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We study entanglement dynamics in the nearest-neighbor fermionic chain that is subjected to both dc and
ac electric fields. The dynamics gives the well-known Bloch oscillations in the dc field case provided that the
system size is larger than the Bloch length, whereas in the ac field case the entropy is bounded and oscillates
with the driving frequency at the points of dynamic localization, and has a logarithmic growth at other points. A
combined ac+dc field yields super-Bloch oscillations for system sizes larger than the super-Bloch length, which
puts a constraint on the device size in a typical nonequilibrium setup to observe super-Bloch oscillations where
the device is connected to the leads. Entanglement entropy provides useful signatures for all of these phenomena,
and an alternate way to capture the various length scales involved.
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I. INTRODUCTION

A charged particle under the influence of a static electric
field would be expected to undergo accelerated motion towards
infinity. However, in the presence of a periodic lattice potential
and electric field, the motion of a quantum particle is oscilla-
tory. These oscillations are known as Bloch oscillations [1–4].
The time period of these oscillations is inversely proportional
to the field strength. Although theoretically well understood,
Bloch oscillations are hard to control experimentally in normal
crystals where lattice imperfections often wash out this effect
altogether [5]. However, the advent of semiconductor superlat-
tices, optical lattices, and temperature-tuned waveguides has
made it possible to realize Bloch oscillations experimentally
[6–10].

The study of Bloch oscillations in a tight-binding frame-
work gives the well-known Wannier-Stark ladder as the en-
ergies and Wannier-Stark states as the eigenstates of the
Hamiltonian [11]. These states are extended over a length
called the Bloch length. Hence, to observe Bloch oscillations,
the system size must be greater than this length [12]. Also,
the equispaced energy spectrum results in the recurrence of
any initial state. Thus an initially localized state will again be
localized after a Bloch period.

By making the electric field time dependent, F(t) =
A cos ωt , with time period T = 2π/ω, one would expect that
the same periodicity can be seen in the dynamics. However,
contrary to this expectation, only at certain special ratios of the
amplitude and the frequency of the drive can the periodicity be
seen. This phenomenon is called dynamic localization [13–15]
and the special ratios are the roots of the Bessel function of
order zero.

A more general form of the electric field, which includes
both ac and dc fields, gives other interesting effects such as
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the coherent destruction of Wannier-Stark localization [16,17],
which occurs when the dc field is resonantly tuned with the
ac drive, and super-Bloch oscillations [18–20], which occur
for slight detuning from the resonant drive. The time period
of these oscillations is very large in comparison to Bloch
oscillations. Similar to the static field case, a super-Bloch
length [21,22] is associated with the super-Bloch oscillations,
and in order to observe these oscillations, the system size must
be greater than this length.

Entanglement [23–25] quantifies the quantum correlations
in a state between two parts of a system. In recent times,
it has emerged as a unique tool to capture a vast variety of
phenomena ranging from quantum phase transitions [26–28],
localization/delocalization transitions [29–33], trivial to topo-
logical transitions [34–36], etc., in closed systems, to the
correlations between a quantum dot and the baths in open
quantum systems [37,38].

The entanglement in a Wannier-Stark ladder [39] and
various types of quench dynamics has been studied before,
both numerically [40,41] and using conformal field theory
(CFT) calculations [42]. However, the connection to various
phenomena associated with the electric field was not made
explicitly. From the time evolution of an initially half-filled
state where all the particles are filled in the left half of
the chain, we find the appearance of Bloch oscillations and
super-Bloch oscillations in the entropy dynamics when the
system size is larger than the respective length scales: the Bloch
length and super-Bloch length. Hence, a device length greater
than the super-Bloch length is required if one has to observe
super-Bloch oscillations in a nonequilibrium setup where the
device is connected to metallic leads fixed at different chemical
potentials and temperatures. Also, oscillatory behavior of the
entropy is observed at the dynamically localized point, whereas
a logarithmic growth in entropy is seen for the situations where
a resonant drive destroys the Wannier-Stark localization.

