PHYSICAL REVIEW B 98, 045416 (2018)

Conductance of fractional Luttinger liquids at finite temperatures

Pavel P. Aseev, Daniel Loss, and Jelena Klinovaja
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

® (Received 20 March 2018; published 16 July 2018)

We study the electrical conductance in single-mode quantum wires with Rashba spin-orbit interaction subjected
to externally applied magnetic fields in the regime in which the ratio of spin-orbit momentum to the Fermi
momentum is close to an odd integer, so that a combined effect of multi-electron interaction and applied magnetic
field leads to a partial gap in the spectrum. We study how this partial gap manifests itself in the temperature
dependence of the fractional conductance of the quantum wire. We use two complementing techniques based on
bosonization: refermionization of the model at a particular value of the interaction parameter and a semiclassical
approach within a dilute soliton gas approximation of the functional integral. We show how the low-temperature
fractional conductance can be affected by the finite length of the wire, by the properties of the contacts, and by
a shift of the chemical potential, which takes the system away from the resonance condition. We also predict an
internal resistivity caused by a dissipative coupling between gapped and gapless modes.
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I. INTRODUCTION

Electron systems in which excitations with non-Abelian
statistics or fractional charge, such as Majorana fermions or
parafermions, may exist have attracted much attention in recent
years, since they are of great interest both for understanding
of the underlying physics and for applications in topological
quantum computing [1-6]. In particular, topological phases
were also predicted in one-dimensional (1D) helical liquids
manifesting spin-filtered transport [7-20], particularly in a
single-mode quantum wire with Rashba spin-orbit interaction
and Zeeman magnetic field [21-23]. If the ratio of the spin-orbit
momentum kg, to the Fermi momentum of the wire kr is an
odd integer, y. = 2n + 1, multielectron processes involving
large momentum transfer may lead to an opening of an energy
gap, and a fractional helical liquid state can appear [23]. This
state manifests itself as a fractional two-terminal conductance
at zero temperature G(T = 0) = 2G,/(1 + ycz), where Gy =
e?/h, and also reveals itself in optical conductivity [24],
tunneling density of states [24], and shot noise [25], which
allows one to observe this state in principle using state-
of-the-art experimental techniques [26-28]. The fractional
helical electron systems are also considered to be one of the
ingredients for possible experimental realization of fractional
bound states and parafermions [23,29-31].

In this paper we study the temperature dependence of the
conductance of a single-band quantum wire (see Fig. 1) in the
fractional regime [23] in which the electrons form a fractional
helical Luttinger liquid with spin and charge sectors being
locked by a sine-Gordon potential. Using two complementing
techniques, refermionization at a special value of interaction
parameter and a semiclassical expansion around the static
soliton solutions [32-34], we describe how the electric con-
ductance depends on the length of the quantum wire and on
temperature, and on the shift of the chemical potential away
from the resonance values such that the ratio ks, / k is slightly
tuned away from integer values assumed above. Moreover,
since transport properties in low-dimensional systems are
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strongly affected by the attached leads, we also study how
the conductance depends on the properties of the contacts.
We also predict a resistivity mechanism caused by electron-
electron interactions. At nonzero temperatures, soliton excita-
tions carrying electric charge can be activated. These solitons
are coupled to gapless excitations, which leads to an Ohmic-
like friction for these solitons and thus to a temperature-
dependent resistivity. While this mechanism resembles the
one recently described for Rashba nanowires with weakly
interacting electrons and a partial gap induced by magnetic
Zeeman field [35], previous studies cannot be used to take
into account effects of strong electron-electron interactions
and fractionalization, which are necessary for the formation
of a fractional Luttinger liquid considered here. Although the
techniques used to describe solitons in a gapped Luttinger
liquid in the integer case (n = 0) were developed earlier in
Ref. [34] for a quantum wire in the presence of helically
ordered nuclear spins due to the Ruderman-Kittel-Kasuya-
Yosida interaction [28,36—39], they cannot be applied directly
to the different physical system we consider in this work. Thus
we generalize here this technique to the case of arbitrary n.

K, =1 K.<1

lead wire B

0 L x
>

FIG. 1. Single-band Rashba quantum wire with leads attached
from the left and right side at positions x = 0 and x = L, respectively.
A magnetic field B is applied along the wire axis in x direction.
Repulsive electron-electron interactions in the quantum wire are
described within a Luttinger liquid model with interaction parameter
K. < 1. The leads are assumed to be noninteracting with K. = 1.
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The outline of the paper is as follows. In Sec. II, we
introduce a model of a fractional Luttinger liquid. We discuss
the results obtained by refermionization of the bosonized
model at a particular value of the interaction parameter in
Sec. III. In Sec. IV, we study the electric conductance using
semiclassical expansions around static soliton configurations.
Finally, we conclude with Sec. V, where we summarize our
results.

II. THE MODEL

We consider a spinful single-band quantum wire of length
L aligned in x direction (see Fig. 1). The Rashba spin-orbit
interaction (SOI) of strength « sets the spin quantization axis
to be along the y axis. A magnetic field B is applied along
the wire (below, for the sake of conciseness, we absorb the
electron g factor and Bohr magneton pp into the symbol B).
The single-particle Hamiltonian is given by H = Hy + Hp,

7?92
Hy = — me S iaaya)m (D
Hp = Boy, @

where o, (with v = x, y, z) are the Pauli matrices acting on
spin and m is an effective mass of electrons in the quantum wire.
The SOI leads to a shift of the momentum k of the free-electron
parabolic spectrum [see Fig. 2(a)]. The spin-up (along the y
axis) electronic dispersion is shifted to the left by the SOI
momentum kg, = ma, while the dispersion of electrons with
the opposite spin is shifted to the right by ky,. The chemical
potential u is measured from the crossing point between spin-
up and spin-down bands at k = 0 (see Fig. 2). The uniform
magnetic field (Zeeman term) applied along the wire opens a
(helical) gap in the spectrum near k = 0. In what follows, we
assume that the Zeeman energy B is small in comparison to
the SOI energy &5, = mo? /2, B < &y. Here and below, we
take i = 1, e = 1, and kg = 1, restoring physical units when
necessary.

In this paper, we consider effects of electron-electron
interactions, which can be taken into account by means of the
Luttinger liquid formalism [40]. We note that multi-electron
processes involving large-momentum transfer (backscattering
terms) may cause an opening of an energy gap at proper values
of u [23,41]. If u is below the gap at k = 0, there are four
Fermi points with wave vectors £(ks, £ kr), and we define
four fermionic fields: right-moving modes (R4, R ) and left-
moving modes (L4, L), such that the electron annihilation
operators can be represented as

Yp(x) = R¢(x)ei(_k5°+k‘”)x + LT(x)e—i(kSo+kF)x’
Y (x) = Ri(x)ei(kso-k—kp)x + Li(x)ei(km—k,p)x’

Following Refs. [23,42], we focus on the back-scattering
interaction term (see Fig. 2):

OF = g (LIR)" Ry LI (L R))" + Hec. (3)

The interaction conserves the spin and it also conserves
momentum at the filling factor v = kp/ky = 1/(2n + 1),
which corresponds to the following positions of the chemical
potential, w, = —&5 + €50/ (2n + 1)%>. We note that such an

interaction term [see Eq. (3)] is a combined result of a magnetic
field and electron-electron interaction. Throughout the paper,
we mainly focus on the case n = 1. In this case, (’)f is
generated at the second order in the bare interaction strength
[see Fig. 2(b)], so that gg = gg) has the following structure,

g5 ~ BU3, (RyRD)o(L L))o, (4)

where U, is the electron-electron interaction potential and
R, L denote right- and left-moving electrons with momentum
close to zero, and (. . . )o means thermodynamic average for the
Hamiltonian H, given by Eq. (1).

At temperatures and magnetic fields much lower than
the Fermi energy, 7, B < ep =~ motz/[2(2n + 1)?], one can
linearize the spectrum at Fermi points and follow the standard
bosonization procedure [40]. The bosonized Euclidean action

is given by [23,24]
vc(x) 1 ]¢
c

Z_/dxdr ¢c|: *K.(x ) vC(X)K (x) *

+ —/dxdt 0, I:—E)xva(x)Ka(x)ax _ "(x)af]eg
2 U, (X)

+/dxdr Ao cos{(V2[yepe(x, T)+0,(x, DI}, (5)
2ma

where the bosonic fields ¢. and 0, relate to the integrated
charge and spin density current, respectively, and 7 is the
Matsubara time. The effective velocities of the charge and spin
excitations, v, and vy, Vo (x) = vp/ K. (x) arerelated to the
Fermi velocity vy = kp/m and corresponding Luttinger liquid
(LL) parameters K, . The short-distance cutoff parameter is
determined by a ~ k_'. The amplitude of the sine-Gordon
term describing the locking of charge degrees of freedom is
given by Ay = 8, “ /(2wa)®. At n = 1, it can be estimated
as Ag=B Usz Jv2 + The interaction term, given by Eq. (3),
results in y. = 2n + 1. We note that the model with y. =1
and Ag = B corresponds to Rashba quantum wires with the
Fermi level located at the middle of the helical gap.

We focus on the case when the metallic leads are adiabati-
cally connected to the wire. If this is not the case, backscattering
at the contacts may mask the fractional conductance we want
to study. To take the leads into account, we assume similarly to
Ref. [43] that the LL parameters K, depend on the coordinate
x, so that the interaction vanishes in the leads, K, = 1 (see
Fig. 1). Below in numerical estimations we assume that the
Fermi level is fine-tuned to a specific value, so that ks, =
3kp, i.e., n =1, y. = 3. We also focus on the case K, = 1,
assuming spin-rotational symmetry of the electron-electron
interaction. In general, we assume that Ag(x) o BUZZkF de-
pends on the coordinate, since both the interaction potential and
the magnetic field are, in general, nonuniform. In this paper,
we consider two limiting cases: (i) the gap vanishes in the
leads abruptly Ap(x) = Ag®(x)O(L — x), where O(x) is the
Heaviside step-function; (ii) the gap Ao (x) varies adiabatically
in space, and its spatial dependence is modeled as

— X
), 6)

where [ is a characteristic length over which the electron-
electron interaction switches on.

