials. Using the principle of virtual
work, we obtained the electromagnetic stress tensor that can be used to calculate the optical force density inside
such media. The analytic expressions are tested against full wave numerical simulations. Our effective medium
theory is essential for providing a complete macroscopic description of the optical and opto-mechanical properties
of bianisotropic composites.
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I. INTRODUCTION

Metamaterials are artificial composite materials carrying
subwavelength inclusions. These materials are designed to
have optical or acoustic properties that are not found in
nature and hence can be employed to realize novel phenomena
that were once thought to be impossible, such as negative
refraction [1–3] and cloaking [4–8]. The unusual properties of
metamaterials are frequently attributed to their unconventional
constitutive parameters, which can be very different from those
of the constitutive components. As the properties of metamate-
rials are characterized by macroscopic constitutive parameters,
it is essential to find good effective medium theories that can
produce accurate descriptions of the composite material so that
we do not need to worry about the complex structural details
at the subwavelength level.

Developing analytic effective medium approximations is of-
ten challenging, particularly for anisotropic composites whose
scattering properties are complicated and effective constitutive
parameters are tensors rather than scalars [9–15]. Bianisotropic
metamaterials, which have attracted a lot of attention due to
their intriguing wave manipulating properties recently, such as
negative refraction [16–18], strong optical chirality [19–24],
and serving as a platform for realizing nontrivial topologi-
cal phenomena [25,26], frequently have complex underlying
structures. Building an effective medium theory (EMT) for
them is not easy, since their scattering properties are deter-
mined by the complex interplay between different compo-
nents of effective constitutive tensors. In the past decades,
considerable efforts have been made to calculate the effective
constitutive parameters for the bianisotropic metamaterials
which are based on parameter retrieval [27–31]. In this paper,
we will use analytic techniques to formulate an effective
medium approach for 2D bianisotropic metamaterials. Our
approach is complete in the sense that it not only provides the
usual constitutive parameters that can calculate scattering and
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absorption, but also provides enough information to evaluate
microscopic details such as the optical force density inside the
metamaterial, which is known to be more difficult to calculate
than the total force. Such capability enables us to consider the
optomechanical response of such materials, in particular soft
composites which can be deformed in light fields due to the
nonuniform optical force distribution [32–34].

Using multiple scattering theory (MST), we analytically
derived the macroscopic effective parameters as well as the
electro/magneto-strictive tensors for these materials. The elec-
trostrictive and magnetostrictive tensors describe the response
of effective constitutive parameters under deformation, which
depend on not only the filling ratio but also the lattice
symmetry. We note that most methods used in EMT, such
as coherent potential approximation [35,36] and the layer
Korringa-Kohn-Rostoker method [37–39], cannot derive the
electrostrictive and magnetostrictive tensors correctly because
the symmetry of microstructure is not considered. However,
MST incorporates the symmetry of the microstructure, and
hence the electrostrictive and magnetostrictive tensors can be
correctly obtained. Using the virtual work method, we de-
rived the electromagnetic (EM) stress tensor (called extended
Helmholtz stress tensor thereafter) for bianisotropic media,
which can be used to calculate the optical force density inside
a bianisotropic metamaterial with complex structures. We
note that traditional effective medium theories do not provide
sufficient information to study the optical force density because
they do not give expressions for the electro/magneto-strictive
tensor components. By comparing the results produced by
different stress tensors, we demonstrate that the extended
Helmholtz stress tensor gives the most accurate description
of optical force density in bianisotropic metamaterials.

II. THE EFFECTIVE CONSTITUTIVE PARAMETERS

The bianisotropic metamaterials considered in this study
consist of identical chiral inclusions (can having complex
underlying structures) arranged into a regular or random lattice
in the xy plane embedded in air with permittivity ε0 and
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FIG. 1. Top view of the bianisotropic metamaterial with parallel
cylindrical inclusions arranged in either (a) regular or (b) random
lattice in the xy plane. The Mie coefficients of cylindrical inclusions
satisfy An = A−n, Bn = B−n, and Cn = C−n and the background is
isotropic and achiral.

permeability μ0, as shown schematically in Fig. 1. In the long-
wavelength limit, the effective relative constitutive parameters

of the metamaterials have diagonal matrix forms as
↔
εe = εt x̂x̂ + εt ŷŷ + εzẑẑ,

↔
μe = μt x̂x̂ + μt ŷŷ + μzẑẑ,

↔
κe = κt x̂x̂ + κt ŷŷ + κzẑẑ, (1)

where
↔
εe,

↔
μe, and

↔
κe are the effective relative permittivity,

permeability and chirality tensors, respectively. According to
Maxwell equations, we have the wave equation for the out-of-
plane EM fields inside such a metamaterial as

k2

(
Ez

Hz

)
= ω2

(
εzμt + κzκt iμtκz + iμzκt

−iεtκz − iεzκt εtμz + κzκt

)(
Ez

Hz

)
,

(2)

which directly leads to the two eigenmodes with corresponding
wave numbers expressed as

K2
± = k2

0

εzμt + εtμz + 2κzκt ±
√

(εzμt − εtμz)2 + 4κzκt (εzμt + εtμz) + 4κ2
z εtμt + 4κ2

t εzμz

2
. (3)

From Eq. (3), we easily obtain the following relationships:

K2
+K2

− = k4
0

(
εzμz − κ2

z

)(
εtμt − κ2

t

)
, (4)

where the wave number product can be factorized into two parts
involving the out-of-plane (with subscript z) and in-plane (with
subscript t) constitutive parameters, respectively, and k0 is the
wave number in air.

The dispersion relation for a periodic system can be
obtained by considering the secular equation derived from
the MST. In the following, we will analytically derive the
expressions of the Mie coefficients of the isotropic chiral
cylinders and the secular equation using the MST.

A. Mie coefficients for isotropic chiral cylinders

Consider the scattering of electromagnetic wave by a single
chiral cylinder. The cylinder is isotropic with the constitutive
relations given by

D = εε0E + iκ/cH, B = μμ0H − iκ/cE,

where ε, μ, and κ are the relative permittivity, permeability and
chirality of the cylinder. Using the Mie scattering method [40],
the incident fields (Ei , Hi), scattered field (Es , Hs) and the field
inside the chiral cylinder (Eins, Hins) at a location r = (r, φ)(the
origin is located at the center of the cylinder) can be written as

Ei =
∞∑

n=−∞

[
qnN(1)

n (k0, r) + pnM(1)
n (k0, r)

]
,

Hi = −i

√
ε0

μ0

∞∑
n=−∞

[
pnN(1)

n (k0, r) + qnM(1)
n (k0, r)

]
,

Es = −
∞∑

n=−∞

[
bnN(3)

n (k0, r) + anM(3)
n (k0, r)

]
,

Hs = i

√
ε0

μ0

∞∑
n=−∞

[
anN(3)

n (k0, r) + bnM(3)
n (k0, r)

]
,

Eins =
∞∑

n=−∞

[
cnN(1)

n (k1, r) + cnM(1)
n (k1, r)

+ dnN(1)
n (k2, r) − dnM(1)

n (k2, r)
]
,

Hins = −i

√
ε0ε

μ0μ

∞∑
n=−∞

[
cnN(1)

n (k1, r) + cnM(1)
n (k1, r)

− dnN(1)
n (k2, r) + dnM(1)

n (k2, r)
]
, (5)

where k1,2 = (
√

εμ ± κ )k0 are wavenumbers inside the chiral
cylinder, pn, qn, an, bn and cn, dn are the expansion coefficients
for the incident field, scattered field and field inside the
cylinder, respectively, and M(J )

n , N(J )
n are the vector cylindrical

wave functions [40], which are expressed as

M(J )
n (k, r) =

[
in

kr
z(J )
n (kr )er − z(J )

n

′
(kr )eφ

]
einφ,

N(J )
n (k, r) = z(J )

n (kr )einφez

with z(1)
n (kr ) = Jn(kr ), z(1)

n

′(kr ) = Jn
′(kr ) denoting the

Bessel function and its derivative with respect to its argument,
and z(3)

n (kr ) = H (1)
n (kr ), z(3)

n

′(kr ) = H (1)
n

′(kr ) denoting the
Hankel function of first kind and its derivative with respect
to its argument. The expansion coefficients are related by [40]

an = Anpn + Cnqn, bn = Cnpn + Bnqn, (6)

where An, Bn, and Cn are the Mie coefficients corresponding to
electric, magnetic and chirality parts, respectively. Employing
the boundary conditions that the tangential components of the
electromagnetic fields should be continuous, we have

qnJn(x0) − bnH
(1)
n (x0) = cnJn(x1) + dnJn(x2),

pnJn
′(x0) − anH

(1)
n

′
(x0) = cnJn

′(x1) − dnJn
′(x2),

pnJn(x0) − anH
(1)
n (x0) =

√
ε

μ
[cnJn(x1) − dnJn(x2)],

qnJn
′(x0) − bnH

(1)
n

′
(x0) =

√
ε

μ
[cnJn

′(x1) + dnJn
′(x2)], (7)
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where x0,1,2 = k0,1,2r0 are dimensionless size parameters with r0 being the radius of the cylinder. Then the Mie coefficients for
all orders can be obtained by solving Eq. (7). In the long-wavelength limit that x0 � 1, remaining only the lowest order of x0,
the zeroth and first-order Mie coefficients are reduced to

A0 = i

4
(1 − μ)πx2

0 , A±1 = − i

4

1 + ε − μ + εμ − κ2

1 + ε + μ + εμ − κ2
πx2

0 ,

B0 = i

4
(1 − ε)πx2

0 , B±1 = − i

4

1 − ε + μ + εμ − κ2

1 + ε + μ + εμ − κ2
πx2

0 , (8)

C0 = − i

4
κπx2

0 , C±1 = − i

2

κ

1 + ε + μ + εμ − κ2
πx2

0 .