In this work, we show how a study of entanglement enables
the extraction of the various length scales that arise in the
dynamics of a tight-binding chain subjected to an electric
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field. Furthermore, well-known associated phenomena such as
Bloch oscillations, dynamic localization, coherent destruction
of Wannier-Stark localization, and super-Bloch oscillations are
viewed from an entanglement perspective. The organization
of this paper is as follows. In the next section, we describe
the model Hamiltonian with a general time-dependent field.
The subsections present the different forms of the field and
the associated phenomena. The following section provides
the quench protocol and the entanglement dynamics with
numerical results. The summary and conclusions are given in
the last section.

II. MODEL HAMILTONIAN

The Hamiltonian for a one-dimensional (1D) tight-binding
model, for a finite system of size 2L sites with electric field, is

H = −J

L−1∑
n=−L+1

c†ncn+1 + c
†
n+1cn + aF(t)

×
L∑

n=−L+1

(n − 1/2)c†ncn, (1)

where F(t) is the electric field and a is the lattice parameter.
The numerical work is done in units where h̄ = 1, c = 1,
e = 1, J = 1, a = 1 (unless otherwise stated). For a constant
electric field F(t) = F , the dynamics gives the well-known
Bloch oscillations, while a sinusoidal driving F(t) = A cos ωt

can give rise to dynamic localization when A and ω are
tuned appropriately. In the presence of a combined ac+dc
field F(t) = F + A cos ωt , the phenomenon of coherent de-
struction of Wannier-Stark localization is seen at resonance,
whereas a slight detuning from the resonant condition yields
super-Bloch oscillations.

A. Bloch oscillations

For F(t) = F , the exact eigenstates in the n → ∞ limit are
the Wannier-Stark states,

|�m〉 =
∑
m

Jn−m(2J/aF )|n〉. (2)

The single-particle energies form a ladder with equal spacing
Em = maF , where m = 0, ± 1, ± 2, . . .. However, for finite
system sizes one observes nonlinear behavior at the ends of
the spectrum—these end effects are diminished on increasing
system size.

A natural length scale of the problem is the Bloch length
[11],

LB = 4J

F
. (3)

One can observe Bloch oscillations with the frequency ωB =
aF/h̄ in the dynamics if the system size is greater than the
Bloch length. This can be easily seen by studying the time
evolution of the mean square single-particle width,

σ 2(t) = 〈n2(t)〉 − 〈n(t)〉2, (4)

when the initial state is a single particle localized at the center
of the chain. The time evolution for a time equal to an integer
multiple of TB must return the system back to where it started,
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FIG. 1. Mean square single-particle width of the wave packet
at t = 5TB (top) and t = 2TSB (bottom) as a function of system
size rescaled to Bloch length and super-Bloch length, respectively.
The transition shows the requirement of a device size greater than
Bloch length and super-Bloch length to observe the oscillations.
(Parameters: A = 2.0 and ω = 1.0.)

if Bloch oscillations are present. Figure 1(a) shows the mean
square width of the wave packet calculated for different field
strengths at a time which is an integer multiple of TB (we show
data for the specific case of 5TB), as a function of the system
size rescaled by the Bloch length. Since the initial state is a
localized state with σ 2 = 0 and the same state will reappear
after a Bloch period (see Supplemental Material [49] for more
information), the mean square width at t = nTB should also
go to zero. However, this happens only when the system size
is larger than the Bloch length.

B. Dynamic localization

For a time-dependent electric field, the solution of the
time-dependent Schrödinger equation for the Hamiltonian H is
given by the Houston states or accelerated Bloch states [14,43]
as

|ψk(t)〉 = exp

(
− i

h̄

∫ t

0
E[qk(τ )]dτ

)∑
n

|n〉 exp[inqk(t)a],

(5)

where the quasimomentum’s time dependence can be obtained
from the equation of motion as

qk(t) = k + 1

h̄

∫ t

0
dτF(τ ). (6)

The dispersion E(qk) ≡ −2J cos(qka) is that of the nearest-
neighbor tight-binding model, but with implicit time depen-
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dence from the quasimomentum. For a sinusoidal driving
F(t) = A cos(ωt), the quasimomentum is

qk(t) = k + A

h̄ω
sin(ωt). (7)

Although the quasimomentum qk(t) is periodic in time with
period T = 2π/ω, the Houston states, however, are notT
periodic due to an extra contribution coming from the integral
appearing in the exponential. The one cycle average of that
contribution is