A X L
A(x) = 5 tanh n + tanh
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FIG. 2. (a) Spectrum of a Rashba quantum wire which consists of two spin-orbit split bands. A helical gap is opened by the Zeeman term
at k = 0 if a magnetic field is applied perpendicular to the SOI vector, which determines the quantization axis. A horizontal dashed line shows
the position of the Fermi energy at filling factor v = 1/3, at which the three-particle scattering (shown by black arrows) conserves momentum.
Dotted arrows depict virtual transitions to/from states with a momentum close to zero. (b) Diagram for the multiparticle scattering process
(n = 1) corresponding to the interaction term given by Eq. (3). The right (left)-moving electrons with momentum close to the Fermi points
+2ky,/3, 4k, /3 are labeled as R, (L) with the spin label s = 4, |, whereas right (left)-moving electrons with momentum close to k = 0 are
labeled by R, L. The interplay between electron-electron interactions at characteristic momenta 2k = 2k, /3 (wavy lines) and magnetic field

B (circle vertex) results in a partial gap at v = 1/3.

The scaling dimension of the sine-Gordon term in Eq. (5),
is given by [23,24] D = (J/CZKC + Ko_l)/Z, and this term is
relevant in the renormalization group (RG) sense for D < 2,
ie., K, < (4— l/KU)/yCZ. For y. =3 and K, = 1, this leads
to K. < 1/3. The gap can be estimated as

/ 1-D
A=Ao(—“> : (7

a

where [, is a correlation length given by

h h
[, = min {L, ﬂ ﬁ}

T A ®)

At low temperatures 7" and for long quantum wires, /. is
determined by the gap itself, resulting in

h
A — AO(ﬁ

Aod €))

)(ID)/(ZD)
We note that in the limit of strong electron-electron repul-
sion, K. — 0 (D — 1/2), we have A, o B?3, which is
in agreement with the recent study of Rashba wires using
Wigner crystal theory and density matrix renormalization
group (DMRG) techniques [41].

Athigher temperatures, T > A, Eq. (7) yields the follow-
ing temperature dependence of the gap:

A= ALPTP (10)
Similarly, in short wires, L < fivg /A, Eq. (7) can be rewrit-
ten as
hop) P
2—
A:AOOD<T> . (a1

For further discussion, it is convenient to introduce new
bosonic variables ¢, ¢», 61, and 6, related to the standard

bosonic fields in the LL model by the following canonical
transformation:

yc¢c + 90 _¢c + Vcea
= — = —) 12
1 7 (5) . (12)
Vel — bo Oc + YePo
b= —m, = ——, 13
1 . > . (13)

where A =/ ycz + 1. In terms of the new variables, the Eu-
clidean action Sg = S; + S, + Si2 consists of the sine-Gordon
action S; describing gapped modes,

1
S] = —m/‘dxdf {¢][_ 83 - axvlzax]¢]
+ W} cos(«/i)@l)}, (14)

a standard LL action S, describing gapless modes,

S =-

/dxdt ¢2[—02 — 3,030, |, 15)

27[1)1:

and a coupling S, between gapless and gapped modes,

1
Sipp=—
12 2nvp

/ dxdt ¢1[20,v},9; ] (16)

Here, we use notations a)g = Agvr/a and v; = vp/K;, where
the parameters K, K,, and K, are related to the LL param-
eter K. (with K, = 1) as

1 2K724+1 1 24+ K2
— = yct—z’ — = yf—zf’ (17)
K A K2 A
1 K77-1 (18)
K~ T
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As a result, the charge current is given by

Jo= Q«ix = Q[m b21. (19)

The conductance at zero voltage bias can be extracted from the
Matsubara Green functions via the Kubo formula [43],

262 2 _ _
G = —55 lim (v (91 (x, @)1 (x, =)
+(ha(x, D)2 (x, =) + Ve (b1 (x, D)pa(x, —@))
+ Ve ($a(x, D)1 (x, —@))), (20)

where (. . . ) means thermodynamic average, @ is the Matsubara
frequency, and the Fourier transform is defined as ¢;(x, ®) =

fl/T dt ¢i(x, 1)e’™®.

III. REFERMIONIZATION AT K, ~ 0.18

We study the action given by Egs. (14)—(16), describing a
quantum wire in the region 0 < x < L. We assume that the
quantum wire is adiabatically connected to the leads at x = 0
and atx = L. Although itis more standard to describe the leads
as an extension of the wire to x < 0 and x > L with space-
dependent LL interaction parameter K. [43], in this section we
adopt an alternative approach introduced by Egger and Grabert
[44]. In this formalism, the coupling to the leads enters via
the boundary conditions for expectation values of density and
current operators:

VF . 2
o)+ =2 f deni(e—V/2), x=0, 2l
Vfr . 2
2 (o) — (o) = ;/de ne(e+V/2), x=L, 22)

vr{ps) + (Jo) =0, x =0, (23)
vrlpo) = (o) =0, x =L, (24)

where p. = —~/20,pe /T, py = /20,6, /(Tvp) are charge
and spin densities, respectively, and j. = V28, Oc/7, jo =
—/2v F 0,0, /7 are charge and spin currents, respectively [45],
ny and ng are electron distribution functions in the left and
right leads. We note that the factor K~ Zin Egs. (21)—(22) takes
into account a local potential drop between the quantum wire
and the screening backgate at the contacts caused by electrons
injected from the leads [44]. It is important to note that both the
Egger-Grabert [44] and the Maslov-Stone [43] approaches are
based on the same assumption, namely, that ideal reservoirs are
adiabatically connected to the quantum wire. For the gapless
Luttinger liquids both of these approaches result in the same
conductance value which does not depend on the interaction
inside the wire.

The action Sg [see Egs. (14)—(16)] and corresponding
boundary conditions can in principle be refermionized at some
special value of the LL interaction parameter K}, at the
so-called Luther-Emery point [40]. As a result, in terms of the
new fermionic variables, the quadratic cross-term Sy, given by
Eq. (16) will be transformed into a nonlinear term, consisting
of four fermionic operators, and it will be still complicated
to tackle this problem. Thus, prior to refermionization of the

actions, we perform the following shift of the bosonic field ¢,:

Vi
¢ — ¢ + 2 é1, (25)
2

transforming the density-density coupling 9,¢;0,¢, into a
current-current coupling d; ¢ 9, ¢, which vanishes in the static
limit. The action Sg [see Egs. (14)—-(16)] becomes

I .
S =——o dxdr[( f‘) ( +v{3>

TUR V5

+ <U12 _ %) (3:91)° + } cos(ﬁ?ndn)], (26)

2
2
1 (3:42) V3 (3:¢)”
T f[ 2 2l @7)
1 v
Sip = ——— [ dxdt —53:¢10: . (28)
TTVF Uy

Next, we perform the refermionization by introducing new
bosonic variables @;, and 6, as well as new fermionic
operators R; , and L ; as follows:

~ - ~ U2
1= C‘¢15 2 = _¢27 (29)
VF
~ —1 ~ Vf
=861, b= |—0, (30)
U2
Rj ~ e—i@,‘-‘riéj, L] ~ ei@j‘l—iéj. (31)

We note that only if the cosine term in S; is of the form
cos(2¢,) in terms of the rescaled bosonic field ¢ [see Eq. (26)],
it converts into a simple quadratic term RTLl + LI 1 R1. For this
to be the case, the following condition must be fulﬁlled

V2ET =2, (32)

1
2 4 2 1
E:[%(l— ’;122)(1+ )] . (33)
Vg viv; v?

In case of the effective three-particle scattering shown in Fig. 2,
corresponding to the filling factor v = 1/3 with y,. = 3, the
condition defined in Eq. (32) yields the value of the interaction
parameter,

1 /4 13
K= 2/=V19——~0.1 4
=3 VP EO Gd

The refermionized Hamiltonian then becomes H = H; +
H> + Hj,, with

H, =/dx is(—RI0, R, + L10, L)+ ARIL, + LIR)),

(35)

H, = /dx iva(—RI0, Ry + L13. Ly), (36)
Hy = v1v2v12 fdxldxz [or1(x1) — pr1(x1)]

[,ORz(Xl) — pra(x)], 37
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where A is an energy gap, the operators pg(z) ; are density
operators of right (left)-moving “refermions” corresponding
to the jth mode, and s is a velocity of the first mode defined as
2.4 4.2 -2 2
(2 Ui T VY v Koo+ v _ (38)
vg + UAI‘Z KC_2 + ycchz

From an RG study (see Appendix A) we obtain that the cross-
term Hj; is irrelevant in the low-energy limit, so we disregard
it in this section. Later in Sec. IV, the effect of H,,, however,
will be discussed

After disregarding the cross-term the Hamiltonian becomes
quadratic in terms of fermionic fields. The equations of motion
(in real-time representation) for the fields R;, L; read as

iR, = —isd, Ry + A(x)L1, (39)
id,Li = isdLi + A(X)R), (40)

iB,Rz = —ivzasz, i8,L2 = ivzaxLz. (41)

Here we assume that in general the partial gap may vary with
the coordinate x. The density of “refermions” is given by p; =
R; R; + L}.L ;. From the continuity equation, 0;0; + 0xj; =
0, the currents of “refermions” can be defined as

Ji=s(RIR —LIL), h=uw(RIR, — LIL,). (42

The “refermion” densities and currents are related to physi-
cal density and current operators by the following expressions:

\/5 V2 _ v
pe = T[m(ya—ﬁ)a N Sl PR CE)
2 2
o N2T. v\t . [V
JC=T[11<)/C——122>E ]—]2,/—F} (44)
Uy 1%)
V2T v2 B ) v
VFpr = —|:]1 (1 + y%)E : +m,/—F}, 45)
A 123 U2
. \/zv v2 _ v
Jo = TF[m(l +yc—‘§>a Yooy [ | (46)
U2 1%)

Now we solve Egs. (39)—(41) with boundary conditions
given by Egs. (21)—(22) and with an additional boundary
condition corresponding to adiabatically attached contacts,

(RI(x = 0)L1(x = L)) = (L}(x = L)Ri(x = 0)) =0,
(47)

which means that the right-movers injected from the left lead
are independent from the left-movers injected from the right
lead.

