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Crystal-field effects in graphene with interface-induced spin-orbit coupling
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We consider theoretically the influence of crystalline fields on the electronic structure of graphene placed on
a layered material with reduced symmetry and large spin-orbit coupling (SOC). We use a perturbative procedure
combined with the Slater-Koster method to derive the low-energy effective Hamiltonian around the K points
and estimate the magnitude of the effective couplings. Two simple models for the envisaged graphene-substrate
hybrid bilayer are considered, in which the relevant atomic orbitals hybridize with either top or hollow sites
of the graphene honeycomb lattice. In both cases, the interlayer coupling to a crystal-field-split substrate is
found to generate highly anisotropic proximity spin-orbit interactions, including in-plane “spin-valley” coupling.
Interestingly, when an anisotropic intrinsic-type SOC becomes sizable, the bilayer system is effectively a quantum
spin Hall insulator characterized by in-plane helical edge states robust against the Bychkov-Rashba effect. Finally,
we discuss the type of substrate required to achieve anisotropic proximity-induced SOC and suggest possible
candidates to further explore crystal-field effects in graphene-based heterostructures.
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I. INTRODUCTION

The impact of the crystal environment on atomic states
is pivotal to understand the electronic structure of solids
containing transition-metal atoms [1]. For instance, in high-Tc

cuprates, crystal-field states are essential in the description of
CuO2 planes, where Cu+2 ions are surrounded by elongated
octahedral structures of O atoms [2,3]. The crystal-electric-
field effect and its interplay with spin-orbit coupling plays an
important role in magnetic anisotropy [4,5], the Jahn-Teller
effect [6–8], distortive order [9], and the cooperative Jahn-
Teller effect [10].

More recently, it has been appreciated that the crystal-
field effect (CFE) underlies rich spin-dependent phenomena
at metallic interfaces. For instance, the broken rotational
symmetry of magnetic atoms in metal bilayers was found to
render spin currents anisotropic [11], while a staggered CFE
associated with nonsymmorphic structures of metal species is
responsible for a giant enhancement of the Rashba effect in
BaNiS2 [12]. Here, we investigate the electronic properties of
graphene placed on nonmagnetic substrates characterized by a
sizable CFE. Graphene-substrate hybrid bilayers are currently
attracting enormous interest due to the combination of Dirac
fermions and prominent interfacial spin-orbital effects in the
atomically thin (two-dimensional) limit [13–15]. Monolayers
of group-VI transition-metal dichalcogenides (TMDs) are a
particularly suitable match to graphene as a high-SOC sub-
strate. The peculiar spin-valley coupling in the TMD electronic
structure [16–18] provides a unique all-optical method for
injection of spin currents across graphene-TMD interfaces
[19,20], as recently demonstrated [21,22]. Furthermore, the
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proximity coupling of graphene to a TMD base breaks the
sublattice symmetry of pristine graphene, leading to competing
spin-valley and Bychkov-Rashba spin-orbit interactions [23–
30]. The enhanced spin-orbit coupling (SOC) paves the way
to bona fide relativistic transport phenomena in systems of
two-dimensional Dirac fermions, including the inverse spin-
galvanic effect [31,32].

On a qualitative level, the band structure of graphene weakly
coupled to a high-SOC substrate can be understood from
symmetry. The intrinsic SOC of graphene is invariant under
the full symmetries of point group D6h, which includes sixfold
rotations and mirror inversion about the plane [33]. The re-
duction of the full point group in heterostructures is associated
with the emergence of other interactions [34,35]. For example,
interfacial breaking of inversion symmetry reduces the point
group D6h → C6v , allowing finite (nonzero) Bychkov-Rashba
SOC [36]. The low-energy Hamiltonian compatible with time-
reversal symmetry is

HC6v
= h̄ v(τzkxσx + kyσy) + λKM σzτzsz

+ λR (sxσy − τzsyσx), (1)

where v is the Fermi velocity of massless Dirac fermions, k =
(kx,ky) is the wave vector around a Dirac point (valley), and
τi,σi , and si are Pauli matrices acting on valley, sublattice,
and spin spaces, respectively. Here, λKM (λR) are the energy
scales of the intrinsic-type SOC (Bychkov-Rashba) interaction
enhanced by the proximity effect.

In addition, the interaction of graphene with an atomically
flat substrate renders the two carbon sublattices inequivalent,
further reducing the point group C6v → C3v . A well-studied
example is graphene on semiconducting TMD monolayers in
the group-VI family. The hybridization between pz electrons
and the TMD orbitals generates a spin-valley term λsvszτz

in the continuum model, reflecting the generally different
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effective SOCs on A and B sublattices [24,37]. The breaking of
sublattice symmetry also generates a mass term mσz (of orbital
origin), which can exceed tens of meV in rotationally aligned
van der Waals heterostructures [38,39]. Another example of
reduced symmetry occurs in graphene with intercalated Pb
nanoislands [40], where a rectangular superlattice potential
leads to an in-plane spin-valley coupling λ

y
svτzsy in Eq. (1).