ε(k) = 1

T

∫ T

0
dτE[qk(t)]

= −2J

T

∫ T

0
dτ cos

(
ka + Aa

h̄ω
sin(ωt)

)

= −2JJ0

(
Aa

h̄ω

)
cos(ka)

= −2Jeff cos(ka). (8)

The effect of the drive is thus the well-known renormalization
of the hopping parameter. The Houston states can now be
decomposed in Floquet notation with the quasienergies ε(k)
as

|ψk(t)〉 = |uk(t)〉 exp

(
− i

h̄
ε(k)t

)
, (9)

where |uk(t)〉 is the T -periodic function which is ob-
tained by removing the extra contribution term of the
exponential.

Hence, the time evolution of any initial state is given by a
periodic function uk(t) and the phase factors exp[−iε(k)t/h̄].
However, the phase can be tuned to unity by choosing (Aa

h̄ω
)

to be a zero of the Bessel function of order zero, thereby
collapsing the band. In such a scenario, the initial state
will reappear after time T and a localized wave packet
remains localized. This phenomenon is known as dynamic
localization.

C. Coherent destruction of Wannier-Stark localization and
super-Bloch oscillations

Although a static electric field destroys band formation and
leads to Wannier-Stark localization and an ac driving gives
dynamic localization, a combination of these two can give rise
to the counterintuitive phenomenon of the coherent destruction
of Wannier-Stark localization. At resonant tuning, the effective
model is the nearest-neighbor tight-binding model, and an
initially localized wave packet delocalizes according to the
usual mechanism. When a slight detuning from resonance is
imposed, super-Bloch oscillations whose frequency is deter-
mined by the detuning are seen.

The formalism is the same as given in the previous section,
however, the net force is now F(t) = F + A cos(ωt). The
quasimomentum given by

qk(t) = k + F t + A

h̄ω
sin(ωt) (10)

is not T periodic except at resonance,

Fa = nω, (11)

where n is an integer;

qk(t + T ) = k + 2nπ

aT
t + 2nπ

a
+ A

h̄ω
sin(ωt)

= k + 2nπ

aT
t + A

h̄ω
sin(ωt)

= qk(t), (12)

where the periodicity of the lattice vector is used in the last
step. The quasienergies can be calculated as

ε(k) = 1

T

∫ T

0
dτE[qk(t)]

= −2J

T

∫ T

0
dτ cos

(
ka + nωt + Aa

h̄ω
sin(ωt)

)

= (−1)nJn

(
Aa

h̄ω

)
[−2J cos(ka)]

= −2Jeff cos(ka). (13)

It can be seen that ac driving leads to the formation of bands
with the hopping parameter getting renormalized. Hence under
such a resonant driving the particle can delocalize even though
the static electric field is present. However, once again at
the zeros of the Bessel function of order n, there is dynamic
localization.

A slight detuning from the resonant drive gives rise to super-
Bloch oscillations. The off-drive condition can be written as

Fa = (n + δ)ω. (14)

Under this condition an initially localized wave packet starts
oscillating with the time period TSB = 2π

δω
[18,44]. These

oscillations are known as super-Bloch oscillations. Similar
to the Bloch length, a super-Bloch length is associated with
super-Bloch oscillations,

LSB = JJn

(
Aa
h̄ω

)
δω

. (15)

The super-Bloch oscillations can be seen if the system size is
greater than this length. The same is shown in Fig. 1(b) where
the wave-packet mean square width is calculated as a function
of L/LSB.

To summarize this section, we have made a review of
the phenomena of Bloch oscillations, dynamic localization,
coherent destruction of Wannier-Stark localization, and super-
Bloch oscillations. We have shown how the length scales LB

and LSB can be extracted from a study of wave-packet width.
This section sets the scene for how these phenomena may be
viewed from an entanglement perspective in the next section.