A. Zero-temperature conductance for fine-tuned value
of chemical potential

First, we consider the zero-temperature limit, recovering
known results for the conductance of a fractional Luttinger
liquid. In this section, we also assume for simplicity that the
gap abruptly vanishes in the leads A(x) = A®(x)O(L — x).
First, from Eq. (41), we note that current and density of the
refermions corresponding to the second mode do not depend
on the coordinate, i.e., p2(x) = p2, jo(x) = j,. Furthermore,
if the voltage bias is applied symmetrically, p;(x =0) =

—p;i(x = L), and, hence, p, = 0. In adittion, from Egs. (39)-
(40), it is easy to obtain a general form of the solution in energy
representation for |¢| < A,

(Rl(x78)> _ A(8)< A ) —kx
Li(x,e))  2A\e —iks ¢

B(e) A c(x—L)
+ V2A <s+i/<s)e ’ (48)

where k = ~/ A2 — £2/s and A(e) as well as B(¢) are energy-
dependent fermionic operators corresponding to decaying
waves propagating from the left and the right leads. Thus the
tunneling current carried by gapped refermions is given by

ji(e) = —is*ke ™ L [A'B/(e —iks) —H.c], (49)

and is exponentially small in long wires, L > s/A (see
Appendix B for details). Neglecting the tunneling current j;
and making use of Eqs. (43)—(46), we arrive at the following
relations between charge and spin densities/currents:

VFPs + )/cjc =0, VEPe = )/LKEJG (50

These relations along with the boundary conditions given by
Egs. (21)—(24) can be treated as a system of linear equations to
be solved in order to obtain coordinate-independent p,, j.,
and coordinate-dependent p., j,, i.e., p.(x =0), p.(x =
L), j,(x =0), j,(x = L). Finally, the charge current can be
related to the applied bias voltage V as

Vv

_ 51
22+ 1) D

Je =

Restoring dimensional units, we obtain the zero-temperature
limit of the conductance which is in agreement with previous
results [23,24]:

G, —jyv=2¢_1 52
v = Je/ ERESE (52)
The tunneling contribution can be found by expressing
expectation values of densities and currents in terms of the
thermodynamic averages: (AfA), (B'B), (A'B), (BTA) and
imposing the boundary conditions given by Eqgs. (21)—(24)
and (47) (see Appendix B for details). The cross-correlators
(ATB) proportional to the tunneling transparency of the
effective barrier created by the gap are exponentially small,
(A]L(S)B(E)), (BT(S)A(S)) o e *L. An extra exponential fac-
tor arises from Eq. (49), and therefore tunneling contributions
to the conductance at K. = K in the limit L — oo can be
estimated as

8G ~ Goe AL/, (53)

The resulting dependence of the conductance on the wire
length L at T = 0 is shown in Fig. 3 (see details of numerical
calculations in Appendix B). As the tunneling through a gap
in short wires becomes significant, L < s/A ~ vp/A, the
conductance differs from the fractional value given by Eq. (52).
We note that in this limit the correlation length in Eq. (7) is
determined by the length of the wire, [, ~ L.
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FIG. 3. Dependence of conductance G at the filling factor v =
y~! = 1/3 onlength L at zero temperature (T = 0) for the interaction
parameter K* ~ 0.18. The value of the gap A renormalized by
interactions is defined by Eqgs. (7)—(11). The blue line shows the
result obtained numerically (see Appendix B) when the tunneling
contribution defined in Eq. (49) is taken into account; the dashed
line shows the fractional conductance G,—;;3 = e?/5h. The tunneling
contribution to the conductance vanishes exponentially for long wires
(L > lis/A), G~ G,_i/3 + Goe ?2L/*. The obtained conductance
differs from the fractional value G, 3 in short wires L < fis/A ~
hvg /A as the tunneling through a gap becomes significant. In the limit
of a short wire, L < /is/A, the fractional conductance is no longer
observed, G = 2G, = 2¢*/h. Note that in this limit the correlation
length in Eq. (7) is determined by the length of the wire, /. ~ L, and
the gap is given by Eq. (11).

B. Finite-temperature conductance for fine-tuned value
of chemical potential

Now we can proceed with the more general case of nonzero
temperature 7 > 0. In energy representation it is convenient
to define density and current operators p; 2(¢), ji2(e) as

pi(e) = Ri(e)R;(e) + Li(e)L;(e), (54)
ji(e) = s[Ri(e)Ri(e) — Li(e)L ()], (55)
(&) = Ry (e)Ra(e) — Li(e)La(e)], (56)

so that physical charge/spin density and current operators
pv(€), ju(e) can be defined by linear relations, see Egs. (43)—
(46). Since the boundary conditions [see Egs. (21)—(24)] and
the equations of motion [see Eqgs. (40)—(41)] are linear, the
charge current can be linearly related to the difference of Fermi
distribution functions in the left and right leads,

Je(e) = 2T(8)[fu(8 - %) - nR(e + %)} (57)

where the proportionality coefficient 7 (¢) can be interpreted
as an effective transmission probability of the quantum wire
(for details see Appendix B). Integrating Eq. (57) over energy,
we arrive at the generalized Landauer formula [46,47],

+00 1
G =2G de T(8)——————. (58
‘ /W T o ey O

1.0
0.8
o6
_—
0.4 —L=>5hs/A
—L=hs/A
0.2 -: —L=0.58s/A
0 2 4 6 8 10 /A

FIG. 4. Effective transmission probability 7 [see Eq. (57)] for a
long wire (blue curve) and short wires (red and green curves). Cal-
culations have been performed numerically (see Appendix B) for an
abrupt coordinate dependence of the gap, A(x) = A®(x)O(L — x).
At energies less than the gap A, the effective transmission is reduced
due to a scattering at the effective potential barrier. At higher energies,
Fabry-Perot oscillations emerge with a period §¢ ~ hs/2L. The
transmission becomes ideal, 7 = 1, in the limit ¢ > A. Note, that
for the short wire (green curve) the gap has been calculated using
Eq. (11).

In the limiting case, when the gap A(x) varies adiabatically
from zero at the contact to some finite value A inside the wire
and, in addition, when the wire is long L >> s/ A, the effective
transmission probability is simply given by (see Appendix B
for details),

T(e)=0(el - A) + O(A —lel). (9

vi+1

c

The first term describes an ideal transmission at energies
above the gap. The second term responsible for the fractional
conductance can be derived similarly as in the previous section.
The finite-temperature conductance in this adiabatic limit is
given by a simple expression,

262 5 e*A/T
G=—77—"F142y"— ). 60
e reer) @

Note that the chemical potential is inside the gap, and the
difference from fractional value G, is caused by thermal
electrons with energies above the gap propagating through the
wire.

In the opposite limiting case, in which the gap drops
abruptly in the leads, A(x) = A®(x)®(L — x), the effec-
tive transmission probability is a more complicated fucntion,
manifesting itself in Fabry-Perot oscillations (see Fig. 4).
Using Eq. (58), we obtain the temperature dependence of
the conductance (see Fig. 5) that shows activation behavior.
However, even at temperatures T’ 2 A, the conductance does
not reach its full value 2¢?/h due to the presence of the gap.

We also study an intermediate case, assuming that the gap
A(x) is modeled by a smooth profile along the wire of the
form given by Eq. (6). The resulting transmissions are shown
in Fig. 6. The Fabry-Perot oscillations at ¢ 2 A are washed
out if the characteristic length / at which gap A(x) goes to
zero is much larger than the length scale /5 = 7is/A set by
the partial gap. The resulting temperature dependence of the
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—L=hs/A
0.4 —L=0.5h1s/A
0.2
0 1 2 3 4

T/A

FIG. 5. Conductance G of a quantum wire in the regime of
fractional helical liquid, v = 1/3, as function of temperature for
different lengths of the wire: L = S5hs/A (blue curve), iis/A (red
curve), and 0.5%s /A (green curve). Results are obtained numerically
[see Eq. (58)] by using with effective transmission probability 7 from
Fig.4.Even attemperatures 7 2 A, the conductance does not reached
its full value 2¢?/ h. We note that at high temperatures, G only weakly
depends on the length L.

conductance for a long wire and different gap profiles is shown
in Fig. 7. If the modes in the leads and inside the wire are not
well coupled, which corresponds to an abrupt change in the
gap, the conductance is suppressed even at T 2 A, compared
with the smooth gap profile.

C. Dependence of conductance on chemical potential

Next, we consider parameter regimes in which the chemical
potential © = w, + Su is shifted away from the resonant value
WUn, corresponding to the filling factor v = kg / ko = 1/(2n +
1). We focus on the case when the shift of the chemical potential
is not significantly greater than the gap A obtained previously,
and, therefore, assume that this shift is much less than the Fermi
energy, du < U,. We linearize the fermionic fields ¥ (x)

1.0 ¢ ; \/ E—
0.8}
k~06|
0.4}
02}

0 05 1 15 > 25 3 e/A

FIG. 6. Effective transmission probability 7 for different profiles
of partial gap A(x) [see Eq. (6)]: | < Ix = his/A (blue curve), [ =
0.5/ (green curve), and / = [, (orange curve). In case of a smooth
gap profile, the Fabry-Perot oscillations are washed out already at
& ~ A while, in case of an abruptly changing gap, they vanish only
at ¢ > A. The length of the wire is fixed to L = 57is/A.