Finally, if time-reversal symmetry is broken, e.g., using a
ferromagnetic substrate, a number of other spin-orbit terms
are generally allowed [41].

Below, we show that the above picture is further enriched
when π electrons in graphene experience a crystal-field envi-
ronment via hybridization to crystal-split states. The interlayer
coupling to a low-symmetry substrate removes the rotational
invariance from the effective Hamiltonian (1), leading to a
proliferation of spin-orbit interactions, including in-plane spin-
valley (λy

svτzsy) and anisotropic intrinsic-type (λy

KMτzσzsy)
SOCs. To estimate the strength of the proximity spin-orbit
interactions, we consider a minimal tight-binding model for
a hybrid bilayer with hopping parameters obtained from the
Slater-Koster method [42,43]. We present explicit calcula-
tions for two idealized substrates, in which a commensurate
monolayer of heavy atoms sits at the hollow and top sites of
pristine graphene. Finally, a Löwdin perturbation scheme is
employed to obtain the low-energy continuum Hamiltonian.
As a concrete example, we then discuss the possibility of ob-
taining an enhanced in-plane spin-valley coupling in a hybrid
heterostructure of graphene and a group-IV dichalcogenide
monolayer. This paper is organized as follows. In Sec. II, we
introduce the substrate model and discuss how the eigenstates
of free atomic shells are affected by CFE. In Sec. III, we
derive the effective Hamiltonian, when the emergent rotational
symmetry Cv∞ is broken by the crystal-field environment. In
Sec. IV, we address the scenario where, added to CFE, the point
group C6v is reduced by a sublattice-dependent interaction with
atoms of the substrate, which gives rise to new types of SOCs.
In Sec. V, we discuss possible realizations with group-IV TMD
monolayers. Section VI presents our conclusions.

II. SUBSTRATE MODEL

We assume a sufficiently weak interlayer interaction be-
tween graphene and the substrate [37,41,44], so that the
electronic states near the Fermi level derive mostly from
pz (graphene) states. Since we are mainly interested in the
interplay between CFE and SOC, we shall focus on substrates
containing transition-metal atoms. We focus on atomic species
with an outer free shell formed by d states (l = 2). The elec-
tronic states of a free atom are complex wave functions with
well-defined angular momentum projection. When an ion is
placed in a crystalline environment, its electronic states suffer
distortions due to the electric field generated by the surrounding
atoms. Ford (l = 2) atomic states, this effect is usually stronger
than the spin-orbit interaction itself, which can then be treated
as a perturbation [1]. The electronic states of a free atom are
(2l + 1)-fold degenerate (neglecting relativistic corrections),
but when the atom is placed in a low-symmetry environment,
the degeneracy is lifted [see Fig. 1(a)]. Depending on the
crystal symmetry, some of the original complex atomic states
combine to form real atomic states with no defined angular

FIG. 1. Two examples of crystal-field splitting: (a) octahedral and
(b) orthorhombic.

momentum projection. If the symmetry is sufficiently low, as
in an orthorhombic crystal, the degeneracy is fully lifted [see
Fig. 1(b)], and the atomic wave functions are real.

The Hamiltonian is written as H = Hg + Hat + V , where
Hg is the standard nearest-neighbor tight-binding Hamiltonian
for π electrons in graphene and V is the interlayer interaction.
To simplify the analysis, hopping processes within Hat, as
well as disorder effects, are neglected. Such an approximation
suffices for a qualitative description of the effective (long-
wavelength) interactions mediated on graphene [45]. Finally,
we assume a general low-symmetry environment, such that the
atomic Hamiltonian for the external free-shell subspace reads
Hat = H0 + Hso, with

H0 =
∑

i

∑
s=↑,↓

∑
dl

εdl
|dl,s,i〉〈i,s,dl |, (2)

Hso =
∑

i

ξ �li · �si ., (3)

where i runs over the substrate atoms and �li (�si) is the associated
dimensionless orbital (spin) angular momentum operator. The
first term [Eq. (2)] describes the crystal-field splitting of
d levels [46]. The second term [Eq. (3)] is the spin-orbit
interaction on the substrate atoms. We note in passing that
CFEs can also lead to anisotropic SOC in Eq. (3) [47]. Such
(usually small) anisotropy is neglected here since its main
effect is simply a modulation of the magnitude of the effective
SOCs on graphene.

We consider two types of commensurate substrates. In
the first type, transition-metal atoms of a given species are
placed at distance d above the center of a hexagonal plaquette
in graphene (hollow position h in Fig. 2). In the second
type, the atoms are located at a distance d above a carbon
atom (top position). The unit cell of graphene is formed
by two sublattices, and as such, there are two possible top
configurations: tA and tB (see Fig. 3). The eigenstates of the
first term [Eq. (2)] in space representation can be written as

〈�r|dl〉 = R(r)χl(θ,φ), (4)

whereR(r) is the radial part of the wave function andχl(θ,φ) =
〈θ,φ|dl〉 (l = z2,xz,yz,xy,x2 − y2) are tesseral harmonics.
Unlike spherical harmonics (eigenfunctions of lz), tesseral har-
monics are real functions and do not have spherical symmetry.
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FIG. 2. Hollow position h. The j -index convention is used in
Eqs. (11) and (A1)–(A5) and in the definitions of �δj and the direction
cosines nh

x,n
h
y, and nh

z .