III. ENTANGLEMENT ENTROPY
AND QUENCH DYNAMICS

Quantum entanglement quantifies the lack of information
of any subsystem despite full knowledge of the overall system,
and is also a measure of how one part of the system is correlated
with another part. Although various measures of entanglement
are available in the literature [37,45–47], the one that is most
widely used as an entanglement measure is the von Neumann
entropy.
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Let ρ be the density matrix which describes the full state of
the system. The von Neumann entropy of the any subsystem
A is defined as

SA = −Tr(ρA log ρA), (16)

where ρA is the reduced density matrix of subsystem A, i.e.,
ρA = TrB(ρ), with TrB denoting the partial trace with respect
to subsystem B. When the overall state ρ is pure, the von
Neumann entropy SA is also the entanglement entropy between
A and B.

In a noninteracting quadratic fermionic system, the von
Neumann entropy can be directly computed from the two-point
correlation matrix [48] of the subsystem A: Cmn = 〈c†mcn〉. The
von Neumann entropy is given in terms of the eigenvalues nα

of the subsystem correlation matrix as

S =
∑

α

[−(1 − nα) ln (1 − nα) − nα ln nα]. (17)

A generalization of the above result facilitates the study
of the dynamics of entanglement. The system is initially
prepared in the ground state of an unperturbed Hamiltonian and
then suddenly a suitable quenching Hamiltonian is switched
on, and the resulting time evolution governed by the new
Hamiltonian is tracked. The time-dependent correlation matrix
is then directly constructed from the time evolution of the
state. Finally, from the time-dependent eigenvalues of the
subsystem correlation matrix, we have access to the dynamics
of entanglement entropy.

The time evolution of the initial state is given by

|ψ(t)〉 = e−iH t/h̄|ψ(0)〉. (18)

The time-dependent correlation matrix can be written as

Cmn(t) = 〈ψ(t)|c†mcn|ψ(t)〉 = 〈ψ0|c†m(t)cn(t)|ψ0〉, (19)

where we have switched to the Heisenberg picture. Using
the time evolution of fermionic operators c

†
j and cj , we can

simplify the expression for the correlation matrix as (see
Supplemental Material [49] for more information)

C(t) = U †(t)C(0)U (t), (20)

where Ujk(t) = ∑
n D∗

jn exp(−iεnt/h̄)Dnk and the matrix D

diagonalizes the new Hamiltonian.
In a quenching protocol, where the final Hamiltonian

includes a static electric field, the form of the unitary matrix
U can be written as [11]

Unn′ (t) = Jn−n′

(
4J

h̄ωB

sin
ωBt

2

)
ei(n−n′)(π−ωBt)/2−in′ωBt . (21)

Since U (t) is periodic in time with the Bloch period, the
correlation matrix also follows the same periodicity. Now, the
correlation matrix can be written as

Cmn =
∑
qq ′

Jq−m

(
4J

h̄ωB

sin
ωBt

2

)
e−i(q−m)(π−ωBt)/2+imωBt

×Cqq ′ (0)Jq ′−n

(
4J

h̄ωB

sin
ωBt

2

)

×e−i(q ′−n)(π−ωBt)/2−inωB t ,
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FIG. 2. Entanglement entropy as a function of L/LB and L/LSB

for a dc field (top) and combined ac+dc field with slight detuning
(bottom) at t = 5TB and t = 3TSB (A = 2.0 and ω = 1.0). The initial
state is a half-filled state where all the particles are filled on the left
half of the chain. The entropy becomes zero when the system size is
larger than the Bloch length and super-Bloch length, respectively.

which, in conjunction with Eq. (17), yields the time-dependent
entanglement entropy. For a time-dependent Hamiltonian,
we discretize the time interval into tiny regions where the
Hamiltonian does not change appreciably, and the same pro-
cedure as above follows within the tiny intervals. In this case,
the time evolution operator consists of a series of unitary
operators.