15}

1.0F

G [¢2/h]

0.5F

| | 1 I

0 1 2 3 4

5 T/A

FIG. 7. Conductance G of a quantum wire of length L =
20hvr /L in the regime of fractional helical liquid, v = 1/3, as func-
tion of temperature for different profiles of the gap given by Eq. (6):
I > hvp/A (red line), | = fivp/A (orange line), [ = 0.5hvp/A
(green line), and / — O (blue line). The results were obtained using
Eq. (58) with effective transmission probability calculated numeri-
cally (see Fig. 6). The dependence shows a steeper activation behavior
as the gap profile becomes smoother.

near the new Fermi momenta. The effective back-scattering
interaction term resulting in the partial gap [see Eq. (3)] is now
replaced by

OB — g(Bn)(L#«RT )nRTLi (LERJ, )Vlei(4n+2))(5u/v1: + H.C. (61)

As a result, the sine-Gordon term in Eq. (5) also acquires an
additional position dependent phase (4n + 2)xéu/vr. Without
loss of generality, in what follows, we again focus on n = 1
(corresponding to the filling factor v = 1/3). As a conse-
quence, the equations of motion involving fields R; and L
[see Egs. (39)-(40)] are replaced by

i, R = —isd, Ry + ¢ X*A(x)L,, (62)

i, Ly =isd, L + e K*A(x)R, (63)

with the momentum shift K = 65 /vrp. We note that these
equations can be brought back to the form of Egs. (39)-(40)
by a gauge transformation,

Ri(x,t) > Ri(x,t)eKe=02 (64)

Li(x,1) > Ly(x,1)e” KOH02, (65)

It is also convenient to rewrite this transformation in energy
representation,

Ri(x,€) = Ri(x,&+ Ks/2)e'K/2, (66)

Li(x,e) = Li(x,e+ Ks/2)e "K*/2, (67)

Thus the effective transmission at the Fermi level u = u,, +
du is the same as the effective transmission obtained in
Sec. IIIB [see Eq. (57)] at ¢ = Ks/2 =3séu/vr. More
generally, 7, 15,(€) = Ty, (e + Ks/2).

As a result, the conductance at zero temperature can be
related to the effective transmission obtained earlier as

2¢? 3s
Gui+su = 77;1 <E5M)- (68)

045416-7



PAVEL P. ASEEV, DANIEL LOSS, AND JELENA KLINOVAJA

PHYSICAL REVIEW B 98, 045416 (2018)

TABLE 1. Effective velocities vy, v,, vy, [see Eq. (18)], and the
velocity of the first mode s [see Eq. (38)] for different values of
interaction parameter K. The inverse filling factor is fixed to y. = 3.

T

V2K +1 Y2 +K: K-l K +y?
K. 2+l 2+ Yer o VEKITK
1/3 8.2 1.8 2.4 1.8
0.2 22.6 34 7.2 1.3
0.18 27.9 4.0 9.0 1.3
0.1 90.1 10.9 29.7 1.1

Thus the fractional conductance G,—/3 = e?/5h can be ob-
served if the shift of the chemical potential is small enough,
6| < u* =vpA/3s &~ 0.3A. The numerical value for the
effective velocity s was takenat K. = K ~ 0.18 (see TableI).
We note that, in contrast to the case of the standard Zeeman gap
observed at n = 0, the maximum value of the shift of chemical
potential at which one can still observe fractional conductance
values is less than the gap, u* < A. This is due to the fact that
the higher-order interaction term given by Eq. (3) results in a
larger momentum mismatch if the chemical potential is away
from the resonance value. Thus a more precise tuning of the
chemical potential is required for the observation of fractional
conductances.

In addition, we also study a more realistic model of the
contact taking into account a gate potential drop. We assume
the gate potential has a smooth profile along the wire (see
Fig. 8) and is given by

ve=vied %Y (X L ann E2E). (69)
£ 2 ly ly )

Here we disregard the voltage bias between the leads assuming
that it is much smaller than the gap A and the gate voltage
variation § V. The model is similar to the one used in Ref. [48].
The potential varies from the value V,*¢ in the leads to the
value V%! — §V, in the wire and exhibits a linear behavior
with the slope 8§V, /Iy around x =0, L.

To take into account the position-dependent gate voltage
V,(x), we replace the chemical potential u in Egs. (62) and
(63) with u(x) = V,(x) such that the momentum shift K is
now given by the following expression:

66 38V,

K(x)=— —
VF VF

(tanh X 4 tanh 222 ) (70)
ly %
Next, we solve the system of differential equations [see
Egs. (62)-(63)] numerically. The conductance in the limit of
nearly adiabatic transition Iy > hs/A is shown in Fig. 9.
If the gate potential variation 6V, is smaller than p* [see
Fig. 8(a)], the half-width of the dip in conductance remains the
same, as well as the quantized conductance value, G(|6u| <
w*) = e?/5h, is observed. However, if the total gate potential
variation 6 V, becomes larger than p*, the dip in the measured
conductance broadens and exceeds 2u* [see Fig. 8(b)]. This
size of the dip can be estimated as u* + 8V,. Thus, in order
to measure the size of the gap opened by interactions, it is
important to work in the regime of small gate potential drop.
In addition, as 8V, gets larger, the Fabry-Perot oscillations

become more pronounced. In the opposite limit of abrupt
transition [y < is/A, the gate potential drop 6V, does not
affect the gap (see Fig. 10), however, it leads to a decrease of
conductance outside the gap, since the modes inside the wire
and outside the wire do not match well in the presence of an
effective barrier created by a gate voltage (see also discussion
in Ref. [48]).

IV. SEMICLASSICAL APPROXIMATION

In this section, we treat the sine-Gordon action Sg [see
Egs. (14)—(16)] semiclassically [32,49]. We expand it around
a static classical field configuration using the procedure de-
veloped in Refs. [34,50]. This approach can be justified when
fluctuations of the phase ¢; are small, i.e., in case of strong
electron-electron repulsion. Since the RG study shows that for
K. < 3/y? the scaling dimension D of the sine-Gordon term
flows to zero (see Appendix A), we assume that this is the case.

The Euler-Lagrange equations for the action Sg defined in
Eqgs. (14)—(16) read as

321 + 0, (v10:¢01) — Bx (V0. 2) = V24 sin(v2A¢1),
(71)

32 — 3y (v],0:1) + 5 (v39:002) = 0. (72)

We note that in the fractional regime, in contrast to the case of a
system hosting integer excitations (n = 0) [34], the velocities
of the gapped (v;) and gapless (v;) modes are different.

A static solution can be found from Eq. (72),

2

'
0x¢2 = —50:01. (73)
)

The resulting equation for ¢, resembles the sine-Gordon
equation [49],

A wp(x) .

By (le) =2 ‘;% sin(v2a¢1).  (74)
Next, similarly to the conventional sine-Gordon model [49,50],
we assume that the Hilbert space of the model consists of the
vacuum sector (with vacuum state and its excitations) as well
as of the sectors with different number of solitons (kinks) and
their scattering states. The model defined by Egs. (14)—(16)
allows for a high number of solitons being activated at nonzero
temperatures. We assume that at temperatures of the order of
the gap A the soliton gas is still dilute such that the interactions
between solitons can be disregarded.

The classical static vacuum solution is trivial, ¢¥ = ¢2 = 0.
If the contact to the leads is adiabatic such that K.(x) varies
slowly with x, the static solution for ¢; corresponding to an
(anti-) kink localized at position £ can be written as

v 1 272 X
K(A) — /
" (x,8) = (vfz/v,ﬁ) — arctanexp (:i:/g 80(x/)dx )
(75)

with 80_2(x) = 2a)(2)(x)[1 + Kcz(x)ycz]/v%. Here and below we
use a short-hand notation qvﬁ = (¢1, ¢)T. The upper sign in
Eq. (75) corresponds to a kink solution, while the lower sign
corresponds to an antikink solution.
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lead
Vg

11+ oy
M1

0 l L x

i+ op
Hap

0 l L T

FIG. 8. Schematic energy diagram for a smooth gate potential drop at the contact in two limiting cases: (a) small gate potential variation,
8V, < u*; (b) large gate potential variation, §V, > u*.If the gate potential defined by Eq. (69) [solid blue line] lies close to the resonance value

of the chemical potential, i.e., within the range of p; —

u* < Vy < g + p* (shaded pink region), the measured conductance takes a fractional

value, G,;;3 = €?/5h. The dotted blue lines show the corresponding bounds on the gate potential. In panel (a), the range of values of V;“‘d at
which quantized values of conductance G, can be observed is given by 2u*. In contrast to that, in panel (b), this range is broader and can be

estimated as u* + 8V,.

We describe a conﬁguration of the N-soliton gas by collec-
tive coordinates & = {£,,}¥_, and labels I = {I,,})\_,, where
I, = K, A depending on whether the mth soliton is a kink
(K) or an antikink (A). The asymptotic form of the classical
solution is given by

N
Gre(x) = ¢ (x,En),

m=1

(76)

where ¢KA)(x, &,,) is a classical solution for an (anti-) kink
located at position &, and is given by Eq. (75). In the vicinity
of a classical solution ¢ ¢, we expand the fields as a sum of

G [e?/h]
2}
1.5}
1r 8V, =0.5A
-4V, =0.4A
8V, =0.3A
=46V, =0.2A
051 -4V, =0.1A
» —6V,=0.0A
. . . . . o/ A
-1 -o.s_u* 0 M*o.s 1 1.5 2 M/

FIG. 9. Dependence of conductance G on the shift of chemical
potential 6 for different values of gate potential variation §V, at the
contact at zero temperature 7' = 0. The partial gap and gate potential
profiles are defined by Egs. (6) and (69) with [ = [, = 5hs/A and
the length of the wire is fixed to L = 20/is/A. The shift of chemical
potential § u measures the difference between the gate potential V, (x)
in the bulk of the wire and at the resonance value of chemical potential
w1, see Fig. 8. At high values of gate voltage variation, §V, 2 u* ~
0.3A, the dip in conductance caused by opening of the partial gap
broadens, see also Fig. 8.

classical solutions and fluctuations §@(x, t) around them,

P(x, T) = rg(x) + 8¢(x, 1), (77)

and treat the center of the kink as dynamical variable &(7).