For calculation purposes, we recast the wave functions (we
omit the radial part hereafter) in terms of eigenstates of lz as

|dz2〉 = |2,0〉, (5)

|dxz〉 = 1√
2

(−|2,1〉 + |2,−1〉), (6)

|dyz〉 = ı√
2

(|2,1〉 + |2,−1〉), (7)

|dxy〉 = ı√
2

(−|2,2〉 + |2,−2〉), (8)

|dx2−y2〉 = 1√
2

(|2,2〉 + |2,−2〉). (9)

Below, we show that the main effect of the hybridization of
graphene orbitals with nonspherically symmetric states of the
substrate is to induce anisotropic SOC.

III. EFFECTIVE HAMILTONIAN: HOLLOW POSITION

As a simple model for the substrate, we consider a mono-
layer of heavy atoms sitting at the hollow sites. The d orbitals of
each substrate atom hybridize with the pz states of the nearest
six carbon atoms (other hoppings are much smaller and thus are
neglected). The hybridization Hamiltonian is H h

V = Th + T
†

h ,
with

Th =
∑

�Ri

∑
l

∑
s=↑,↓

|�s,l( �Ri)〉〈dl,s, �Ri + �h|, (10)

where �Ri are lattice vectors, �h is the position of h inside the
plaquette, s = ±1 for up and down states, respectively, and

|�s,l( �Ri)〉 =
5∑

j=0

tl,s,j |σj ,s, �Ri + �δj 〉. (11)

Here, j = 0, . . . ,5 runs counterclockwise and follows the
convention in Fig. 2 and σj = A (B) for even (odd) j .
The substrate-graphene hopping amplitudes are defined by
tl,s,j = 〈σj ,s, �Ri + �δj |V̂ |dl,s, �Ri + �h〉, where �δj are vectors
connecting neighboring carbon atoms [48] (see Fig. 2).

The hopping amplitudes are evaluated by means of the
Slater-Koster approach [42,43],

〈pz|V |dxy〉 = nxnynz(
√

3Vpdσ − 2Vpdπ ), (12)

〈pz|V |dx2−y2〉 =
√

3

2
nz

(
n2

x − n2
y

)
Vpdσ − nz(n

2
x − n2

y)Vpdπ ,

(13)

〈pz|V |dzx〉 =
√

3n2
znxVpdσ + (

1 − 2n2
z

)
nxVpdπ , (14)

〈pz|V |dzy〉 =
√

3n2
znyVpdσ + (

1 − 2n2
z

)
nyVpdπ , (15)

〈pz|V |dz2〉 =
√

3nz

(
n2

x + n2
y

)
Vpdπ

− 1

2
nz

(
n2

x + n2
y − 2n2

z

)
Vpdσ , (16)

where Vpdσ and Vpdπ are two-center integrals, which can
be obtained by quantum chemistry methods or by fitting to
first-principles electronic structure calculations [49,50]. ni are
direction cosines of the vector connecting a j -carbon atom and
the substrate atom at the h position. The hopping amplitudes
are given in the Appendix.

We are interested in the low-energy theory near the Dirac
points �K = − �K ′ = 4π

3a
x̂. The Fourier transform of the hopping

matrix at these points can be easily computed, and we obtain,
for each valley (τ = ±1),

Th =
∑

s=↑,↓
ıτ

3V1√
2

eıτ2π/3(|A,s〉 + |B,s〉)〈dxz,s|

+ 3V1√
2

eıτ2π/3(|A,s〉 − |B,s〉)〈dyz,s|

+ ıτ
3V2√

2
eıτ2π/3(|B,s〉 − |A,s〉)〈dxy,s|

− 3V2√
2

eıτ2π/3(|B,s〉 + |A,s〉)〈dx2−y2 ,s| . (17)

The various constants read V0 = √
3n(1 − n2)Vpdπ − 1

2n(1 −
3n2)Vpdσ , V1 = 1√

2

√
1 − n2(

√
3n2Vpdσ + (1 − 2n2)Vpdπ ),

and V2 = 1√
2
n(1 − n2)(

√
3Vpdσ /2 − Vpdπ ), where nh

z = n =
a0/

√
a2

0 + d2, with a0 being the distance between two carbon
atoms.