B. Multiple scattering formulism for bianisotropic cylinders

In this subsection, we will derive the secular equation for a lattice of chiral cylinders starting from the MST. Here we consider
a much more general case that the chiral cylinders do not need to be isotropic. According to the Mie theory, the scattering
properties can still be described by the Mie coefficients An,Bn, Cn which now can become very complicated and cannot be
simply expressed in a closed form as in Eq. (8). The only condition must be fulfilled is An = A−n, Bn = B−n, and Cn = C−n

for n = 0, 1, which is true when the constitutive parameters of the cylinders are given by Eq. (1).
For a 2D periodic system with multiple scattering between the cylinders, the incident field acting on an arbitrary cylinder j

also includes the scattering fields from other cylinders, which can be written as

Ei (j ) = −
∑
l �=j

∞∑
m=−∞

[
al

mM(3)
m (k0, r − rl ) + bl

mN(3)
m (k0, r − rl )

]
,

Hi (j ) = i

√
ε0

μ0

∑
l �=j

∞∑
m=−∞

[
bl

mM(3)
m (k0, r − rl ) + al

mN(3)
m (k0, r − rl )

]
, (9)

where al
m, bl

m, and rl are scattering coefficients and location of cylinder l. Using the translation additional theorem [41]

M(3)
m (k0, r − rl ) =

∑
n

H
(1)
m−n(kdlj )e−i(n−m)φlj M(1)

n (k0, r − rj ),

N(3)
m (k0, r − rl ) =

∑
n

H
(1)
m−n(kdlj )e−i(n−m)φlj N(1)

n (k0, r − rj ), (10)

where rlj=rj − rl = (dlj , φlj ) is the vector that directs from cylinder j to cylinder l and imposing the Bloch condition in the
periodic structure:

al
m = aj

meiK·rlj , bl
m = bj

meiK·rlj ,

where K = (K,φK ) is the Bloch vector, the incident fields can be rewritten as

Ei (j ) = −
∞∑

n=−∞

[ ∞∑
m=−∞

aj
mSm−nM(1)

n (k0, r − rj ) +
∞∑

m=−∞
bj

mSm−nN(1)
n (k0, r − rj )

]
,

Hi (j ) = i

√
ε0

μ0

∞∑
n=−∞

[ ∞∑
m=−∞

bj
mSm−nM(1)

n (k0, r − rj ) +
∞∑

m=−∞
aj

mSm−nN(1)
n (k0, r − rj )

]
, (11)

where Sm−n is the lattice sum defined as

Sm−n =
∑
l �=j

eiK·rlj H
(1)
m−n(kdlj )e−i(n−m)φlj , Sn−m = −(Sm−n)∗.

Then we have the self-consistent equations

a
j
n =

∞∑
m=−∞

(
Ana

j
mSm−n + Cnb

j
mSm−n

)
, b

j
n =

∞∑
m=−∞

(
Cna

j
mSm−n + Bnb

j
mSm−n

)
. (12)
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The dispersion relation ω(K) is obtained from the condition that gives nontrivial solutions to Eq. (12) [42]. Up to dipole orders,
the secular equation is reduced to

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1S0 + 1 A1S−1 A1S−2 C1S0 C1S1 C1S−2

A0S1 A0S0 + 1 A0S−1 C0S1 C0S0 C0S−1

A1S2 A1S1 A1S0 + 1 C1S2 C1S1 C1S0

C1S0 C1S−1 C1S−2 B1S0 + 1 B1S−1 B1S−2

C0S1 C0S0 C0S−1 B0S1 B0S0 + 1 B0S−1

C1S2 C1S1 C1S0 B1S2 B1S1 B1S0 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (13)

In the long-wavelength limit where ω → 0, K → 0, the lattice sum can be decoupled as [42,43]

Sn = 4in+1

k2
0�

Kn

kn
0

(
k2

0 − K2
)e−inφK − 2n+3in+1(n + 1)!

kn
0an−2�

∑
Kh �=0

Jn+1(Kha)

(Kha)3 e−inφKh , (14)

where a denotes the lattice constant, � is the volume of the unit cell, and Kh = (Kh, φKh
) is the reciprocal-lattice vector. Then

in the long-wavelength limit, the lowest order lattice sums are expressed as [43,44]

S0 = 4i

k2
0�

1

k2
0 − K2

, S±1 = ∓ 4

k2
0�

K

k0
(
k2

0 − K2
)e∓iφK , S±2 = − 4i

k2
0�

K2

k2
0

(
k2

0 − K2
)e∓2iφK . (15)

C. Obtaining the effective constitutive parameters

Substituting Eq. (15) into Eq. (13) and collecting together
terms involving the same powers of K, the secular equation can
be written as

PK4k−4
0 + QK2k−2

0 + RS = 0, (16)

where

P = (i + �A1)(i + �B1) − �2C2
1 ,

R = (1 + i�A0)(1 + i�B0) + �2C2
0 , (17)

S = (i − �A1)(i − �B1) + �2C2
1 ,

with � = 4/k2
0�, Q is a function of the Mie coefficients and �

(since Q is complicated and not used explicitly in the follow-
ing, we do not show its explicit expression here). According
to the Vieta’s formulas, the two solutions to Eq. (16),K2

+ and
K2

−, fulfill the relationship

K2
+K2

− = k4
0R

S

P
. (18)

From Eq. (17), we can see that R and S/P are related to the
zeroth and first order Mie coefficients, respectively. And we
note that the zeroth and first order Mie coefficients are related
to the monopoles and dipoles which correspond to the z and
transverse components, respectively. Thus, comparing Eq. (4)
with Eq. (18), we obtain

εzμz − κ2
z = R, εtμt − κ2

t = S

P
. (19)

Substitute Eq. (17) into the first equation of Eq. (19), we can
obtain the out-plane components of the effective parameters

as

εz = 1 + i�B0, μz = 1 + i�A0, κz = i�C0. (20a)

We can see that Eq. (20a) just reduces to the achiral form
[42] when there is no chirality. The expressions for in-plane
components of the effective parameters can be determined
with the following considerations: according to the duality
symmetry, εt and μt should be interchanged when A1 and B1

are interchanged; they are even functions of C1; they can be
reduced to the achiral forms of

εt = (i − �A1)

(i + �A1)
, μt = (i + �A1)

(i + �A1)
, (21)

when C1 is zero; for κt , it is an odd function of C1. With all
this information, we can obtain

εt = (i − �A1)(i + �B1) + �2C2
1

(i + �A1)(i + �B1) − �2C2
1

,

μt = (i + �A1)(i − �B1) + �2C2
1

(i + �A1)(i + �B1) − �2C2
1

, (20b)

κt = −2i�C1

(i + �A1)(i + �B1) − �2C2
1

.

For special case of isotropic inclusions, substituting Eq. (8)
into Eq. (20), then we have

εz = (ε − 1)p + 1, μz = (μ − 1)p + 1, κz = κp,

(22a)
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and

εt = (ε + 1)(μ + 1) − κ2 + 2p(ε − μ) − p2((ε − 1)(μ − 1) − κ2)

(ε + 1)(μ + 1) − κ2 + 2p(1 + κ2 − εμ) + p2[(ε − 1)(μ − 1) − κ2]
,

μt = (ε + 1)(μ + 1) − κ2 − 2p(ε − μ) − p2((ε − 1)(μ − 1) − κ2)

(ε + 1)(μ + 1) − κ2 + 2p(1 + κ2 − εμ) + p2[(ε − 1)(μ − 1) − κ2]
, (22b)

κt = 4pκ

(ε + 1)(μ + 1) − κ2 + 2p(1 + κ2 − εμ) + p2[(ε − 1)(μ − 1) − κ2]
,

wherep = 4k2
0S/� = S/�denotes the filling ratio andS is the

geometrical cross section of the inclusion. We see that Eq. (22b)
bears some resemblance to the 3D chiral Maxwell-Garnet
formulas [45,46]. And when κ = 0, Eq. (22) reduces to the
well-known traditional 2D Maxwell Garnett formula.

We note that Eq. (20) is more fundamental than Eq. (22)
since it does not require the inclusions to be isotropic. For
inclusions whose Mie coefficients fulfill An = A−n, Bn =
B−n, Cn = C−nforn = 0, 1, the effective constitutive parame-
ters can be obtained using Eq. (20) once the Mie coefficients are
known. Note that although the Eqs. (20) and (22) are derived
starting from a periodic structure, they are valid for both
regular and random lattice structures in the long-wavelength
limit, since they are only related to the scattering properties of
inclusions, namely the Mie coefficients, and the filling ratios.