The correlator of the bosonic fields can be expressed by
using functional integration over the fluctuations in the vicinity
of the classical static solutions,

oo

}: TNET (i (e, T (x, 0)) s

(9i(x, T)p;(x,0) =

(78)

(¢i(x. ) (x. )y }:/M¢Mxn@um

e*SE[¢I,§+5¢]’ (79)
2.0
< 15
~
[}
N
B 1.0
0.5
6 <4 -2 0 2 4 6 du/A

FIG. 10. The same as Fig. 9 but for an abrupt drop of the gate
voltage at contacts,/ = [y, = 0.1/s/A. If the shift of the chemical po-
tential is less than u* ~ 0.3 A, the fractional conductance is observed.
For higher values of the shift, the conductance is still suppressed
in comparison to the quantized conductance 2Gq = 2¢?/h. This
suppression is caused by a mismatch of modes in the leads and in
the wire, similarly to the one observed in Ref. [48] for noninteracting
systems. The reflection at the contacts gives rise to well-pronounced
Fabry-Perot oscillations with a period of order of Zis /L.
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where E| is the bare rest energy of one soliton, and the partition
function Z is given by

o0
Z = Z Z/Dé(’b e~ SElbLs+8G1-NEo/T (80)

N=0 1

We note that the representation defined in Eq. (77) is
redundant: shifts of both the collective coordinate &, and
the Goldstone zero mode ¢ Bgmé’m (x, &,) describe the
same translation of the mth soliton. In order to avoid
double counting we have to perform the integration only
over the fluctuations orthogonal to the zero modes, i.e.,
[dx 8¢(x,7)d, " (x,&,) = 0. This can be done by the
Faddeev—Popov technique [49,51,52]. The integrals over the
fluctuations around the static kink solutions in Eq. (79) should
be understood as

N
/ D Oe-Selbtinl _, / D63 [| Dén O8(Quln)

m=1

x det <%>esfl¢‘w+5¢', (81)
8&m
with the Faddeev-Popov functional defined as Q,,[&,] =
Jdx ¢(x, 03P (x, &p).

Using the expansion given by Eq. (77), we can represent
the correlator (¢; (x, T)¢@;(x, 0)), defined in Eq. (79) as sum
of a contribution from solitons (¢;(x, T)¢;(x,0)),, and a
contribution from “mesons,” i.e., “background” fluctuations,
which we denote by (¢; (x, T)¢;(x, 0)),,

(Di(x, 1) (x, 0))n = (@i(x, )P (x, 0)n s
+(hi(x, 1)@ (x, 0))n i, (82)

(61 (x. T (X, 0wy = Y (" (X En ) (x. En)) (83)

(9i(x, T)p;(x, 0)np = (860 (x, T)3¢;(x, 0y .  (84)

We note that the cross-terms being odd in §¢ vanish while
averaging over fast meson modes.

The charge current should not depend on the coordinate.
Moreover, it is convenient to take x in Egs. (82)—(84) inside the
left lead, i.e., x < O. In this case, K.(x) = 1 and vi2(x) =0,
so the classical solution of the Euler-Lagrange equations for ¢,
is trivial, ¢, = 0. Thus the only nonzero correlator in Eq. (83)
is the one with i = j = 1. As a result, according to Eq. (20),
the N-soliton state contributes to the conductance as

o 2e°y2 _ _
Gy = lim a){ (D1(x, @)1 (x, —D)) N s

>0 | m2(y2 + 1)
+2—62[ 2(8¢1(x, @)8¢1 (x, —@))
712(7/(.24-1) Ve 1(X, w)ogi(x, —w))N

+ v (81 (x, @)d¢a(x, —@)) N
+ Yelda(x, @)51(x, —@)) Ny

+ (82 (x, @)5¢pa(x, —cD))N]} - (85)

We note that previously for the case when the excitations are
not fractional (v = 1), it was shown that the contribution to

the conductance from the gapless modes does not depend
on temperature [34,35]. It is far from obvious that the same
happens in a more complicated situation in which multiparticle
scattering leads to fractional effects. However, in the follow-
ing, we show that, indeed, the contribution from correlators
for background fluctuations (8¢;8¢;) yields a temperature-
independent fractional conductance 2¢*/(y> + 1)h [see Secs.
IV A and IV B]. In contrast to that, as shown in Sec. IV C, the
conductance acquires a temperature dependence already in the
one-kink approximation N = 1. In Sec. IVD, we generalize
this result in the dilute soliton gas limit.

A. Vacuum sector

First, we calculate the correlators (¢;(x, 7)¢;(x,0)) in
Eq. (82) for the vacuum sector, i.e. for N = 0. We insert an aux-
iliary point source term (_#,8¢; + _#>8¢,)8(x — x’) into the
action Sg, then the solution of the Euler-Lagrange equations
in real time can be represented as 3¢, (x) = —ig(fﬁ (x,x") 7,
where gtfﬁ(x, x") is a retarded Green function. In order to
calculate the conductance in the left lead we assume that
the sources [Jj, are also located in the left lead, x’ < O.
The Euler-Lagrange equations for small fluctuations §¢ are
given by

@ 8@1 + 3x (VI ()3, 801 + V], (x):892) — W (x)d¢
=nvp _#18(x —x'), (86)

0?*8¢) + O (v§8x8g02 + v1228x5<p1) =nvr _H8(x —x').
(87)

The potential W(x) = 2)L2w§(x)e’*z<¢lz(x)) obtained by ex-
tending the action around a static vacuum solution in the
self-consistent harmonic-approximation [40]. In following
consideration, we do not assume any specific shape of the
potential W(x) except that it is localized inside the wire
and vanishes in the leads W(x > L) = W(x < 0) = 0. The
velocities v;(x), vp(x) coincide with the Fermi velocity if x
is outside the wire, and the coupling v, vanishes in the leads,
vp(x <0)=vpkx > L)=0.

To begin, we study the scattering problem defined by
Egs. (86)—(87) with zero sources J; = J> = 0. There are two
solutions corresponding to the wave incident from the left lead,
which have the following asymptotic form:

jex (1 —iex (1

e vr (O) +rie vr (0)

R
t11€ix<(1)> +lz1ei;’);<?>, x>1L,

ei:;;<(])> +722€_i?;<(]))

<3<p1> _ +r12e"fi<é), x <0, (89)
2

7
t12€i% <(1)> + tzzei%; (?) x> 1L,

where 1;;(w) are transmission amplitudes for scattering from
the jth mode in the leftlead to the i th mode in the right lead, and
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r;j(w) are reflection amplitudes for scattering from jth mode in
the left lead to the ith mode in the same lead. Thus the solution
of Egs. (86)—(87) can be reduced to a scattering problem. In the
limit w — 0, the potential barrier W (x) becomes impenetrable
for the first mode 8¢;, and rj|(w) = —1 + O(w), rix(w) =
r1(w) = rp(w) = O(w) (the derivation of these asymptotics
is similar to the one given in Ref. [53]).

Now we proceed with the solution of Egs. (86)—(87)
with nonzero sources. The solution at x < x’ < 0 is a wave
propagating from the source at x’ to the left and is of the form

Ay _jea=x) 90
VP,
4,)¢ (90)

The solution at x’ < x < 0 is a linear combination of the
solutions given in Eqs. (88) and (89),

8 8
Bl< (pl) +B2< (pl) : ©1)
5§02 1 8§02 2
The matching conditions at x = x’ read

iwx!

Ay = Bi(e +rie )+ Byrppe” v, 92)
iwx’ —iox” _iox!
Ay = Bz(e UF —+Fppe VF ) + Birpyie r, 93)
iwx! —iwx! o T
Bl(e Vo —Tr11€e F ) — Byripe P + A = ——, 94
iw
iwx’ —iwx’ _iwx! T %
By(e'r —rme v ) — Birpe 't +Ay="—=-. (95)
iw

Solving this system of linear equations, we obtain the following
response 3¢; to the source term, calculated at x = x”:

<8g01) x [N (1 + 711€_Ziw:7) + Jorine
82 20\ Jyrye” 2 + jz(l + r22€72iw”x7)
(96)

Thus the retarded Green functions are of the following form:

GR (', X', ) = m(ur”e”"”%) — o(1), (97)
Gh(  w) = gt = 00D, 98)
GR (', x', w) = mrm —0(1), (99
GR (¢, x', ) = m(l + e )
- m + o). (100)

Now we perform an analytical continuation of the retarded
Green functions to obtain the correlators from Eq. (85) in
Matsubara representation. According to Eq. (85), the only
nonzero contribution to the conductance is obtained from Qg,
yielding

1 2G
CZy2+ 1

(101)

vac

In the limit of low temperatures 7 — 0, Z =1, and we
obtain the known result for the low-temperature fractional

conductance [23,24], which is also in agreement with the
results obtained in Sec. IIT A [see Eq. (52)],

2G,
v2i+ 1

G(T =0) = (102)

B. Contribution to the conductance from background
fluctuations for N > 1

The effective action for fluctuations d¢ in the presence of
N solitons reads

1
Ssp = —/dxdt Sp1{—097 — 0,170, + Wy (x) )89
2T VR

+ S2[8¢2] + S12l8¢1, 8¢l

where Wy (x) is the effective potential created by N solitons,

Wi (x) = %(% [wg cos («/Ewl)])‘

We recall that the analysis in the previous section does not rely
on a particular form of the potential W (x). Thus the correlator
for background fluctuations is given by

(103)

(104)
F=dre

(8 (x, ®)5¢;(x, 0) y = %

Combining Eq. (85) with Eq. (79), we obtain the contribution
to the conductance G, v due to background fluctuations in
the presence of N solitons,

(105)

1 2Gy _
Gpgn = Z7241° NEW/T,
This expression generalizes Eq. (101) obtained for vacuum
fluctuations. Summing up all the contributions from N =
0 up to N — oo, we arrive at Yy Gpe v = 2Go/(y2 + 1).
This contribution turns out to be temperature-independent and
coincides with the fractional conductance G,,.