Next, we use degenerate perturbation theory to obtain a
graphene-only effective Hamiltonian,

H h
eff = −Th(H0 + Hso)−1T

†
h

≈ −ThH
−1
0 T

†
h + ThH

−1
0 HsoH

−1
0 T

†
h , (18)

where we treated the spin-orbit term of the substrate Hamilto-
nian Hso as a next-order perturbation compared to H0. The first
term H CF

h = −ThH
−1
0 T

†
h can be expressed in terms of Pauli

matrices:

H CF
h = −λ0 − λxσx, (19)

with

λ0(x) = 9(V1)2

2εxz

± 9(V1)2

2εyz

+ 9(V2)2

2εxy

± 9(V2)2

2εx2−y2
. (20)
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FIG. 3. Unit cell formed by atom A at position �Ri and atom
B at position �Ri + �a1. Atom tA(B) hybridizes with graphene site �Ri

( �Ri + �a1) [on sublattice A (B)] and the three first neighboring sites
on sublattice B (A). Red (blue) numbers on B (A) sites define the
j -index convention used in states |�1A(B)

s,l ( �Ri)〉 and hopping terms of
Eqs. (A12)–(A16) [Eqs. (A17)–(A21)].

The first term in Eq. (19) is a trivial energy shift. The interaction
λx is an orbital term, which can be absorbed by a redefinition of
kx in Eq. (1). The interplay between SOC and CFE is captured
by the second term, H

CF/SO
h = ThH

−1
0 HsoH

−1
0 T

†
h , which has

the form

H
CF/SO
h = −λ1

Rσysx − λ2
Rτzσxsy

+ λKMτzσzsz + λy
svτzsy, (21)

with couplings determined by

λ1
R = 18ξV1V2

(
1

εxyεxz

+ 1

εyzεx2−y2

)
, (22)

λ2
R = 18ξV1V2

(
1

εxyεyz

+ 1

εxzεx2−y2

)
, (23)

λKM = 9ξ

(
(V1)2

εyzεxz

− 2(V2)2

εxyεx2−y2

)
, (24)

λy
sv = 9ξV1V2

(
1

εxyεyz

− 1

εxzεx2−y2

)
. (25)

The first two terms in Eq. (21) form an anisotropic Bychkov-
Rashba coupling. The third term is the familiar intrinsiclike
SOC. The last term is an in-plane spin-valley coupling, leading
to an anisotropic spectrum. Note that this term vanishes in
the absence of crystal-field splitting. Equations (19) and (21)
are invariant under time-reversal symmetry (T : iτxsyK) and
the symmetry operations of the C2v point group: twofold
rotations around the z axis (C2 : iτxσxsz) and reflections over
vertical planes xz (σv : σxsy) and yz (σ ′

v : τxsx) [40]. The
point-group symmetry reduction to C2v is a consequence of
the hybridization of graphene’s π states with nonspherically
symmetric states in the substrate (5)–(9). The same effective
couplings of Eqs. (19) and (21) were obtained in Ref. [40]
for graphene on a Pb substrate in the absence of CFE due
to the reduced point-group symmetry C2v of the underlying
superlattice.

IV. EFFECTIVE HAMILTONIAN: TOP POSITION

We assume that the top positions (tA and tB) are occupied by
different atomic species (or, equivalently, equal species placed
at different distances from graphene). This accounts for the
important class of a graphene interface with reduced point-
group symmetryC3v (in the absence of CFE). Such a sublattice-
dependent interaction was absent in the hollow-position case.
The hybridization between pz orbitals of graphene and d atoms
on the top position can be written as HV = Tt + T

†
t , where the

hopping matrix Tt is given by

Tt =
∑

�Ri

∑
l

∑
s=↑,↓

[∣∣�(0,A)
s,l ( �Ri)

〉 + ∣∣�(1,A)
s,l ( �Ri)

〉]〈dl,s,A, �Ri |

+ [∣∣�(0,B)
s,l ( �Ri)

〉 + ∣∣�(1,B)
s,l ( �Ri)

〉]〈dl,s,B, �Ri + �a1| (26)

and the � states are defined in a way a similar to the hollow-
position case, namely,

∣∣�(0,A)
s,l ( �Ri)

〉 = t
(0,A)
l,s

∣∣A,s, �Ri〉, (27)

∣∣�(1,A)
s,l ( �Ri)

〉 =
2∑

j=0

t
(1,A)
l,s,j |B,s, �Ri + �aj+1〉, (28)

where t
(0,A)
l,s = 〈A,s, �Ri |V |dl,s,A, �Ri〉 and t

(1,A)
l,s,j = 〈B,s, �Ri +

�aj+1|V |dl,s,A, �Ri〉. Similar definitions are employed for states
|�(0/1,A/B)

s,l ( �Ri)〉 in Eq. (26).
The hopping parameters are written in the Appendix.