From Eq. (22), we can obtain the following relationship:

εz − μz

κz

= εt − μt

κt

= ε − μ

κ
. (23)

The same relationship has been found in 3D isotropic
chiral metamaterials [46]. The identity (23) indicates that
for isotropic chiral inclusions, the relation among effective
constitutive parameters of the metamaterial is essentially equal
to that of the inclusions. Therefore we can tune the effective
constitutive parameters by adjusting the constitutive parame-
ters of the inclusions according to Eq. (23).

Combining Eq. (13b) and Eq. (9) in Ref. [46], we can obtain
a general Maxwell-Garnet form expression for both the 2D and
3D chiral metamaterials as

εt = [α + ε − p(1 − ε)][α + μ + p(1 − μ)] + κ2p2(p − 1)(1 + αp)

[α + ε + p(1 − ε)][α + μ + p(1 − μ)] − κ2(p − 1)2 ,

μt = [α + ε + p(1 − ε)][α + μ − p(1 − μ)] + κ2p2(p − 1)(1 + αp)

[α + ε + p(1 − ε)][α + μ + p(1 − μ)] − κ2(p − 1)2 , (24)

κt = (α + 1)2pκ

[α + ε + p(1 − ε)][α + μ + p(1 − μ)] − κ2(p − 1)2 ,

where α = d − 1 with d being the dimension of the system.

III. THE ELECTRO/MAGNETOSTRICTIVE TENSORS

The electrostrictive and magnetostrictive tensors de-
scribe the stiffness of constitutive parameters under stretch-
ing and shearing [47–50]. These tensors are defined as
∂

↔
ε/∂uik, ∂

↔
μ/∂uik and ∂

↔
κ/∂uik for the permittivity, permeabil-

ity and chirality parts, respectively. Here, uik = (∂ui/∂xk +
∂uk/∂xi )/2 is the strain tensor with u(x) being the dis-
placement vector [51]. In Fig. 2, the geometrical sketches of
the stretched and sheared unit cells for square and hexag-
onal lattices are shown, and the strain tensor is given by
uxx = 2�a/a, uxy = �a/a for the square lattice and uxx =
2�a/a, uxy = �a/(

√
3a) for hexagonal lattice, where �a is

an infinitesimal displacement. The electrostrictive and magne-
tostrictive tensors play import roles in studying the electrostric-
tion and magnetostriction effect [50], and it has already been
shown that the electrostrictive and magnetostrictive tensors are
necessary for determining the optical force distribution inside
metamaterials [44,52,53].

The electrostrictive and magnetostrictive tensors can be
obtained by the perturbation approach using multiple scattering

formulism [44]. For the lattice stretched along the x direction,
the lattice sums can be expressed as [44]

S0 = i�
1

k2
0 − K2

(1 − uxx ),

S±1 = ∓�
K

k0
(
k2

0 − K2
)e∓iφK (1 − uxx ), (25)

S±2 =
(

−i�
K2

k2
0

(
k2

0 − K2
)e∓2iφK + i�uxx

)
(1 − uxx ),

where � = 1.298� for the square lattice and � = 0.499� for
the hexagonal lattice. Substituting Eq. (25) into the secular
equation Eq. (13), and then we obtain K2

+K2
− as a function of

uxx . Thus we could have

1

k4
0

∂ (K2
+K2

−)

∂uxx

∣∣∣∣uxx→0 = ∂

∂uxx

[(
εzμz − κ2

z

)(
εtμt − κ2

t

)]

= [−�(A0 + B0) + 2�
(
A0B0−C2

0

)] S
P

−R
T

P 2
, (26)
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a

Kφ

aΔ aΔ

aΔ aΔ
a

(a) (b)

(c) (d)

FIG. 2. The unit cell deformations used to calculate the elec-
trostrictive and magnetostrictive tensors. The upper (lower) panels
are for the square (hexagonal) lattice. [(a) and (b)] Original square
lattice unit cell is shown as semitransparent green squares. The unit
cell is stretched or sheared �a in x direction, with the deformed cell
shown by blue parallelograms. Here, a and φK denote the side length
of cell and the direction of wave vector, respectively. [(c) and (d)]
Counterparts for the hexagonal lattice.

where P, R, and S are defined in Eq. (17), and

T = 2�
{
�B2

1 + A2
1[� + �2B1(i + 2�B1)]

− iB1
(−1 + �2C2

1

)+ 2�C2
1

(
1 + �2C2

1

)
+ iA1

[
1 + �2

(
B2

1 − C2
1 + 4i�B1C

2
1

)]}
. (27)

We already know that (εzμz − κ2
z ) = R, (εtμt − κ2

t ) = S/P ,
see Eq. (19). Thus we have

∂

∂uxx

(
εzμz − κ2

z

) = −�(A0 + B0) + 2�
(
A0B0 − C2

0

)
(28)

and

∂

∂uxx

(
εtμt − κ2

t

) = − T

P 2
. (29)

According to Eq. (28) and Eq. (20a), we could easily obtain
that

∂εz

∂uxx

= −i�B0 = 1 − εz,
∂μz

∂uxx

= −i�A0 = 1 − μz,

∂κz

∂uxx

= i�C0 = −κz. (30a)

For the in-plane components, we write

∂εt

∂uxx

= 2�A1(i + �A1)(i + �B1)2 − g1C
2
1 + 2�3�C4

1[
(i + �A1)(i + �B1) − �2C2

1

]2 ,

∂μt

∂uxx

= 2�B1(i + �B1)(i + �A1)2 − g2C
2
1 + 2�3�C4

1[
(i + �A1)(i + �B1) − �2C2

1

]2 ,

∂κt

∂uxx

= f1C1 + f2C
3
1[

(i + �A1)(i + �B1) − �2C2
1

]2 , (31)

where g1, g2 and f1, f2 are coefficients to be determined. We
write ∂εt/∂uxx and ∂μt/∂uxx in such forms by the consid-
eration of three aspects. First, they should be interchanged
when A1 and B1 are interchanged. Second, they should be
even functions of C1 (or κ). Third, they should reduce to the
achiral forms

∂εt

∂uxx

= 2�A1(i + �A1)

(i + �A1)2 ,
∂μt

∂uxx

= 2�B1(i + �B1)

(i + �A1)2 , (32)

when C1 vanishes at κ = 0. For the chirality, ∂κt/∂uxx should
be an odd function of C1.

Substituting Eqs. (31) and (20b) into Eq. (28), we could
have

g1 + g2 = −2�
[−4� + i�

(
A2

1 + B2
1

)+ 2�

+ 2i��(A1 + B1) + 4�2�A1B1
]
,

f1 = −�
{
2i + 3�A1 + �B1 + �B1

[
2�A2

1 − iB1

+A(3i − 2�B1)
]+ 2�

[
i�A2

1 + B1

−A1(1 + 3i�B1)
]}− 1

2 (A1 − B1)g1,

f2 = −2i�(−�2 + 2��). (33)

Up to now, g1, g2 and f1 are still undetermined. We use
another information that Eq. (31) should be reduced to the
form of the amorphous metamaterials when � = 0. The
electrostrictive and magnetostrictive tensors for amorphous
metamaterials can be directly obtained according to Eq. (20b),
namely,

∂εt

∂uxx

= −p
∂εt

∂p
= 2�

[
iA1(i + �B1)2 + �(2 − i�B1)C2

1

]
[
(i + �A1)(i + �B1) − �2C2

1

]2
= 2�A1i(i + �B1)2 − g1C

2
1[

(i + �A1)(i + �B1) − �2C2
1

]2
∣∣∣∣�=0. (34)

And considering thatg1 andg2 should be interchanged when
interchanging A1 and B1, we have

g1 = −2�(−2� + i�2B1 + � + 2i��A1 + 2�2�A1B1).

(35)

Substituting Eq. (35) into Eq. (31) and combining Eqs. (33)
and (20b), we finally have

∂εt

∂uxx

= −ε2
t + κ2

t − 1

2
+ (εt − 1)2 + κ2

t

2

�

�
cos 2φK,

∂μt

∂uxx

= −μ2
t + κ2

t − 1

2
+ (μt − 1)2 + κ2

t

2

�

�
cos 2φK, (30b)

∂εt

∂uxx

= − (εt + μt )κt

2
+ (εt + μt − 2)κt

2

�

�
cos 2φK.