(106)

C. One-kink approximation

In this section, we focus on the low-temperature regime,
T <« A, and consider only states with not more than one
soliton. Consenquently, we omit terms with N > 1 in Eq. (80).
For the sake of simplicity, in what follows we do not track how
the bare rest energy Ej is renormalized by fluctuations into
a physical gap A. We estimate the value of the gap from the
first-order RG equations, see Eqgs. (7)—(11).

At finite temperature, a kink with the renormalized rest
energy A and the mass M ~ A/s* can be activated. The
kink propagates inside the wire carrying electric charge and
interacting with the environment consisting of gapless and
gapped modes of background fluctuations (see Appendix C
for details). The spectrum of the fluctuation modes is given by

oo 2 20t [en + 01 - ) + g’
q - 2 .

(107)

The plus sign corresponds to the gapped mode a);r ~

/@3 + q*v?, while the minus sign corresponds to a gapless
acoustic mode w, =~ v,|q| for qvs K wy. The gapped mode
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leads to a renormalization of the kink rest energy [49,51].
A coupling to gapless modes causes an effective friction
such that the kink dissipates energy by interacting with the
gapless mesons. This mechanism resembles Caldeira-Leggett
type dissipation [54] and damping of Bloch walls in quasi-1D
ferromagnets caused by interaction with spin waves [50].

In order to calculate a contribution to the conductance due
to the motion of kinks we integrate out the fluctuations §¢
and obtain an effective low-energy Euclidean action for the
collective coordinate £ (see Appendix C and Ref. [34] for
details of the derivation),

=2

M
Serl€] =T s@)( -

where the summation over Matsubara frequencies @ is per-
formed. The first term describes the free motion of the kink,
while the second term corresponds to an “Ohmic-like” friction
(i.e., linear in |@|) caused by the interaction between the kink
and the gapless fluctuation modes. The temperature-dependent
friction coefficient is given by

M _
+772|w|>§(—w), (108)

T
A 50 v; ’
The Matsubara Green function for the collective coordinate
DM (@) for long wires in the limit L > s/A, s/ T reads
1

M(&* +nl@))

(109)

DM (@) = (110)
The retarded Green G¥ function for the bosonic field ¢; can be
related to the Green functions D for collective coordinates as
was shown in Ref. [34]:

GR(x.x.7) = an0(r) | 2L Do) - DHO)

B Ji(DK(0) — DX (1))
V2 , (111
wl DD |
where DK = —i({£(t),&()}) and DR = —i@@ —1'){

[£(?),&(@")]) are Keldysh and retarded Green functions
for collective coordinates, respectively, and g = 1/T. The
retarded Green function DR can be extracted from the
Matsubara Green function DM by analytic continuation,

1
R _
Do) = T i@tin (112)
DR(7) = iﬂ@( ) (113)
T)= M " T).

The Keldysh Green function can be obtained using the
fluctuation-dissipation theorem,

DX () = 2Im DX th 2
(w) m (w)co T

.y
=" com2, (114)
Mo n? + o? 2T
2i 1
DK (z) — DK (0) ~ =T 12 arctan —. (115)
M nt

As a result, in the absence of the friction the Keldysh Green
function reads
DX (z) — DK(0) = —T<2. (116)
M
The conductance is related to low-frequency current-current
correlator by Eq. (85), and, hence, the contribution to the

conductance from one kink, Gk, can be extracted from the
retarded Green function in time representation,

292
Gy = < T fim GR(r).

117
vé+1 v>+o0 4

The activation law exponent arises due to the rest energy A
of the kink. First, we focus on the important limiting case of
an infinitely long wire in the absence of friction, n =0, L >
s/A, s/T.If one disregards dissipation terms in Eq. (113), the
Green functions for the collective coordinate grows infinite
with time,

T
DRy = 0@ (118)
i
DX (r) — DX ()]0 = MT‘L'Z. (119)

The kink and equal antikink contribution to the conductance,
Gk and G4, respectively, are obtained straightforwardly from
Eq. (117),

, (120)

so that the total conductance at T < A is G = G, + 2Gg.
Thus, comparing the result with the asymptotics of Eq. (60) at
T <« A, we see that in the absence of friction the interactions
only change slightly the temperature-dependence of the gap
A(T) [see Eq. (10)].

The situation changes drastically if the dissipation is taken
into account, n > 0, however, the wire is still assumed to
be long enough. Now the retarded Green function for the
collective coordinate DX is finite at infinite times, DR (t >
n~') = 1/(Mpn), but the Keldysh Green function (in the limit
of along wire L > vp/n) is still infinite, DX (t > n™!) o 72
Therefore Eq. (117) yields zero conductance. This can be easily
understood, since the Ohmic-like friction causes an internal
resistivity, and we may expect that in long wires, L > vg/n,
the total conductance will drop to zero as the wire length L is
increased.

The crossover between these regimes can be roughly de-
scribed by taking the limit at finite t — 7t instead of T — oo
in Eq. (117),

1—e~mm0

26y
Grx = FXJTH My

—A/T

2 +1 2 2 1 ¢ ’
Ve < 2

c -7 T T3, arctan .

(121)

The results for finite but large wire length L can be easily
estimated. Since the collective coordinate is bounded inside
the wire 0 < & < L, the Keldysh and retarded Green functions
must be bounded as well, |DX| < L?, |D®| < L?. Therefore
we assume that the Green functions grow until they reach their
asymptotic value of order of L2. This gives a cutoff parameter

045416-12



CONDUCTANCE OF FRACTIONAL LUTTINGER LIQUIDS ...

PHYSICAL REVIEW B 98, 045416 (2018)

at large times 7, = min{tg, 75} with

AL? L [A (122)
TR=—5, Tk =—4/—.
BT Ths? K=5VT
First, we consider the limit of long cut-off time 7., and of
strong friction n such that 77, > 1. One can estimate the
corresponding temperatures at which this regime occurs as
T > hv$/(svh L), i2sv3 /(AvZ,L?). In this case, the conduc-
tance is suppressed by friction,

2G0)/.2 T s _A
Gk = Sy T pr 1.
K= iVanmL® Moo 2>

In the opposite limit 7. < 1, the friction becomes insignifi-
cant, and the conductance is the same as in the noninteracting
case.

(123)

D. Dilute soliton gas approximation

Now we return to the general case of a soliton gas con-
sisting of N solitons (kinks and antikinks) with a classical
configuration described by Eq. (76). Assuming that the soliton
gas at temperatures T 2 A is dilute, we disregard interactions
between solitons. In this case, the effective action for the
N-soliton gas can be written as

N
Selér, ... Ex1 =) Serrl&il, (124)
i=1
where Seg is given by Eq. (108). The integration over & in
Eq. (81) can be reduced to a one-kink retarded Green function
g;§:1 for the action Sc[£] calculated in the previous section,
see Eq. (111). As a result, the summation over N can be easily
performed,

1
Z = Trear: (125)
dinZ 2e AT
Gr(r.1") = _Zd(A—/T)gﬁzl = IH——A/TQII\!}:]' (126)

In comparison to the one-kink approximation, the Green
functions and, correspondingly, the conductance acquire an
extra activation factor e=2/7 /(1 + e=2/T) instead of =2/
in the previous section. In the limiting case when the decay
length of solitons is less than the length of the wire, nty > 1,
the total conductance is given by

2G, ( De=AIT \/7 s )
G=— 1+ — —— .
y2+1 1+e 2TV AnL

The first term stems from the background fluctuations, and does
notdepend on temperature. The second temperature-dependent
term differs from Eq. (123) by a temperature-activation factor
which now takes into account summation over soliton gas
configurations with different number of solitons N.

In the opposite regime, when the solitons can almost freely
propagate through the wire, nt, < 1, the friction becomes
insignificant. As a result, the total conductance is given by the
simple expression

2G,
G=— 1
yve+1

(127)

(128)

2y2e T
14+e T )

2 —
1.5
=
N K,=0.10
= 1 —K,=0.20
© - K,=0.15
- K,=0.25
adl| - K,=0.30
Gu
0 1 2 3 4 5

T/Aq

FIG. 11. Conductance of a long wire, L > hvg/Ay, as function
of temperature 7 at filling factor v = 1/3 assuming that friction
experienced by solitons can be disregarded [see Eq. (128)]. The
temperature is given in units of the bare (nonrenormalized) gap
Ay~ BUzzkl__/vi, while the conductance is measured in units of
Go = ¢*/h. At T = 0 the conductance coincides with G, = ¢*/5h,
while at high temperatures, T > A, the conductance reaches its full
value 2¢?/ h. The activation curve becomes steeper as the interaction
parameter K. approaches the critical value K, = 1/3. The activation
temperature is determined by the renormalized value of the gap A
and is governed by Eq. (10). The length of the wire was taken much
longer than the correlation length /ivp/A.

At zero temperatures, 7 = 0, the result agrees with the frac-
tional conductance G, = 2Gy/ ()/C2 + 1) found before [23].

Finally, the expression for the conductance at the crossover
between these regimes, which was given by Eq. (121) in the
one-soliton approximation, is now replaced by

N T

G=G,| 1+
14 e2/T 2 1
\/WTtozo arctan m_—m

(129)

The resulting conductance for = 0 (i.e., neglecting friction)
and for different values of interaction parameters is shown in
Fig. 11. At zero temperature, the conductance is given by the
fractional quantum value G,. At high temperatures, the con-
ductance reaches its full value 2¢?/ h. The interaction strength
affects the temperature dependence of the renormalized gap
[see Eq. (7)] such that the stronger interaction is, the larger the
gap, and, hence, the activation temperature is.