The entanglement entropy between the two subsystems
for the Wannier-Stark problem was studied in Ref. [39]. The
contribution to the entanglement entropy comes from the
interface width which is created by the potential gradient. Also,
the dynamics after turning off the electric field was studied and
a logarithmic growth of the entropy was observed. However,
here we entirely focus on the dynamics of the entanglement
entropy after the electric field is turned on. The entropy as
a function of system size rescaled by the Bloch length and
super-Bloch length at t = 5TB and t = 3TSB, respectively, is
plotted in Fig. 2. The initial state can be thought of as the ground
state of a half-filled nearest-neighbor tight-binding chain with
a large electric field, where all the particles are localized to the
left of the chain. A transition signifies the minimum system size
to observe Bloch oscillations and super-Bloch oscillations. The
requirement of a device length larger than the Bloch length has
been given in recent work [12], where the device is connected to
two metallic leads in a nonequilibrium setting and a transition
from a dc regime to a Bloch oscillation regime is observed on
varying the device size. Our finding is that a similar result holds
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FIG. 3. Mean square width of an initially localized wave packet for an ac driving. Mean square width is unbounded for arbitrary A/ω (left),
whereas it is bounded and periodic when A/ω is a root of the Bessel function of zeroth order (center) (parameters are L = 100 and ω = 1.0).
Entanglement entropy (right) for a half-filled localized state. For ω = 0.0, the entropy shows Bloch oscillations, whereas for other values the
entropy is bounded/unbounded depending on the ratio of A/ω. (Parameters are L = 100, J = 0.5, and A = 0.5 for all curves except the blue
one.)

for the super-Bloch oscillations in the presence of a combined
ac and dc field where the device size has to be greater than the
super-Bloch length.

For the case of ac driving, Figs. 3(a) and 3(b) show that
the mean square single-particle width of the wave packet is
unbounded in time at arbitrary ratios of A/ω. In contrast, it
remains bounded and oscillatory at the special ratios which
are the roots of the Bessel function of order zero. The time
evolution of entropy is shown in Fig. 3(c) for various parame-
ters. One can see the Bloch oscillations in the dynamics of
entropy for ω = 0.0 and dynamic localization for the ratio
A/ω = 2.405, which is a root of the Bessel function of
order zero. For all other cases the entropy is unbounded in
time, thus signifying delocalization. The coherent destruction
of Wannier-Stark localization is shown in Fig. 4(a) for a
combined ac and resonantly tuned ac field. The entropy keeps
on increasing for a resonantly tuned ac, even in the presence
of the dc field. However, again the periodicity of the drive
can be seen in the entropy at the special ratios which are
now the roots of the Bessel function of order n [Fig. 4(b)].
Super-Bloch oscillations are observed in the entropy dynamics
for the cases of a slight detuning from the resonant condition
[Fig. 4(c)]. The chief findings of this section are that entangle-
ment entropy offers a useful alternative perspective for each
of the phenomena associated with the application of a general
(static or dynamic) electric field.

IV. SUMMARY AND CONCLUSIONS

To summarize, we studied the dynamics of many-body
entanglement in a nearest-neighbor tight-binding chain with
different forms of the electric field. For the static electric field
we find that the dynamics captures the well-known Bloch
oscillations with the constraint that the system size must be
greater than the Bloch length. A system size scaling of the
entanglement entropy at t = nTB shows a transition from a
dc regime to Bloch oscillation regime. For an ac field we
find that the entropy oscillates with the driving frequency at
the dynamically localized point, whereas at other points it
is unbounded. For a combined ac+dc form of the field we
find that at a resonantly tuned dc field, the unboundedness of
entanglement entropy verifies the coherent destruction of the
localization caused by the dc field, whereas a slight detuning
from the resonance condition leads to super-Bloch oscillations
in the entropy dynamics. From the system size scaling of
the super-Bloch oscillations, we find a transition from the dc
regime to the super-Bloch oscillation regime which demands
a minimum system size to observe super-Bloch oscillations.

Our results in a closed system suggest that if one has
to study super-Bloch oscillations in an open system which
includes a setup where a device is coupled to the metallic
leads, the device size has to be greater than the super-Bloch
length to observe super-Bloch oscillations. We believe that
the same experimental setup, as put forward in Ref. [12], can
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FIG. 4. Destruction of Wannier-Stark localization (left) for resonantly tuned driving F = nω, n = 1,2, . . ., and dynamic localization (center)
under the action of both static electric field and ac driving from the dynamics of entanglement entropy. Super-Bloch oscillations captured by
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be generalized for this purpose. Furthermore, time-dependent
phenomena in a nonequilibrium setup have mostly been studied
with a small number of degrees of freedom (such as a quantum
dot, for example). Therefore, it would be interesting to build
on our current work and extend it to study nonequilibrium
properties of the nearest-neighbor chain that is subjected to a
time-dependent electric field.
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