The partial differential of the constitutive parameters with
respect to uyy can be directly obtained by replacing �

by −� [44].
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For the sheared lattice, the lattice sums are [44]

S0 = i�
1

k2
0 − K2

, S±1 = ∓�
K

k0
(
k2

0 − K2
)e∓iφK ,

S±2 = −i�
K2

k2
0

(
k2

0 − K2
)e∓2iφK ∓ �uxy, (36)

where � = 0.596� for the square lattice and � = −1.0� for
the hexagonal lattice. For the unit cell being sheared, substi-
tuting Eq. (38) into the secular equation Eq. (13), similarly we
have

1

k4
0

∂

∂uxy

(K2
+K2

−)|uxy→0 = ∂

∂uxy

[(
εzμz − κ2

z

)(
εtμt − κ2

t

)]

= R
U

P 2
, (37)

with

U = −i��
(
A2

1 + B2
1 + 2�2A2

1B
2
1 − 4�2A1B1C

2
1

+ 2C2
1 + 2�2C4

1

)
. (38)

Then we can easily obtain that

∂

∂uxy

(
εzμz − κ2

z

) = 0,
∂

∂uxy

(
εtμt − κ2

t

) = U

P 2
. (39)

We can do the same procedures as we did for the tensors of
diagonal term and finally have

∂εz

∂uxy

= ∂μz

∂uxy

= ∂κz

∂uxy

= 0,

∂εt

∂uxy

= − (εt − 1)2 + κ2
t

2

�

�
sin 2φK,

∂μt

∂uxy

= − (μt − 1)2 + κ2
t

2

�

�
sin 2φK,

∂κt

∂uxy

= − (εt + μt − 2)κt

2

�

�
sin 2φK, (40)

We can see that Eqs. (30) and (40) are just reduced to the
Eq. (2) in Ref. [52] when κz = κt = 0. We note that the validity
of Eqs. (30) and (40) is not restricted to square and hexagonal

lattices. For other lattice structures, we only need change the
values of � and �, for example for random lattice, they are
� = 0 and � = 0.

IV. NUMERICAL TESTING OF THE FORMULAS FOR
BIANISOTROPIC METAMATERIALS COMPOSED OF

ISOTROPIC INCLUSIONS

In this section, we will numerically check the validity of
Eqs. (22), (30), and (40), and consider examples that the bian-
isotropic metamaterials are composed of isotropic cylindrical
inclusions whose constitutive parameters are already known.
First, we will numerically check the validity of Eq. (22). We
consider a square/hexagonal lattice formed by 50 layers of
cylinders (ε = 8, μ = 1, and κ = 2) in the x direction and
is periodic along the y direction. When the lattice constant
a is much smaller than the wavelength, such a lattice can be
regarded as an effective slap according to the EMT and the cor-
responding effective constitutive parameters can be obtained
using Eq. (22). The validity of the effective parameters can
be tested by checking the consistence between the spatially
averaged lattice fields, such as the electric field and displace-
ment field: Ē = 1/�

∫
�

EdS, D̄ = 1/�
∫
�

DdS, and the fields
in the corresponding effective medium Ee, De, as in the long-
wavelength limit these two should be equal [54]. To do this, we
consider a Hz polarized plane wave obliquely incident on the
lattices, as shown in the insets of Fig. 3, and calculate the spa-
tially averaged lattice fields using a commercial finite-element-
method package COMSOL [55]. The electric field and displace-
ment field along the x direction inside the corresponding effec-
tive medium are also numerically computed. We can see that
for both square [Fig. 3(a)] and hexagonal lattices [Fig. 3(b)],
the spatially averaged lattice fields (symbols) are in accordance
with the fields in effective mediums (lines). Such consistence
also exists for the magnetic field. This indicates that our formu-
las Eq. (22) can correctly determine the effective constitutive
parameters for this kind of bianisotropic metamaterials.

Another way to test the validity of Eq. (22) is by checking
the consistency of the effective refractive indices of the meta-
materials and those of the corresponding effective mediums.
The former can be numerically determined from the slopes
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0.8 (b)

π/3

layer

FIG. 3. The spatially averaged electric field and displacement field of each layer inside the metamaterials with (a) the square and (b) hexagonal
lattices are noted by the circles. The electric field and displacement field along the x direction in each corresponding effective continuous medium
under same incidence are shown by lines. The inclusions of the metamaterials possess ε = 8, μ = 1, κ = 2, and r0 = 0.3a.
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FIG. 4. Comparison between the refractive indices obtained from the formulas and those from numerical calculations for both (a) the square
and (b) hexagonal lattice structures. The horizontal axis denotes the absolute chirality of the inclusions. For the square lattice, the inclusions
possess ε = μ = 8, and for hexagonal lattice the inclusions possess ε = 8 and μ = 1. The cylinders have radius r0 = 0.3a.

of photonic band dispersion in the limit ω → 0 and k → 0.
The latter can simply be obtained using Eq. (3) where the
effective constitutive parameters used are obtained according
to Eq. (22). Note that two refractive indices n+ = K+/k0

and n− = K−/k0 are considered here, corresponding to two
eigenmodes. The comparison results as functions of chirality
are shown in Fig. 4. We set ε = μ = 8 for the inclusions of
the square lattice and ε = 8, μ = 1 for the inclusions of the
hexagonal lattice. It is seen that in both cases the numerical

results (symbols) match the analytical results (lines) very well,
again confirming the validity of the derived analytical formulas
for the effective constitutive parameters.

The validity of the derived electrostrictive and magne-
tostrictive tensors in Eqs. (30) and (40) are tested by comparing
them with numerical simulation results, which are obtained
using the eigenfields and the band dispersions combined with
finite-differences method (see the details in Appendix A). The
comparison results for both the square and hexagonal lattices
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FIG. 5. Comparison between tensor components obtained from analytic formulas and those from numerical calculations for both square
and hexagonal lattice structures. Results as functions of the direction of Bloch vector φK obtained from the formulas and numerical calculations
are shown by lines and circles, respectively. α denotes ε, μ, or κ . The inclusions of the metamaterials possess constitutive parameters ε =
8, μ = 3, κ = 3, and radius r0 = 0.3a.
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FIG. 6. (a) The sandwiched metamaterial slab is composed of artificial chiral cylinders arranged into a square lattice (lattice constant a) in
the xy plane. These artificial cylinders are formed by a chain of helices as shown in panel (c). There are N layers in the x direction periodic
along the y direction. The incident wave vector (red arrow) forms an angle θ with x axis. (b) The corresponding effective homogenous medium.
The black dashed line in (a) and (b) marks the boundary of a unit cell, used in electromagnetic stress tensor integrations. (c) There are two
types of artificial chiral cylinders that consist of identical gold helixes periodically arranged into a chain along z direction. The unit cells of the
chains for the two types are shown in the dashed line boxes. Type-I structure has an out-of-plane chirality component κz while type II has an
in-plane chirality component κt . The period of the unit cell along z direction is D = 2H = 1.2 μm. Each helix contains 6 pitches and we set
the geometrical parameters of the helix as r = 15 nm, R = 200 nm, and p = 100 nm.

are shown in Fig. 5. The constitutive parameters of the cylinders
are ε = 8, μ = 3, and κ = 3, and the radius is r0 = 0.3a.
The tensor components ∂εz/∂uxy, ∂μz/∂uxy, and ∂κz/∂uxy

are zero and not shown here. We can see clearly that the
electrostrictive and magnetostrictive tensors obtained from
numerical calculations (circles) are identical to those calcu-
lated using the formulas (lines). Since the results obtained
using the numerical method correspond to the real system, the
consistency indicates that our formulas Eqs. (30) and (40) can
correctly produce the elecrto/magnetostrictive tensors.

For the inclusions which are not isotropic, Eq. (22) is no
longer applicable. However, we can use Eq. (20) as well as
Eqs. (30) and (40) to calculate the effective constitutive pa-
rameters and the electro/magnetostrictive tensors. Equations.
(20), (30), and (40) are valid once the two conditions are met: 1)
the Mie coefficients of the inclusions fulfill An = A−n, Bn =
B−n, and Cn = C−n for n = 0, 1; 2) the long-wavelength limit
is good. We find that the formulas can still produce rather
accurate results in configurations where the two conditions are
not exactly fulfilled, as we will show in the following section.

V. BIANISOTROPIC METAMATERIALS REALIZED BY
HELICAL STRUCTURES

Because chirality in natural materials is usually very weak,
bianisotropic metamaterials are frequently fabricated using

man-made inclusions with complex underlying structures pos-
sessing strong magnetoelectric coupling using resonance. Ex-
amples of resonating structures include metallic split rings [19–
21,27,28,30], gammadions [22,29,31], and helices [16,18].
Here, we use two kinds of helix chains which are labeled as
type I and II to form the artificial chiral inclusions, as shown in
Fig. 6(c). The type-I inclusion consists of a chain of helices with
axis along the z direction, while the type II consists of a chain of
helices with orthogonal axes along x and y directions, respec-
tively. The helix chains are along z direction and have the same
period D. Therefore the bianisotropic metamaterials composed
of type-I and type-II inclusions possess out-of-plane chirality
κz and in-plane chirality κt , respectively. Each helix we used
has minor radius r = 15 nm, major radius R = 200 nm and
contains 6 pitches with pitch length p = 100 nm. The helices
are made of gold whose relative permittivity is described
by the Drude model εAu = 1 − ω2

p/(ω2 + iωωτ ) with plasma
frequency ωp = 1.36 × 1016 s−1 and damping frequency ωτ =
4.084 × 1013 s−1. As the pitch length p is much smaller than
the major radius R, the helix is almost rotational invariant
about its axis. As such, the Mie coefficients of the type-I
and -II cylinders fulfill An ≈ A−n, Bn ≈ B−n, and Cn ≈ C−n

(verified by the numerical calculations) which is one of the
condition that the effective parameters of the metamaterials
composed of these cylinders can be calculated using Eq. (20).
And also, the lattice constant of the metamaterial is set to
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be a = 1 μm, which is much smaller than the wavelength
λ = 21.43 μm of the incident wave (corresponding to the
resonant frequency f = 14 THz), and the other necessary
condition, namely the long-wavelength limit approximation, is
met. Therefore, we can use Eq. (20) to calculate the effective
constitutive parameters for the bianisotropic metamaterials we
considered here. For the inclusions with helical structures,
the Mie coefficients can no longer be obtained directly from
Eq. (8). But we can acquire the Mie coefficients numerically
according to the scattering fields of a single inclusion. The
detail of the numerical method will be shown in the following
section.