The correction to the conductance due to the friction is
shown in Fig. 12. The resistance due to friction vanishes
at T = 0. At higher temperatures 7' 2 Ay, the conductance
reaches a plateau, which can be significantly lower than 2¢2/ h,
especially if the interaction is extremely strong K, = 0.1
[see Fig. 12(a)]. The drop in conductance can be as large as
0.5¢2/ h even in relatively short wires L > 5hvyr/Aq. One can
numerically estimate the corresponding length as L = 0.5 um
for Ag ~ 0.5 meV. However, even in a more realistic case
of a weaker interaction strength K. = 0.2, the drop of the
conductance at finite temperature is still large to be observed
experimentally if the wire is long enough [Fig. 12(b)]. In this
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FIG. 12. Temperature dependence of the difference G = G — G~ between the total conductance G at the filling factor v = 1/3 with
friction taken into account [see Eq. (129)] and the conductance G,—, calculated disregarding effects of friction [see Eq. (128)] for two values
of Luttinger liquid parameter: (a) K = 0.1 and (b) K = 0.2. Temperature is measured in units of the bare gap Ay ~ B Uzsz / v%, while the
conductance is measured in units of G, = ¢/ h. The temperature dependence of the gap is determined using Eq. (10). The friction coefficient
is estimated using Eq. (109). At high temperatures 7 > A, the conductance is suppressed by the friction. The correction to the conductance due
to friction becomes more significant in case of strong interactions [see panel (a)]. The effect of friction may be neglected for weak interaction,
if the length of the wire L is not much longer than the correlation length Zivy /A [see panel (b)]. In contrast to that, if the wire is longer, the

friction plays an important role also in this case.

case, the drop of conductance can reach 0.1¢*/h for much
longer wires L 2 50hivp/Ag, corresponding to a length L >
5 pm for Ag ~ 0.5 meV. We note that although the model and
technique used to describe the effects of friction resemble those
of Ref. [34], the different underlying physics leads to different
results. In contrast to the situation considered in Ref. [34], the
gap dependence on the temperature determined by Eq. (10)
does not only vanish at temperatures higher than some critical
temperature but it even grows with temperature provided the
scaling dimension of the sine-Gordon term is large enough,
D > 1, ie., for K, > 1/9, which results in a plateaulike
dependence of the correction §G at high temperatures (see
Fig. 12).

V. CONCLUSIONS

In this work, we analyzed electrical transport properties of
a quantum wire, in particular the conductance, in the presence
of strong electron-electron interactions inside the wire. Many-
particle backscattering processes caused by electron-electron
interactions lead to the formation of a fractional Luttinger lig-
uid state with a partial gap in the spectrum. Using bosonization
and LL formalism, we studied how the gap manifests itself
in the conductance and how it is affected by the presence
of a smoothly varying gate potential V,(x) determining the
connection between wire and leads. We analyzed this problem
in two complementary approaches, one where we solve the
problem essentially exactly but for a special value of the
interaction strength, allowing refermionization, and a second
one, which is based on a semiclassical approach but valid for
arbitrary interaction strengths.

One of the essential conditions for the observation of the
fractional conductance is the fine tuning of the chemical
potential to a specific resonance value such that the ratio ks, / k
is an odd number. While previous works [23-25] focused on
the regime where this resonant condition is fulfilled exactly,
in this work, we also considered in detail the conductance of
the fractional Luttinger liquid in a more realistic case when
the chemical potential is slightly detuned from the resonance

value. As an important result, we found that for the filling factor
v = 1/3 the fractional conductance G,—i;3 = e?/5h can be
observed at zero temperatures provided the chemical potential
detuning does not exceed the critical value u* ~ 0.3A. Our
study shows also that the fractional conductance is not affected
by the gate voltage drop at the contacts. In the case when the
detuning of the chemical potential from the resonance value is
greater than u* (even if it lies inside the predicted partial gap),
the fractional conductance cannot be observed. This means that
an experimental observation of the fractional behavior requires
a rather precise fine tuning of the system parameters.

We also studied the conductance for short wires where the
length of the wire is of order of the length associated with the
predicted partial gap, /ivp/A, and we analyzed the transition
from the fractional value G,—_;3 = e?/5h in long wires to a
total conductance 2¢?/h in short wires. Since the fabrication
of a clean and sufficiently long wire can be a complicated task,
we believe that our findings may help to observe signatures of
fractional Luttinger liquid even in shorter wires.

We also predict a mechanism of resistivity caused by the
interaction of the sine-Gordon solitons with gapless fluctuation
modes. This mechanism leads to a suppression of the conduc-
tance at finite temperatures, and also leads to a dependence of
the conductance on the length of a long and clean quantum
wire and on the strength of the electron-electron interactions
in stark contrast to the case of the quantized conductance of
conventional Luttinger liquids. However, it is important to
note that only the temperature-dependent current carried by
the gapped excitations (solitons) gets suppressed, while the
contribution from the gapless excitations, which is responsible
for the fractional conductance, does not depend on temperature
and is robust against the predicted friction.
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APPENDIX A: RG ANALYSIS

In this section, we study the action S = S§; + S + Si2
given by Egs. (14)—(16) in the following form, where all the
parameters are expressed via v; 2 12 as well as K » and, for the
sake of simplicity, their spatial dependence is disregarded:

1
5 = —m/dxdr [61(— 97 — v}02)b
+ wg cos(v2r1)], (AD)
1
$i= -5 / dxdt go(—0% —1202) s, (A2)
Spp= — dxdt ¢(203,0%)ps. (A3
12 . —U1K102K2/ xdt ¢1(2v,87)d2.  (A3)

We use standard RG techniques [40], and treat the sine-Gordon
term a)(z) cos (\/z)»qﬁl) as a perturbation. The renormalization
of velocities (vy, vy, v12), of Luttinger liquid parameters
(K1, K>), and of the gap A is described by the following RG
equations:

& 2Dy (A4)
Il Z,
d(vl/Kl) K1U1U122 2.2
- , A5
dl u%u% V2t (A5)
d<L> 1 — 02(y=2 -2
v K, V3 (uy” +uy ) 2.2
= — K , A6
di i 11022 (46)
d(v3,/~/ i K
M =0, (A7)
dl
dK2 dU2
— =0, — =0, (A8)
dl dl

where we have introduced the flow parameter [ = In[a/ag].
The dimensionless coupling constant is defined as z(/) =
A(Da(l)/v, and its scaling dimension D(l) is given by
(ycz + 1) (u1u2 + v%)Klvl

2(uy + uz)uuy '

D =

(A9)

Here, u, , are the velocities of the eigenmodes of the quadratic
part of the action, which are given by the positive roots of the
characteristic equation,

4

ut — (vf +v3)u? + viv; — v}, = 0. (A10)

The trivial integrals of the RG flow equations [see Eqs. (A4)—
(A8)]are K>, vy, J; = vfz/«/lel.However it can be shown
straightforwardly that J, = u;? +u5? = (v2 + v3)/(v}v} —
vfz) is also a first integral of the system of coupled equations,
whose value can be determined from the initial conditions as

h=v+v>= (K. +1)/v}. (A11)

For strong electron-electron interactions, K. < 3/y2, the
sine-Gordon term is relevant [see discussion above Eq. (7)].
Its scaling dimension D(!) and the effective LL parameter for
the first mode K| decrease with increasing RG flow parameter

l

FIG. 13. The RG flow of the scaling dimension D(/) of the sine-
Gordon term in the action S; [see Eq. (14)] obtained by numerical
solution of the RG equations [see Eqs. (A4)—(A8)] for two different
values of Luttinger liquid parameter K., which are chosen to be small
enough so that the sine-Gordon term wj cos (V2r¢1) in Eq. (A1)
generating the gap is relevant. As the flow parameter grows, the scaling
dimension of the sine-Gordon term becomes small, D < 1, indicating
strong pinning of the field ¢,. Although the initial scaling dimension
is lower for a stronger interaction K, = 0.1, the scaling dimension at
the point where the flow stops (shown with vertical arrows) is smaller
for K, = 0.2. For initial values, we took z = 10~ and velocities for
a corresponding value of interaction parameter K, from Table 1.

I, see Figs. 13 and 14, respectively. We note that, in case of
a sufficiently long wire and in the limit of zero temperature,
the RG flow should be stopped at z(I) ~ 1, meaning that the
flowing cut-off parameter a(/) reaches the correlation length
vr/A. Using the fact that J; and J, are first integrals, we
can come to the conclusion that vy, should flow to zero
(to be accurate, the flow is stopped at z(/) ~ 1, and v, remains
finite but small, v, < vf), while v; flows to a finite value (see
Fig. 15), which can be determined from Eq. (A11) as

2

wH™? = K. ;H —vy% (A12)
Vp

As a consequence, at large values of [, v;(]), va(l) > vi2(]).
This means that the cross term Sj,, defined in Eq. (16), can be
treated as a small perturbation.

K,
0211 _ g —o01
- K.=02
015 | ¢

0.1 F

0.05

2 4

FIG. 14. The same as Fig. 13 but for the flow of the interaction pa-
rameter K;(/). Although, the interaction parameter decreases during
the flow, it does not change significantly.
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U1, U2

V12

FIG. 15. The RG flow of velocities v, (solid lines) and v, (dashed
lines) as a function of vy,. The initial values of Luttinger liquid
parameter are chosen as K, = 0.2 (blue lines) and K. = 0.1 (red
lines). All velocities are plotted in units of vy and vertical arrows
show a point at which the flow is stopped. First, v, remains constant
during the RG flow in accordance with RG equations [see Eq. (A8)].
Second, v; flows to a value v close to vy (at K, = 0.1 and K. = 0.2
the corresponding values of v} are v{ ~ 1.04vp and v{ ~ 1.2vp,
respectively). Whereas, an amplitude of the cross-term v, in the
action Sy2 [see Eq. (A3)] flows to a much smaller value, vy < vy,
which means that the cross term given by Eq. (A3) can be treated as
a perturbation.