Around K points in the hexagonal Brillouin zone, the hopping
matrix can be written as Tt = ∑

τ=±1 TAt + TBt , where

T
A(B)

t =
∑

s=↑,↓
V

0A(B)
0 |A(B),s〉〈dz2 ,s,A(B)|

± 3V
1A(B)

1√
2

|B(A),s〉〈dyz,s,A(B)|

+ ıτ
3V

1A(B)
1√

2
|B(A),s〉〈dxz,s,A(B)|

− 3V
1A(B)

2√
2

|B(A),s〉〈dx2−y2 ,s,A(B)|

∓ ıτ
3V

1A(B)
2√

2
|B(A),s〉〈dxy,s,A(B)|, (29)

with the various constants given in the Appendix. Degenerate
perturbation theory yields

H CF
t = −T A

t H−1
0 T A

t
† − T B

t H−1
0 T B

t
†

= −λ̃0 − σz, (30)

with coupling constants

λ̃0 =
(
V 0A

0

)2

2εA
z2

+ 9
(
V 1A

1

)2

4εA
xz

+ 9
(
V 1A

1

)2

4εA
yz

+ 9
(
V 1A

2

)2

4εA
x2−y2

+ 9
(
V 1A

2

)2

4εA
xy

+ (A → B), (31)
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 =
(
V 0A

0

)2

2εA
z2

− 9
(
V 1A

1

)2

4εA
xz

− 9
(
V 1A

1

)2

4εA
yz

− 9
(
V 1A

2

)2

4εA
x2−y2

− 9
(
V 1A

2

)2

4εA
xy

− (A → B), (32)

representing an energy shift and a staggered sublattice poten-
tial, respectively. The combined effect of crystal field and SOC
can be written as

H
CF/SO
t = T A

t H−1
0 HsoH

−1
0 T A

t
† + T B

t H−1
0 HsoH

−1
0 T B

t
†

= −λ̃1
Rσysx − λ̃2

Rτzσxsy + λ̃KMτzσzsz

+ λ̃z
svτzsz + λ̃

y

KMτzσzsy + λ̃y
svτzsy, (33)

where the coupling constants are given by

λ̃1
R = 3

√
6ξ

[
V 0A

0 V 1A
1

εA
yzε

A
z2

+ (A → B)

]
, (34)

λ̃2
R = 3

√
6ξ

[
V 0A

0 V 1A
1

εA
xzε

A
z2

+ (A → B)

]
, (35)

λ̃KM = −9ξ

[(
V 1A

1

)2

2εA
yzε

A
xz

−
(
V 1A

2

)2

εA
x2−y2εA

xy

+ (A → B)

]
, (36)

λ̃z
sv = 9ξ

[(
V 1A

1

)2

2εA
yzε

A
xz

−
(
V 1A

2

)2

εA
x2−y2εA

xy

− (A → B)

]
, (37)

λ̃
y

KM = −9

4
ξ

[
V 1A

1 V 1A
2

εA
xyε

A
yz

− V 1A
1 V 1A

2

εA
x2−y2εA

xz

− (A → B)

]
, (38)

λ̃y
sv = 9

4
ξ

[
V 1A

1 V 1A
2

εA
xyε

A
yz

− V 1A
1 V 1A

2

εA
x2−y2εA

xz

+ (A → B)

]
. (39)

In addition to the SOCs already obtained in the hollow case,
the combination of a sublattice-dependent interaction and CFE
gives rise to new terms. We obtain the expected spin-valley
coupling λ̃z

svτzsz, which together with the Bychkov-Rashba
SOC is the dominant spin-orbit interaction in group-VI TMD-
graphene bilayers [24,37]. Interestingly, the broken orbital
degeneracy in the substrate also generates an in-plane intrinsic
spin-orbit coupling λ̃

y

KMτzσzsy . This term can open a quantum
spin Hall insulating gap that is robust against Bychkov-Rashba
SOC. A more detailed analysis of the effect of this interaction
will be given in the next section.

It is instructive to consider two different limiting cases.
First, we consider the situation where all the energies of d

orbitals of the substrate are degenerate, i.e., the absence of
a CFE. By analyzing the coupling constants in equations
(34)–(39) the only couplings that remain are the familiar
isotropic Bychkov-Rashba coupling, intrinsiclike SOC, and
the spin-valley term. These same couplings were obtained for
TMD-graphene heterostructures [24,37] and enable interest-
ing spin-dependent phenomena, such as the anisotropic spin
lifetime [27], spin Hall effect [31], and inverse spin-galvanic
effect [32]. The second limit case is when top positions tA and
tB are equivalent, so that one has V 0A

0 = V 0B
0 , V 1A

1 = V 1B
1 ,

and V 1A
2 = V 1B

2 . For this situation the SOCs that appear are

the same as in Eq. (21) for the hollow-position case due to the
restoration of sublattice symmetry.

Finally, we classify the SOCs in Eq. (33) according to
the irreducible representations of graphene’s full point group
C

′′
6v (i.e., the direct product of C6v and two primitive trans-

lation operations) and also the parity over mirror inversion
symmetry (z → −z). Following the notation of Ref. [51] (see
also Ref. [52]), the in-plane intrinsic-type term (λ̃y

KMσzτzsy)
transforms according to the E1 irreducible representation
(Irrep), and the in-plane spin-valley term (λ̃y

svτzsy) transforms
according to the E2 Irrep of C

′′
6v , and both are antisymmetric

with respect to z → −z transformation. The familiar intrinsic-
type SOC (λ̃KMτzσzsz) transforms according to the A1 Irrep of
C

′′
6v , and the spin-valley SOC (λ̃svτzsz) transforms according to

the B2 Irrep. Both are symmetric under the z → −z transfor-
mation. The anisotropic Rashba SOC can be decomposed into
a term τzσxsy − σysx , which transforms according to the A1

Irrep, and a term τzσxsy + σysx , which transforms according
to the E2 Irrep. Both are asymmetric under mirror inversion.