A. Numerically obtaining the Mie coefficients of the
artificial cylinders

The Mie coefficients of the artificial chiral cylinder can be
determined according to the scattering fields Es and Hs of the
cylinder in the far field region. Since the scattering fields can
be expanded in terms of a complete orthogonal set, namely the
vector cylindrical wave functions M(3)

n and N(3)
n , see Eq. (5),

the scattering coefficients can be obtained by

an = 1

2πH
(1)
n−1(k0r )H (1)

n+1(k0r )

∫ 2π

0
Es · [M(3)

n (k0, r)
]∗

dφ,

bn = − 1

2π
[
H

(1)
n (k0r )

]2
∫ 2π

0
Es · [N(3)

n (k0, r)
]∗

dφ, (41)

where we defined[
M

(3)
n

(k, r)
]∗ =

[
in

kr
H (1)

n (kr )er − H (1)
n

′
(kr )eφ

]
e−inφ,

[
N

(3)
n

(k, r)
]∗ = H (1)

n (kr )e−inφez.

The scattering coefficients can also be obtained according
to the magnetic scattering field as

an = 1

i

1

2π
[
H

(1)
n (k0r )

]2
∫ 2π

0
Hs · [N(3)

n (k0, r)
]∗

dφ,

bn = i

2πH
(1)
n−1(k0r )H (1)

n+1(k0r )

∫ 2π

0
Hs · [M(3)

n (k0, r)
]∗

dφ.

(42)

Equations (41) and (42) produce the same results in prin-
ciple. And then we can further obtain the Mie coefficients ac-
cording to the relations Eq. (6) once the expansion coefficients
for the incident field pn, qn are known.

For Hz-polarized plane wave propagating along the x direc-
tion, we have pn = −in, qn = 0, and for Ez-polarized plane
wave propagating along the x direction, we have pn = 0, qn =
in. As a result, we can obtain two sets of scattering coefficients
after solving the scattering fields in the far field region and ap-
plying Eqs. (41) or (42) when the artificial cylinder illuminated
by a Hz and a Ez-polarized plane wave, respectively. And then
we further obtain the Mie coefficients using the identity Eq. (6).
In the simulations, we use the commercial software COMSOL

[55] to solve the scattering fields of a single artificial cylinder.
We found that the Mie coefficients of the type I and type II
inclusions satisfy An ≈ A−n, Bn ≈ B−n, and Cn ≈ C−n for
n = 0, 1. This is one necessary condition that the effective

parameters of the metamaterials composed of these cylinders
can be calculated using Eq. (20).

In our method, the retrieval of the Mie coefficients only
needs to be done once if the metamaterials with different lattice
constants and symmetries are made using the same inclusions.
This is an advantage comparing with conventional parameter
retrieval methods [27–31], which requires the repetition of
the retrieval procudure when the lattice constant or symmetry
changes. And we only need to calculate the scattering of a
single inclusion but not the reflectance and transmittance of
a lattice of inclusions, which is obviously more efficient. In
addition, after obtaining the effective constitutive parameters,
we can calculate the electrostrictive and magnetostrictive ten-
sors directly using Eqs. (30) and (40), avoiding the numerical
error accumulation resulting from taking numerical derivatives
using finite difference procedures.

B. Numerically testing the results produced
by Eqs. (20), (30), and (40)

To test whether the effective constitutive parameters calcu-
lated using Eq. (22) are correct, we consider the configuration
shown in Fig. 6(a), with a plane wave incident obliquely
on the bianisotropic metamaterial slab with a square lattice
structure, which has N layers along the x direction and is
periodic along the y direction. In the long-wavelength limit,
the metamaterial can be treated as an effective homogenous
medium. The metamaterial, which is sandwiched by two layers
of effective medium of the same type, should correspond to
the effective medium slab shown in Fig. 6(b). We note that
introducing the two layers of effective medium in Fig. 6(a)
helps to reduce the boundary effect, which does not affect the
physics discussed here.

We first consider bianisotropic metamaterial composing of
an array of type I chiral cylinders, where the helices are right-
handed. The quality of the effective constitutive parameters
calculated by Eq. (22) can be checked by comparing the
spatially averaged lattice fields (1/�

∫
�

Ed�, 1/�
∫
�

Hd�)
and the effective fields (Ee, He) in the corresponding effective
medium, just as we did in previous section. With no loss of
generality, we consider a Hz polarized plane wave incident
from the left-hand side at an angle of θ = π/6, and the com-
parison for the y component fields is shown in Fig. 11(a). We
can see that the spatially averaged lattice fields (circles) match
the effective fields (lines) well. So the effective constitutive pa-
rameters provide an accurate description of the fields inside the
metamaterial. We next consider the bianisotropic metamaterial
composed of type-II cylinders and assume the same lattice
constant and incident wave as in type I. Figure 12(a) shows
that the spatially averaged lattice fields and the effective fields
in the corresponding effective medium are consistent with
each other, indicating that the effective constitutive parameters
are correctly obtained. For the type-II metamaterials, we also
considered the case that each helix possesses a high dielectric
core with relative permittivity εc = 12.5, as shown in the
inset of Fig. 12(c), and considered a Ez polarized plane
wave incident with incident angle θ = π/3. The results are
shown in Fig. 12(c), and we can see the consistency between
the spatially averaged lattice fields and the fields inside the
effective medium at the resonant frequency f = 10.6 THz.
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FIG. 7. (a) Comparison of the spatially averaged EM fields inside the metamaterial using full wave simulations (circles) and the effective
fields in corresponding effective medium (lines) for type-I structure. The field intensity is normalized by the incident fields. (b) Optical force
densities calculated using different approaches. The incident plane wave is Hz-polarized with an amplitude of E0 = 105V/m wavelength in
vacuum λ = 21.43 μm. Other parameters are N = 40, a = 1 μm, L = 0.2 μm, and θ = π/6. The effective constitutive parameters for the
metamaterials are given by Eq. (20) as εz = 0.666 + 1.05i, μz = 0.928 + 0.140i, κz = −0.160 + 0.392i, εt = 1.21, μt = 1.00, and κt = 0.

We also used the numerical calculation results to test the
validity of Eq. (30). The numerical calculation is based on
analyzing the eigenfields and the band dispersions combined
with finite-differences method (see details in Appendix A).
However, because the lattice fields contain strong surface

plasmon fields and the system is a three-dimensional one,
too much memory is required to ensure the dispersion re-
lations and the fields are calculated accurately enough for
applying the finite difference method. As a consequence,
we first treated the helix chain as an effective cylinder with

FIG. 8. (a) Comparison of the spatially averaged EM fields inside the metamaterial (circles) and the effective fields in corresponding effective
medium (lines) for type-II cylinders. (b) Optical force density evaluated using different approaches. (c) Comparison of the spatially averaged
EM fields inside the metamaterial formed of helices with a high dielectric (εc = 12.5) cylinder core. The dielectric core (shown by the inset)
has height H ′ = 0.6 μm and radius R′ = 170 nm. (d) Optical force density evaluated using different approaches for the metamaterial formed
of helices with dielectric core. For (a) and (b), the incident wave is Hz-polarized with λ = 21.43 μm and θ = π/6, and the effective parameters
are εz = 1.47, μz = 1.00, κz = 0, εt = 0.751 + 0.835i, μt = 0.933 + 0.129i, and κt = −0.173 + 0.327i. For (c) and (d), the incident wave is
Ez-polarized with λ = 28.28 μm and θ = π/3, and the effective parameters are εz = 1.49, μz = 1.0, κz = 0, εt = 1.26 + 0.42i, μt = 0.969 +
0.116i, and κt = −0.062 + 0.220i. Other parameters are N = 40, a = 1 μm, L = 1 μm, and E0 = 105V/m.
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FIG. 9. For metamaterials composed by type-I chiral cylinders, the comparison between tensor components obtained from formulas (lines)
and those from numerical calculations (circles). Results as functions of the direction of Bloch vector φK obtained from the formulas and
numerical calculations are shown by lines and circles, respectively.
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(lines) and those from numerical calculations (circles). Results as functions of the direction of Bloch vector φK obtained from the formulas and
numerical calculations are shown by lines and circles, respectively.
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a radius reff = 600 nm[� = 4/(k2
0πr2

eff )] and calculated its
effective constitutive parameters for the effective cylinder
using Eq. (20). We then applied the numerical method to
calculate the electrostrictive and magnetostrictive tensors for
the bianisotropic metamaterials composed of these effective
bianisotropic cylinders, just as we did in Sec. IV. As the
materials are lossy, we used the weak-form-PDE module
in COMSOL [55] for non-Hermitian systems to calculate the
complex Bloch k bands (the frequency is real while the Bloch
k is complex) and the eigenfields, see the method detailed in
Appendix B. The electrostritive and magnetostrictive tensors
are obtained from the formulas by substituting the effective
constitutive parameters, which are shown in captions of Figs. 7
and 8, into Eq. (30). Comparisons between the two calculations
for type-I and type-II bianisotropic metamaterials are shown
in Figs. 9 and 10, respectively, and the results calculated by
the formulas and the numerical method are shown by the lines
and circles, respectively. We can see that the results obtained
using analytic formulas are nearly the same with the numerical
results for every φK . We note that the discrepancy between
the lines (analytic formula) and circles (numerical results) in
Figs. 9 and 10 is slightly bigger than those shown in Fig. 5.
The discrepancy can be made smaller if we made the helix
unit and the lattice constant smaller (but the chirality will be
weaker).