APPENDIX B: CALCULATING TRANSPORT PROPERTIES
IN REFERMIONIZATION APPROACH

1. Contribution to the conductance from the states
inside the gap

In this section, we solve the set of equations of motion [see
Eqgs. (39)-(40)] for the refermionized fields R, and L. For the
states with energies inside the gap || < A, the general form
of the solution is defined in Eq. (48). The expectation value of
the tunneling current j; carried by gapped refermions can be
expressed via the correlators of operators A, B [see Eq.(48)] as

K
(1) = s(<AT B)—— (B1)

+ c.c.)e"L,
K —1iq

where ¢ = ¢/s [cf. Eq. (49)]. We also express densities of
the gapped refermions at the left (p; 1) and the right (o1 g)
leads as

(pr.L) = (ATA) 4+ e *E(B'B) + e"‘Le<(m—B) + c.c.),

g —1Iks
(B2)
A'B
(p1.r) = (ATA)e L + (B'B) + e—KLg<¥ + c.c.).
E —IKS

(B3)

In addition, from the boundary conditions defined in Eq. (47),
we obtain

1 —2kL .
(ATA + BTB)ie*KL _1te ((ATB) £ +A”{s + c.c.),

2
(B4)
1— —2kL . :
(BB — AM)%e—KL _ +<z (ATB)E +A’”+c.c.>.
(B5)
Finally, solving Egs. (B1)—(B5) together, we arrive at
1 L g WL
(A14) = pro + 30011 = prR)e 5 + 0™,
1 1 —«L ‘92 —2«L
(B'B) =/01.,R+§(,01,R—,01,L)€ F-FO(@ ), (B6)
. K2s2 —2kL —3kL
(1) = ZSF(,OLR —pLLe + O(e )

where we have kept only the leading terms for simplicity.

Substituting Eq. (B6) and Eqs. (43)—(46) into the boundary
conditions Egs. (21)—(24), we obtain a system of four indepen-
dent linear equations for the variables p; 1, p1.r, p2, and jo,
which can be solved straightforwardly. In leading order, we
obtain

V217 E ng—ng
ve(l 4 yvevh/v3) m (2 + 1)

(p1R — p1.L) = + O(e ).

(B7)

Combining Eq. (B7) with Eq. (B6), we obtain a tunneling
contribution to the current j; o< e~ from the gapped modes.
Substituting it to Eq. (44), we arrive at Eq. (53) given in the
main text.

2. Contribution to the conductance from the states
above the gap

Refermions with energies above the gap ¢ > A can be
treated in the same way as discussed in the preceding
subsection. The general solution of Egs. (39)-(41) can be
represented as

Ri\ o (uk\ ik Uk \ —ik(x—L)
)<l oo

where k =+/e2 — A2/s, uy = /1/2+k/2q, and v, =
J1/2 —k/2q. Here, A and B are again fermionic operators
representing the right- and left-moving refermions. The
expectation values of current j; as well as of the densities p; 1,
and p; r of the gapped refermions can be expressed as

g2 — A2

——(ATA - B'B),
I

G fs =
(pre) = (ATA) + (B'B) + %((AT By +cc). (B9

(pr.r) = (ATA) + (BTB) + %((ATB)e’”‘L +c.c.).
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The boundary conditions given by Eq. (47) can be rewritten as

A 4
(ATA + B'B) coskL = (A'B)(uj + vie ") +c.c.,

e
(B10)
A .
—(ATA+ B'B)sinkL = i (A"B)(uf — vie ¥*) +c.c.
&
(B11)

Again, similarly to the previous section, j; can be expressed
as a linear function of p; g and p; . Using the boundary
conditions defined in Egs. (21)-(24), we obtain a system
of linear equations for 0, j2, p1.L, P1.r, Which we solve
numerically. Expressing j. with the help of Eq. (44), we
obtain numerically the effective transmission shown in Fig. 4.
The numerical calculations to obtain Figs. 3, 5-7, as well as
Figs. 9-10, are performed along the same lines.

APPENDIX C: EFFECTIVE ACTION FOR ONE KINK

In this section, we follow Refs. [34,50] and derive an
effective action for the kink-particle up to order O ((9.&/vp )2).
The action Sg = S; + S> + S12 [see Eqgs. (14)—(16)] can be
expanded around the one-kink solution, ¢(x, t) = HF(x —
E)+8¢(x — &(T), T), where 8¢(x, ) describes fluctuations
around the static classical path,

S=358+S,, (C1n
Se = / dr [ f dx (8:9", axé’()}@fs)z, (€2)
2w vp
S0 = gmo [ dxdr 60, o+ H5) + (S . 59)
TTVF

(C3)

where we use the following notation for the scalar
products: (_7,8¢) = #18¢1 + #28¢; and (3,9, 8,6%) =
(8x<ﬁK)T8x¢V)K. The operators 7%, /4, and the spinor ¢ are
defined as

Z 0 v V2 0
=o w)eali (07 o)
07 Vi, V) 0 0

0
(C4)
S = [200,8)0,8; — (8,6)207] (é ?) (C5)
= —203:6)07¢, (C6)
and the potential V2(x) is given by
VZ(x) = w}(1 — 2sech®(x/8))). (C7)

The effective action for the collective coordinate £ can be
represented as

Serl€] = Se —ln{//D(S(p det (%)M} (C8)

The prime denotes that the integration is performed over
fluctuations orthogonal to the zero mode 9,¢*. In order to
integrate out fluctuations, we first eliminate a linear term
in Eq. (C3) by shifting ¢ by p = (1/2)7! 7, ¢ — ¢ —
p. Similar to Refs. [34,50], the Faddeev-Popov (Jacobian)

determinant det(§ Q/§¢) leads to an extra term in the action

proportional to (3, £ )?, which results in a mass renormalization.

Its exact value is not of interest here since we can estimate the

value of the renormalized mass M = A/s? by using Eq. (9).
We now turn to the integration over §¢ in Eq. (C8),

1
= (€9

/ D e 50 = .
Vdet' (% + )

The prime on the determinant denotes omission of the zero
mode 3: X (x, &). Using the identity In det = tr In, we expand

1 {_tr’ln(%[l+%’6_1%])}

Vdet' (G + 4)

- 2
tr/l:%—l% _ %(%—1%)2]

1
Vdet' 74 2

~

(C10)

Since s = 0(9.&/vr), this expression represents an expan-
sion in increasing powers of 9, £ /vy. When fluctuations §¢ are
integrated out, the action becomes quadratic in the collective
coordinate £. Similar to Refs. [34,50], the first-order term
%_1% leads to terms proportional to d,£2, which again
result in the mass renormalization. As we will show, the
second-order term (%’{1%”1)2 generates an additional term,
which is nonlocal in time and which results in internal friction.
The operator 7 describes free mesons. The spectrum of
mesons can be found by solving the Schrodinger equation for
the eigenfunctions far away from the kink center, where the
scattering barrier V?(x) created by the kink vanishes,

2,2 2 2
(vlq +wy — wy

2 2
V1hq

2 2

Viod .

8¢, = 0. (C11)
vig? — a)j) ?
The fluctuation spectrum consists of two branches, which we
will denote by index v = =£. One of them (v = +) has a gap

wyp and the other (v = —) is gapless,

et | G R Gt o A
! .

(C12)

We note that the spectrum of fluctuations differs from the one
obtained in Ref. [34] for the special case v; = v,. At low
momentum g <K wy /v, the gapped branch a);r and the gapless
branch w; are described by

+ ~ 2 2.2 -~
w, Moy +vigT, o, X ulq.

The eigenfunctions of %) factorize into a space and time
part &, , 5(x, 7) = ®, ,(x)e®" //B, where B = 1/T. Using
these notations, we find, up to the second order in the small
parameter (3,£ /vr)>,

i (A )

- ¥

v==%,9,q9',®,&

q

(C13)

|dedT (q>v,q/,5)’v (até)arax(bv,q,cb)lz
@+ (@) )@ + (@) P)

(C14)
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In leading order in wire length L, we get

[dxdt (Pvg7.a» (0:8)0:0: Dy 4.5)

= 9% [ dve@ory c1s
= _? qq’ Te E(T). ( )
Thus Eq. (C14) can be rewritten in the form
1 / —1 2 —2 V=
QU A =T ;ijww £k oT"(@).  (Cl6)

where &5 = foﬂ dte'®&(t) is the Fourier transform of the
collective coordinate. The damping kernel I'”(®) is defined
as

T Z 9% (@ + &'

I''@) = .
=12 1@+ &) + (@)@ + (@))’]

(C17)

Next, performing the summation over bosonic Matsubara
frequencies @', we obtain

4q°w" coth (Bw? /2
TN i e il G
p 4wp)” + @?
To render the results stay finite in the thermodynamic limit, we
have to subtract the vacuum fluctuations [49]. This renormal-

ization simply amounts to the replacement (see Ref. [50] for
more details)

(C18)

L
Y- Z/dq[p“(q) - E} (C19)
v,q v

2

-~ 2 (C20)
27 (wf) 8

_ L 202,

py — = A (C21)

27 ()80

where p"(q) is the density of states for the gapped (v = +)
and gapless (v = —) modes, respectively. Note that in the
limit when the coupling v}, between gapless mode and kink
vanishes, the density of states for the gapless mode p, is not
affected by scattering at the kink, p;” = L/(27). The damping
kernels I'” are then given by

_ dg 287 'v? 4q* ) coth(Bw] /2)
r@= [ 5 @ deirre 0
(@) = / dq 28, ' v}, 49°w; coth(Be, /2) 3

T T Ayt

First, for the gapped mode, the integration for 't does
not diverge in the infrared limit, and 't is of order O (@°).
Therefore the gapped modes contribute only to the mass (gap)
renormalization.

Second, in order to estimate I"~, we linearize the spectrum
of gapless fluctuation modes w_ & v,q, since the main contri-
bution to the integral is in the limit of small momenta g. The
integration yields

2
(@) = 28°v;’12 |T| +0@").

. . . 2 . . .
The resulting effective action for the collective coordinate is
now given by

Serrl€] = Z[ o 425 0 12T| qs@s@. (C25)
2

(C24)

The first term, stemming from Eq. (C2), describes the kinetic
energy of a particle with a mass M = A/s?, which can be
determined by using Eq. (7). The second term describes
Ohmic friction experienced by a kink coupled to a bath of
gapless mesons. This friction term is temperature-dependent
and vanishes at zero temperature.
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