V. DISCUSSION

This paper aims to explore the modifications to the elec-
tronic states of graphene placed on a substrate characterized
by a crystal-field environment. In a realistic scenario, we expect
the proximity-induced SOC to be sensitive to the type of
crystal-field splitting and the valence of the substrate atoms.
A quantitative analysis is beyond the scope of this work.
Nevertheless, the crystal field is expected to be significant
in compounds containing transition-metals atoms, in which
the incomplete outer shell is formed by d electrons. The
electronic structure of certain TMDs is known to be strongly
affected by CFE on the atomic states of transition-metal (TM)
atoms [53,54]. TMD layers consist of a hcp sheet of TM
atoms sandwiched between sheets of chalcogen atoms, and
their metal coordination can be either trigonal prismatic or
octahedral. In the trigonal prismatic coordination, the two
chalcogen sheets are stacked directly above each other (known
as the H phase). The stacking order in the octahedral phase (T
phase) is ABC, and the chalcogen atoms of one of the sheets
can be located at the center of the honeycomb lattice. In this
case, the coordination of the TM atoms is octahedral.

Group-IV TMDs have an octahedral structure, whereas
group-VI TMDs, of the well-studied W and Mo compounds,
tend to display a trigonal prismatic geometry and both octa-
hedral and trigonal prismatic phases are observed in group-V
TMDs. The trigonal prismatic geometry enforces a splitting of
d orbitals in a single state, dz2 , and two doublets, dx2−y2/dxy

and dxz/dyz. On the other hand, in the octahedral geometry,
a doublet, dz2/dx2−y2 , and a triplet, dxy/dxz/dyz, are formed.
Going back to Eqs. (21) and (33), one can see that the main
signatures of the CFE is the broken rotational symmetry in
the continuum due to the hybridization of graphene with states
without spherical symmetry. The latter results in an in-plane
spin-valley coupling λ

y
svτzsy and an anisotropic Bychkov-

Rashba SOC. For both top- and hollow-position cases, it is
necessary that εxyεyz = εx2−y2εxz for the appearance of the
in-plane spin-valley coupling, which is the case for TM atoms
with an octahedral distortion [see Fig. 1(a)]. This type of
crystal field is found in the group-IV family (XY2, where
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X = Zr, Hf, and Y = S, Se, Te) and opens up the possibil-
ity to observe this coupling in bilayers of these materials
and graphene. Less attention has been paid to this family
[55,56] compared to group-V and -VI TMDs. The application
of Zr-based chalcogenides in solar-energy devices has been
suggested [56], and the possibility of tuning its properties by
pressure, electric field, and phase engineering was recently
explored in density functional theory calculations [57]. Our
findings suggest that TMDs of family IV are potential candi-
dates to induce nontrivial spin textures in graphene via prox-
imity coupling. On the other hand, the anisotropic Bychkov-
Rashba coupling requires εxz = εyz, which is only possible in a
very low symmetry environment. The low-symmetry T′ phase
in WTe2 monolayers, which presents a quantum spin Hall
phase [58,59], could induce an anisotropic Rashba coupling
in graphene. This type of anisotropy can lead to an increase in
the spin Hall angle in graphene decorated with SOC impurities
[60].

For large interlayer distances, the overlap matrix between
states centered on different atomic positions can be neglected,
and we can use Eqs. (22)–(25) and (34)–(39) to perform a
rough estimative of the different SOCs. Using Slater-Koster
parameters for TM-carbon bonds as reported in Ref. [61]
and the crystal-field splitting and spin-orbit energy ξ reported
in Ref. [56], we estimate the graphene effective SOCs for
distances ≈ 5 times graphene’s lattice spacing. The dominant
SOCs are found to be intrinsic-type and Rashba couplings,
with an estimated magnitude in the range 20–40 meV for both
hollow and top substrate atoms, which is consistent with the
robust weak antilocalization features in magnetocondutance
measurements [25]. The in-plane spin-valley SOC λ

y
sv is

one order of magnitude weaker, being ≈2.5 meV for the
hollow-position case and ≈1.2 meV for the top-position case
(when atoms A and B have the same nature), which suggests
a small but observable effect. For short graphene-substrate
separations, numerical estimations need to take into account
the overlap matrix between states at different atomic positions,
which is beyond the scope of the present work. Note that the
interlayer distance can be tuned by external pressure [57],
which can be employed to tailor the SOC. Figure 4 shows the
low-energy spectrum along the kx direction when graphene
has an effective SOC formed by Rashba, intrinsic-type, and
in-plane spin-valley interactions. We see an interesting feature
on this spectrum: the energy dispersion around inequivalent
valleys is shifted (along the kx direction) with respect to the
bare graphene Dirac spectrum. This shift has opposite signs at
inequivalent valleys as required by time-reversal symmetry.