VI. ELECTROMAGNETIC STRESS TENSOR FOR
BIANISOTROPIC MEDIUM

Electromagnetic stress tensors can be obtained using the
virtual work principle under the quasi static limit [51,56].
Conventional stress tensors are formulated for achiral medium.
Here we derive an extended form of the stress tensor that works
for the bianisotropic medium whose constitutive parameters
given by Eq. (1).

Consider a small square area inside the bianisotropic
medium with volume ds = a × b, as shown in Fig. 11. As
the EM fields inside this area are almost constant in the
long wavelength limit, the time-averaged total EM energy for
this area is given by W = − 1

4 Re(E · D∗ + H · B∗)ab. If we
subject one of the boundaries to a virtual translation over an
infinitesimal distance ξ , then the variance of the total electric
energy δW should be just equal to the work done by the
boundary force

∑
Tikξinkb, where Tik is the surface stress

tensor and n is the unit normal vector of the boundary. Hence
we have ∑

Tikξinkb = δW = δWs + δWf + δWp, (43)

where the variation of total EM energy δW consists of three
parts which are due to the variations of total volume of the
area, EM fields and constitutive parameters, respectively, and

a

b
virtual deformation

n

FIG. 11. For a very small area dS, the total electric energy of
this area is −1/4Re(E · D∗+H · B∗)dS. If we subject one of the
boundaries to a virtual translation over an infinitesimal distance ξ ,
then the variance of the total electric energy should be just equal
to the work done by the electric component of the boundary force
Tikξinkb, where Tik is the surface stress tensor and n is the normal
vector of the boundary.

they are given by

δWs = −1

4
Re(E · D∗ + H · B∗)bn · ξ

= −1

4
Re(E · D∗ + H · B∗)b

∑
δikξink, (44a)

δWf = ∂

∂E

[
−1

4
Re(E · D∗ + H · B∗)

]
· δEab

+ ∂

∂H

[
−1

4
Re(E · D∗ + H · B∗)

]
· δHab, (44b)

δWp =
∑ ∂

∂η

[
−1

4
Re(E · D∗ + H · B∗)

]
· δηab, (44c)

where δik is Kronecher delta function, η = εt , εz, μt , μz, κt , κz

are constitutive parameters. Note that the potential of each
point on the boundary remains invariant during the deformation
[51], namely E′ · na + E′ · ξ = E · na and E′ × nb = E ×
nb, then we have

δE = E′ − E = −n
E · ξ

a
, δH = H′ − H = −n

H · ξ

a
.

(45)
Substituting the relations into Eq. (44b), we have

δWf = 1

2
Re(n · D∗)(E · ξ )b + 1

2
Re(n · B∗)(H · ξ )b

= 1

2

∑
Re(EiD

∗
k + HiB

∗
k )ξink. (46)

The constitutive parameters are related to the strain tensors,

δεj = ∂εj

∂uik

uik, δμj = ∂μj

∂uik

uik, δκj = ∂κj

∂uik

uik.

with the strain tensors given by [51]

uik = 1

2

(
∂ui

∂xk

+ ∂uk

∂xj

)
= 1

2a
(ξink + ξkni ).

Then Eq. (33c) is reduced to

δWp = −1

4
Re

[
ε0

(
∂εt

∂uik

|Et |2 + ∂εz

∂uik

|Ez|2
)

+ μ0

(
∂μt

∂uik

|Ht |2 + ∂μz

∂uik

|Hz|2
)

+ 2

c
Im(ExH

∗
x + EyH

∗
y )

∂κt

∂uik

+ 2

c
Im(EzH

∗
z )

∂κz

∂uik

]
, (47)
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FIG. 12. Comparison between the spatially averaged EM energy density inside bianisotropic metamaterials using full wave simulations and
the EM energy density in the corresponding effective medium. (a) The parameters used are the same with those in Fig. 7. (b) The parameters
used are the same with those in Figs. 8(a) and 8(b).

where Et = (Ex,Ey ), Ht = (Hx,Hy ) are EM fields in the xy

plane. Combining Eqs. (43), (44a), (46), and (47), we can
then generalize the extended Helmholtz stress tensor for the
bianisotropic medium as

Tik = Re

⎧⎨
⎩EiD

∗
k + HiB

∗
k

2
− 1

4
(E · D∗ + H · B∗)δik

− ε0

4

∑
j

∂εj

∂uik

|Ej |2 − μ0

4

∑
j

∂μj

∂uik

|Hj |2

+ 1

2c

∑
j

∂κj

∂uik

Im(EjH
∗
j )

⎫⎬
⎭. (48)

We call Eq. (48) the extended Helmholtz stress tensor
here because it is an extended form of traditional Helmholtz
stress tensor [51,56] that only works for achiral medium,
and Eq. (48) will reduce to the traditional Helmholtz stress
tensor when all the chirality terms vanish. If we ignore the
electro/magnetostrictive terms of Eq. (48), we will obtain
the Minkowski stress tensor. We also see that the Maxwell
stress tensor is the form of Eq. (48) in vacuum. Equation (48)
is derived by applying virtual work principle based on free
energy formulation of the EM problem. Therefore, when it
is for the metamaterial medium, it requires that the EM en-
ergy density, i.e., −1/4Re(Ee · D∗

e + He · B∗
e ), of macroscopic

effective medium must be equal to that of the microscopic
metamaterial lattice. We proved in the Appendix C that
such a relationship holds in the long-wavelength limit. For
bianisotropic metamaterials with real micro-structures, such
as type-I and II bianisotropic metamaterials, we calculated
the spatially averaged energy densities inside the metamaterial
using full wave simulations and the energy densities inside the
corresponding effective mediums and we show the results in
Fig. 12. We note that the agreement between the microscopic
spatially averaged and effective medium energy densities is not
good near the boundaries. It is expected since EMT description
will fail close to the boundaries. The spatially averaged energy
density is almost but not exactly identical to the corresponding
energy density inside the effective medium, this is because the

lattice constant in the real structure is not that small compared
with the wavelength.

VII. OPTICAL FORCE DENSITY INSIDE
BIANISOTROPIC METAMATERIALS

In this section, we studied the optical force density inside the
type-I and II bianisotropic metamaterials. The configurations
are the same with those considered in Sec. V. We did three
types of calculations. For the first type, the total force acting
on each chiral cylinder is calculated by integrating the Maxwell
stress tensor over a boundary that encloses the cylinder [such
as the dashed square in Fig. 6(a)]. The fields are obtained using
full wave simulations. Dividing this force by the unit cell area
gives the optical force density. The force density determined
in this way is by definition correct because the cylinders are
immersed in air and the unit cell area is small enough. For the
second type calculation, we integrate the extended Helmholtz
stress tensor over the boundary that encloses the same region in
the corresponding effective medium [such as the dashed square
in Fig. 6(b)], using macroscopic effective fields and effective
parameters. The obtained force divided by the same area
corresponds to the optical force density within the effective
medium framework. For the third type, we redid the effective
medium calculation using the Maxwell stress tensor instead of
the extended Helmholtz stress tensor.

For type-I bianisotropic metamaterials, the results produced
by the three different approaches are summarized in Fig. 11(b)
as blue, red, and black symbol lines, respectively. We see
that the extended Helmholtz stress tensor produces results
that agree well with the microscopic lattice results, while the
Maxwell stress tensor fails to do so. For type-II bianisotropic
metamaterials, Fig. 12(b) shows the optical force density
inside the metamaterial obtained using the Maxwell stress
tensor under the full wave simulations and the optical force
densities inside the corresponding effective medium obtained
using both the extended Helmholtz and Maxwell stress tensors
within effective medium formulism. We see that the extended
Helmholtz stress tensor produces accurate optical force den-
sity. Note that in this case the Maxwell stress tensor within
effective medium formulism produces almost the same result.
This is because the effective permittivity and permeability
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|εt |, |μt | are very close to 1 so that the extended Helmholtz
and Maxwell stress tensors produce are almost identical results.
When |εt |, |μt | deviate from 1, for example, in the case that
the helices have a high dielectric cylinder core with relative
permittivity εc = 12.5 as shown in the inset of Fig. 12(c),
the Maxwell stress tensor will no longer give the correct
description of optical force density. The comparison of the
optical force densities calculated using different approaches
is shown in Fig. 12(d). The Maxwell stress tensor gives the
correct trend but not the magnitude of the optical force density
while the results of the extended Helmholtz stress tensor are
in accordance with that of the microscopic lattice.