Finally, we discuss the in-plane spin-orbit interaction
λ

y

KMτzσzsy in Eq. (33). In our estimate for group-IV TMD-
graphene bilayers this type of coupling is relatively weak, being
of the same order as the in-plane spin-valley term (≈1 meV).
However, it has interesting topological properties. As men-
tioned above, this SOC can induce a nontrivial topological
insulating gap associated with a Z2 topological invariant [62].
However, the robustness of the Z2 topological phase differs
from that generated by the familiar intrinsic SOC in graphene
λKM [33]. When only C6v-invariant SOCs are present, that is,
λKM and λR, the quantum spin Hall gap closes if |λR| > |λKM|
[33], destroying the topological phase [see Fig. 5(a)]. On the
other hand, if theZ2 topological phase is a consequence ofλy

KM,

FIG. 4. (a) Fermi surface contours around K (K ′) points. (b) Low-
energy spectrum along the kx direction (ky = 0). Parameters: λy

sv =
6 meV, λ1

R = λ2
R = 35 meV, and λKM = 20 meV.

FIG. 5. Energy spectrum of graphene placed on a high-SOC
substrate with a crystal-field environment. (a) λR = 10 meV, λKM =
5 meV and (b) λR = 10 meV, λy

KM = 5 meV. The gap has a nontrivial
Z2 topological character corresponding to a quantum spin Hall phase.
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the gap remains finite for any value of λR as long as |λy
sv| <

|λy

KM|. A typical band structure is shown in Fig. 5(b), where
the topological gap is finite even for large Bychkov-Rashba
coupling. λR is one of the main obstacles to the observation
of the quantum spin Hall effect in graphene because of its
interplay with λKM. Our analysis suggests that realistic hybrid
graphene-TMD bilayers can host a novel type of quantum spin
Hall insulator with fully in plane helical edge states.

VI. CONCLUSION

We studied theoretically proximity spin-orbital effects in
graphene placed on low-symmetry substrates with broken or-
bital degeneracy. We derived a low-energy (long-wavelength)
theory for an idealized monolayer substrate, which allowed us
to demonstrate a simple mechanism to remove the rotational
invariance of electronic states in proximity-coupled graphene,
i.e., their hybridization to crystal-field split states. The low-
symmetry environment was shown to render spin-orbit inter-
actions of π electrons highly anisotropic. The most distinctive
signature of the crystal-field effect is the appearance of in-plane
Zeeman spin-valley interaction λ

y
sv and anisotropic intrinsic-

type spin-orbit coupling λ
y

KM, which can drive a transition
to a quantum spin Hall insulating phase displaying in-plane
helical edge states. As a possible candidate to observe the
predicted effects, we suggested group-IV TMD monolayers,
where transition-metal atoms have an octahedral distortion
and contain the necessary ingredients to induce anisotropic
in-plane SOCs on graphene.
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APPENDIX: HOPPING PARAMETERS AND � STATES

The explicit expressions for the hopping parameters in
Eq. (11) for the hollow-position case are

tz2,s,j = V0, (A1)

txz,s,j = i
V1√

2
(eiπj/3 − e−iπj/3), (A2)

tyz,s,j = V1√
2

(eiπj/3 + e−iπj/3), (A3)

txy,s,j = i
V2√

2
(ei2πj/3 − e−i2πj/3), (A4)

tx2−y2,s,j = − V2√
2

(ei2πj/3 + e−i2πj/3), (A5)

with constants V0, V1, and V2 given in Sec. III. The � states in
Eq. (11) can be written in terms of hexagonal states,

∣∣�s
m( �Ri)

〉 =
5∑

j=0

eimπj/3|σj ,s, �Ri + �δj 〉, (A6)

with well-defined angular momentum lz = h̄m, and are de-
scribed in Refs. [34,63]. Using Eqs. (A1)–(A5), we have

|�z2,s( �Ri)〉 = V0

∣∣�s
0( �Ri)

〉
, (A7)

|�xz,s( �Ri)〉 = ı
V1√

2

[∣∣�s
1( �Ri)

〉 − ∣∣�s
−1( �Ri)

〉]
, (A8)

|�yz,s( �Ri)〉 = V1√
2

[∣∣�s
1( �Ri)

〉 + ∣∣�s
−1( �Ri)

〉]
, (A9)

|�xy,s( �Ri)〉 = ı
V2√

2

[∣∣�s
2( �Ri)

〉 − ∣∣�s
−2( �Ri)

〉]
, (A10)

|�x2−y2,s( �Ri)〉 = − V2√
2

[∣∣�s
2( �Ri)

〉 + ∣∣�s
−2( �Ri)

〉]
. (A11)