Calculating the optical force density inside a medium is
a difficult task as different macroscopic stress tensors give
different results. There are multiple formulations of stress
tensor and different experiments tend to support different stress
tensors, which make the issue even more confusing [57–70].
Metamaterials actually offer a good platform to resolve some of
those issues. If we consider a particular class of metamaterials,
comprising an array of resonators in air, the microscopic
structure is clearly specified and the optical force acting on each
microscopic element can be calculated rigorously using stress
tensor approach as we can always choose a contour in air sur-
rounding the element. We can use the force acting on the micro-
scopic element to define a force density for the macroscopic ef-
fective medium system. Using this approach, it has been shown
that the Helmholtz stress tensor is the appropriate tensor for
calculating the optical body/boundary forces of achiral meta-
materials [44,52,53], other stress tensors cannot predict the
force densities well because of the lack the electrostrictive and
magnetostrictive terms and missing the information of micro-
scopic lattice structure. We note that our method provides the
electrostrictive and magnetostrictive tensor for bianisotropic
metamaterials needed in the extended Helmholtz stress tensor
and showed that this stress tensor can produce the most accurate
optical force density. Therefore, our work not only provides
a powerful tool to study the light-matter interaction for the
bianisotropic metamaterial system, but also deepens our under-
standing of the light-induced force inside a complex medium.

VIII. SUMMARY

In summary, using multiple scattering theory, we derived
closed-form expressions for the effective constitutive param-
eters and electro/magnetostrictive tensor components for 2D
bianisotropic metamaterials. We also derived an expression for
the extended electromagnetic stress tensor for these materials.
The effective constitutive parameters can describe the optical
scattering and absorption properties of bianisotropic meta-
materials while the electro/magneto-strictive components, to-
gether with the extended electromagnetic stress tensor, provide
sufficient information to determine the total optical force and
the optical force density induced by external EM waves. We can
use these macroscopic parameters to describe and predict the
optical and optomechanical responses of complex man-made
bianisotropic media, without the need to worry about the com-
plex underlying structure. The results can also deepen our un-
derstanding of light-induced forces inside a complex medium
and may find applications in optical manipulations, such as the
optical stretching, compressing and sorting of materials.
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APPENDIX A: NUMERICAL CALCULATION OF THE
EFFECTIVE CONSTITUTIVE PARAMETERS AND THEIR

ELECTRO/MAGNETOSTRICTIVE TENSORS

The effective constitutive parameters of a photonic crystal
can be obtained numerically by analyzing the eigenfields and
the band dispersions in the long wavelength limit. For photonic
crystals with chiral inclusions, there are two kinds of eigen-
fields corresponding to the lowest two bands. For each kind
of eigenfields, its spatial average Ēj = 1/�

∫
�

Ej dxdy, H̄j =
1/�

∫
�

Hj dxdy should fulfill the Maxwell equations [54]

∇ × (Ēj e
ikj x ) = iωB̄j e

ikj x = iω(
↔
μH̄j − i

↔
κĒj )eikj x,

∇ × (H̄j e
ikj x ) = −iωD̄j e

ikj x = −iω(
↔
εĒj + i

↔
κH̄j )eikj x,

(A1)

where kj , j = 1, 2 is the magnitude of Bloch vector for each
corresponding eigenfield, which can be complex numbers, x̂

denotes the direction of the Bloch vector,
↔
ε,

↔
μ and

↔
κ are the

effective constitutive parameters defined in Eq. (1) in main text.
Then Eq. (A1) is reduced to

ikj

⎛
⎜⎝

0

−Ezj

Eyj

⎞
⎟⎠ = iω

⎡
⎢⎣
⎛
⎜⎝

0

μtHyj

μzHzj

⎞
⎟⎠− i

⎛
⎜⎝

0

κtEyj

κzEzj

⎞
⎟⎠
⎤
⎥⎦,

ikj

⎛
⎜⎝

0

−Hzj

Hyj

⎞
⎟⎠ = −iω

⎡
⎢⎣
⎛
⎜⎝

0

εtEyj

εzEzj

⎞
⎟⎠+ i

⎛
⎜⎝

0

κtHyj

κzHzj

⎞
⎟⎠
⎤
⎥⎦, (A2)

where

Ēj = 1

�

∫
�

Ej dxdy =

⎛
⎜⎝

0

Eyj

Ezj

⎞
⎟⎠,

H̄j = 1

�

∫
�

Hj dxdy =

⎛
⎜⎝

0

Hyj

Hzj

⎞
⎟⎠. (A3)

Solving Eq. (A2), the constitutive parameters can be ob-
tained as

εz = n1Hy1Hz2 − n2Hy2Hz1

Ez2Hz1 − Ez1Hz2
,

εt = −n1Hy2Hz1 − n2Hy1Hz2

Ey2Hy1 − Ey1Hy2
, (A4a)

κz = i
n1Hy1Ez2 − n2Hy2Ez1

Ez2Hz1 − Ez1Hz2
,

κt = −i
n1Ey2Hz1 − n2Ey1Hz2

Ey2Hy1 − Ey1Hy2
, (A4b)
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μz = n1Ey1Ez2 − n2Ey2Ez1

Ez2Hz1 − Ez1Hz2
,

μt = −n1Ey2Ez1 − n2Ey1Ez2

Ey2Hy1 − Ey1Hy2
, (A4c)

κz = −i
n1Ey1Hz2 − n2Ey2Hz1

Ez2Hz1 − Ez1Hz2
,

κt = i
n1Hy2Ez1 − n2Hy1Ez2

Ey2Hy1 − Ey1Hy2
, (A4d)

where n1 = k1/ω and n2 = k2/ω in the limit k1,2 → 0 and
ω → 0 are the effective refractive indices of the metamaterial.
The two equations (A4b) and (A4d) about the chirality tensors
always give the same result due to the relation between the two
eigenfields.

We can repeat the calculation after deforming the unit cell,
and the electrostrictive and magnetostrictive tensors can be
obtained using the finite differences. For example, for the
square lattice, we obtain the effective permittivity of the out-
plane component before and after the unit cell being stretched
using the Eq. (A4) as εz and εz

′, then the electrostrictive term
is given by

∂εz

∂uxx

= εz
′ − εz

(2�a/a)
,

where a is the lattice constant, and �a is an infinitesimal
stretching displacement along the x direction, see Fig. 2.

APPENDIX B: CALCULATING COMPLEX K BLOCH
BANDS FOR BIANISOTROPIC PHOTONIC CRYSTAL

When there is loss, to obtain the eigenfields and the
corresponding Bloch K vectors, we need to calculate the

complex K Bloch bands, which can be calculated using the
Weak-Form-PDE module in COMSOL [71–73].

For bianisotropic medium possesses the following consti-
tutive relations:

D = ↔
εε0E + i

↔
κ/cH, B = ↔

μμ0H − i
↔
κ/cE, (B1)

and if the constitutive parameters have diagonal matrix forms,
the wave equations inside the medium are

∇ × [(
↔
μ

−1↔
κ − ↔

κ
−1↔

ε)
−1

(i
↔
μ

−1∇ × E + c
↔
κ

−1∇ × H)]

= −ω2

c2
(

↔
μH − i

↔
κE),

∇ × [(
↔
κ

−1 ↔
μ − ↔

ε
−1

κ )
−1

(
↔
κ

−1∇ × E − i
↔
ε

−1∇ × H)]

= ω2

c2
(

↔
εE + i

↔
κH). (B2)

For the 2D system, because the transverse fields can be
obtained from the z component fields according to the Maxwell
equations, we only consider the z component fields. And using
the Bloch theorem

Ez = u(r) exp[−i(ωt − k · r)],

Hz = v(r) exp[−i(ωt − k · r)], (B3)

then the wave equations for z component fields are

(ikx, iky ) × [f1(uy + ikyu,−ux − ikxu) − if2(vy + ikyv,−vx − ikxv)]

+∇ × [f1(uy + ikyu,−ux − ikxu) − if2(vy + ikyv,−vx − ikxv)] − i
ω2

c2
(μzv − iκzu) = 0, (B4a)

(ikx, iky ) × [if3(uy + ikyu,−ux − ikxu) + f1(vy + ikyv,−vx − ikxv)]