We now switch gears to the top-position case. Due to conserva-
tion of angular momentum, t (0,A)

l,s and t
(0,B)
l,s are nonzero only for

l = z2, t
(0,A)
l,s = V 0A

0 = V 0A
pdσ , and t

(0,B)
l,s = V 0B

0 = V 0B
pdσ . The

explicit expressions of t
(1,A)
l,s,j are

t
(1A)
z2,s,j

= V 1A
0 , (A12)

t
(1A)
xz,s,j = V 1A

1
ı√
2

(e2πıj/3 − e−2πıj/3), (A13)

t
(1A)
yz,s,j = V 1A

1
1√
2

(e2πıj/3 + e−2πıj/3), (A14)

t
(1A)
xy,s,j = −V 1A

2
ı√
2

(−e4πıj/3 + e−4πıj/3), (A15)

t
(1A)
x2−y2,s,j

= −V 1A
2

1√
2

(e4πıj/3 + e−4πıj/3). (A16)

The explicit expressions of t
(1,B)
l,s,j are

t
(1B)
z2,s,j

= V 1B
0 , (A17)

t
(1B)
xz,s,j = V 1B

1
ı√
2

(−e−2πıj/3 + e2πıj/3), (A18)

t
(1B)
yz,s,j = −V 1B

1
1√
2

(e−2πıj/3 + e2πıj/3), (A19)

t
(1B)
xy,s,j = −V 1B

2
ı√
2

(−e−4πıj/3 + e4πıj/3), (A20)

t
(1B)
x2−y2,s,j

= −V 1B
2

1√
2

(e−4πıj/3 + e4πıj/3). (A21)

The constants in Eqs. (A12)–(A16) are V 1A
0 =√

3n1A(1 − n2
1A)V (1A)

pdπ − 1
2n1A(1 − 3n2

1A)V (1A)
pdσ , V 1A

1 =
1√
2
[
√

3n2
1AV

(1A)
pdσ + (1 − 2n2

1A)V (1A)
pdπ ]

√
1 − n2

1A, and V 1A
2 =

1√
2
n1A(1 − n2

1A)(
√

3
2 V

(1A)
pdσ − V

(1A)
pdπ ), and except for changing

A to B, the constants are the same in (A17)–(A21).
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The � states in Eq. (26) can be write in terms of triangular
states [34],

∣∣�s(1A)
m ( �Ri)

〉 =
2∑

j=0

eim2πj/3|B,s, �Ri + �aj+1〉, (A22)

∣∣�s(1B)
m ( �Ri)

〉 =
2∑

j=0

eim2πj/3|A,s, �Ri + �a1 + �δj+1〉. (A23)

Here, �δj are given by �δ1 = −�a1, �δ2 = −�a3, and �δ3 = −�a2.
States (A22) and (A23), similar to states (A6), have well-
defined angular momentum and satisfy |�2〉 = |�−1〉 and
|�−2〉 = |�1〉. In other words, graphene does not support
triangular states with |m| = 2 [34]. Finally, we find∣∣�(1A)

s,z2 ( �Ri)
〉 = V 1A

0

∣∣�s(1A)
0 ( �Ri)

〉
, (A24)

∣∣�(1A)
s,xz ( �Ri)

〉 = V 1A
1

ı√
2

[∣∣�s(1A)
1 ( �Ri)

〉 − ∣∣�s(1A)
−1 ( �Ri)

〉]
, (A25)

∣∣�(1A)
s,yz ( �Ri)

〉 = V 1A
1

1√
2

[∣∣�s(1A)
1 ( �Ri)

〉 + ∣∣�s(1A)
−1 ( �Ri)

〉]
, (A26)

∣∣�(1A)
s,xy ( �Ri)

〉 = −V 1A
2

ı√
2

[ − ∣∣�s(1A)
−1 ( �Ri)

〉 + ∣∣�s(1A)
1 ( �Ri)

〉]
,

(A27)

∣∣�(1A)
s,x2−y2 ( �Ri)

〉 = −V 1A
2

1√
2

[∣∣�s(1A)
−1 ( �Ri)

〉 + ∣∣�s(1A)
1 ( �Ri)

〉]
(A28)

and

∣∣�(1B)
s,z2 ( �Ri)

〉 = V 1B
0

∣∣�s(1B)
0 ( �Ri)

〉
, (A29)

∣∣�(1B)
s,xz ( �Ri)

〉 = V 1B
1

ı√
2

[ − ∣∣�s(1B)
−1 ( �Ri)

〉 + ∣∣�s(1B)
1 ( �Ri)

〉]
,

(A30)

∣∣�(1B)
s,yz ( �Ri)

〉 = −V 1B
1

1√
2

[∣∣�s(1B)
−1 ( �Ri)

〉 + ∣∣�s(1B)
1 ( �Ri)

〉]
,

(A31)

∣∣�(1B)
s,xy ( �Ri)

〉 = −V 1B
2

ı√
2

[ − ∣∣�s(1B)
1 ( �Ri)

〉 + ∣∣�s(1B)
−1 ( �Ri)

〉]
,

(A32)

∣∣�(1B)
s,x2−y2 ( �Ri)

〉 = −V 1B
2

1√
2

[∣∣�s(1B)
1 ( �Ri)

〉 + ∣∣�s(1B)
−1 ( �Ri)

〉]
.

(A33)
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