+∇ × [if3(uy + ikyu,−ux − ikxu) + f1(vy + ikyv,−vx − ikxv)] + i
ω2

c2
(εzu + iκzv) = 0, (B4b)

where

f1 = κt

κ2
t − εtμt

, f2 = μt

κ2
t − εtμt

, f3 = εt

κ2
t − εtμt

,

and ux = ∂xu, uy = ∂yu, vx = ∂xv, vy = ∂yv. Multiplying the test functions ũ, ṽ, respectively, and integrating within a unit cell,
we then obtain the weak forms as

Wk(u) = (f1k
2u + if1kxux + if1kyuy − if2k

2v + f2kxvx + f2kyvy )ũ − (if1kxũxu + if1kyũyu − f1ũxux − f1ũyuy

+ f2kxũxv + f2kyũyv + if2ũxvx + if2ũyvy ) − i
ω2

c2
(μv − iκu)ũ = 0, (B5a)

Wk(v) = (if3k
2u − f3kxux − f3kyuy + f1k

2v + if1kxvx + if1kyvy )ṽ − (−f3kxṽxu − f3kyṽyu − if3ṽxux − if3ṽyuy

+ if1kxṽxv + if1kyṽyv − f1ṽxvx − f1ṽyvy ) + i
ω2

c2
(εu + iκv)ṽ = 0. (B5b)
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In the simulations, the fields should be approximated with Lagrange interpolation elements. The transverse component fields
can be obtained according to the Maxwell equations, namely,

Ex = i[−if1(ikyu + uy ) + f2(ikyv + vy )] exp[ikxx + ikyy],

Ey = i[−if1(−ikxu − ux ) + f2(−ikxv − vx )] exp[ikxx + ikyy],

Hx = i[−f3(ikyu + uy ) − if1(ikyv + vy )] exp[ikxx + ikyy],

Hy = i[−f3(−ikxu − ux ) − if1(−ikxv − vx )] exp[ikxx + ikyy]. (B6)

Then knowing the complex Bloch K bands and the EM
fields, we can numerically calculate the effective constitutive
parameters and the electro/magnetostrictive tensors following
the method proposed in Appendix A.

APPENDIX C: THE EQUALITY RELATIONSHIP
BETWEEN THE MICROSCOPIC AND MACROSCOPIC

ENERGY DENSITIES

In this part, we will show that from the spatial average
relation between the microscopic and macroscopic fields, the
equality relationship between the microscopic and macro-
scopic energy densities can be obtained. In the long wavelength
limit, the effective fields (macroscopic fields) inside the effec-
tive medium are defined as the spatial average of the fields
(microscopic fields) inside the metamaterial [54], namely,

Ee = 1

�

∫
�

Ed�, De = 1

�

∫
�

Dd�, (C1)

where � is the volume of the unit cell, E, D and Ee, De

are the fields inside the metamaterial and effective medium,
respectively. Starting from these relations, we will show that
the energy density in the effective medium is also equal to the

spatial average of the energy density inside the metamaterial,
namely,

−1

4
Ee · D∗

e = − 1

4�

∫
�

E · D∗d�. (C2)

For the field in the metamaterial, according to the
Maxwell equations and the long-wavelength limit where ω →
0 and k → 0, we have

∇ × E = iωB ≈ 0. (C3)

That is, the electric field is a curl-free vector, therefore it
can be written as gradient of a scalar,

E = ∇φ. (C4)

Substituting the relations into Eq. (C2), we have

Ee= 1

�

∫
�

∇φ = 1

�

∮
�

φn̂d�, (C5)

where � is the boundary of the unit cell and n̂ is the unit normal
vector of the boundary, and for the spatial average of electric
energy in a unit cell, we have

− 1

4�

∫
�

E · D∗d� = − 1

4�

∫
�

∇φ · D∗d� = − 1

4�

∫
�

[∇ · (φD∗) − φ∇ · D∗]d�

= − 1

4�

∫
�

[∇ · (φD∗)]d� = − 1

4�

∫
�

φD∗·n̂d�, (C6)

where the Maxwell equation ∇ · D = 0 is used in the derivation.
In the following, we will take the cubic lattice as an example, other lattices can be followed in the same way. For the cubic

lattice with lattice constant a, according to Eq. (C5), the electric field of each direction is given by

Eex = 1

�

∮
�

φêx · n̂d� = 1

a3

∫ a

0

∫ a

0
[φ(a, y, z) − φ(0, y, z)]dydz,

Eey = 1

�

∮
�

φêy · n̂d� = 1

a3

∫ a

0

∫ a

0
[φ(x, a, z) − φ(x, 0, z)]dxdz, (C7)

Eez = 1

�

∮
�

φêz · n̂d� = 1

a3

∫ a

0

∫ a

0
[φ(x, y, a) − φ(x, y, 0)]dxdz.

And note that

∂

∂y
[φ(a, y, z) − φ(0, y, z)] = Ey (a, y, z) − Ey (0, y, z) = Ey (0, y, z)(eikxa − 1) = 0,

∂

∂z
[φ(a, y, z) − φ(0, y, z)] = Ez(a, y, z) − Ez(0, y, z) = Ez(0, y, z)(eikxa − 1) = 0,

where the long-wavelength limit that kx → 0, ky → 0, and kz → 0 are used in the derivations. It means that the functions in
the brackets of Eq. (C7) are independent with the coordinates and can be picked out. Thus the effective electric field can be
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rewritten as

Eex = 1

a3

∫ a

0

∫ a

0
[φ(a, y, z) − φ(0, y, z)]dydz = 1

a
[φ(a, y, z) − φ(0, y, z)] = 1

a

∫ a

0
Exdx,

Eey = 1

a3

∫ a

0

∫ a

0
[φ(x, a, z) − φ(x, 0, z)]dxdz = 1

a
[φ(x, a, z) − φ(x, 0, z)] = 1

a

∫ a

0
Eydy, (C8)

Eez = 1

a3

∫ a

0

∫ a

0
[φ(x, y, a) − φ(x, y, 0)]dxdz = 1

a
[φ(x, y, a) − φ(x, y, 0)] = 1

a

∫ a

0
Ezdz.

And for the electric displacement, take the Dex as an example, we use the integration by part that

Dex = 1

a3

∫∫∫
�

Dx (x, y, z)dxdydz = 1

a3
x

∫∫
Dx (x, y, z)dydz

∣∣∣∣
a

0

− 1

a3

∫ a

0

[
x

∂

∂x

∫∫
Dx (x, y, z)dydz

]
dx

= 1

a2

∫∫
Dx (a, y, z)dydz − 1

a3

∫ a

0

[
x

∫∫
∂

∂x
Dx (x, y, z)dydz

]
dx

= 1

a2

∫∫
Dx (a, y, z)dydz + 1

a3

∫ a

0

{
x

∫∫ [
∂

∂y
Dy (x, y, z) + ∂

∂z
Dz(x, y, z)

]
dydz

}
dx

= 1

a2

∫∫
Dx (a, y, z)dydz + 1

a3

∫ a

0

{
x

∫ a

0
[Dy (x, a, z) − Dy (x, 0, z)]dz

}
dx

+ 1

a3

∫ a

0

{
x

∫ a

0
[Dz(x, y, a) − Dz(x, y, 0)]dy

}
dx = 1

a2

∫∫
Dx (a, y, z)dydz. (C9)

Here we used that ∇ · D = ∂Dx/∂x + ∂Dy/∂y + ∂Dz/∂z = 0 and D(x, y, a) = D(x, y, 0)eikza = D(x, y, 0) in the derivations.
The same procedure can be done for other components. Then according to Eqs. (C8) and (C9), we can summarize that

Eei = 1

a

∫ a

0
E · dxi , Dei = 1

a2

∫∫
D · dSi , (C10)

which is just the homogenization theory proposed by J. B. Pendry [74].
Substituting the relations (C10) into Eq. (C6), we can further obtain the relation between the electric energy densities,

− 1

4�

∫
�

E · D∗d� = − 1

4�

∫
�

φD∗·n̂d�

= − 1

4a3

{∫ a

0

∫ a

0
[φ(a, y, z)D∗

x (a, y, z) − φ(0, y, z)D∗
x (0, y, z)]dydz

+
∫ a

0

∫ a

0
[φ(x, a, z)D∗

y (x, a, z) − φ(x, 0, z)D∗
y (x, 0, z)]dxdz

+
∫ a

0

∫ a

0
[φ(x, y, a)D∗

z (x, y, a) − φ(x, y, 0)D∗
z (x, y, 0)]dxdy

}

= − 1

4a3

{
[φ(a, y, z) − φ(0, y, z)]

∫ a

0

∫ a

0
D∗

x (a, y, z)dydz

+ [φ(x, a, z) − φ(x, 0, z)]
∫ a

0

∫ a

0
D∗

y (x, a, z)dxdz

+ [φ(x, y, a) − φ(x, y, 0)]
∫ a

0

∫ a

0
D∗

z (x, y, a)]dxdy

}

= −1

4
(EexD

∗
ex + EeyD

∗
ey + EezD

∗
ez) = −1

4
Ee · D∗

e , (C11)

which is just what we desired. Similarly, we can also obtain

− 1

4�

∫
�

H · B∗d� = −1

4
He · B∗

e

for the magnetic component.
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