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Quantum-limited parametric amplification with Josephson circuits in the regime of pump depletion
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Linear parametric amplification is a key operation in information processing. Our interest here is quantum-
limited parametric amplification, i.e., amplification of quantum signals while adding the minimum amount of
noise allowed by quantum mechanics, which is essential for any viable implementation of quantum information
processing. We describe parametric amplifiers based on the dispersive nonlinearity of Josephson junctions driven
with appropriate tones playing the role of pumps. We discuss two defining characteristics in the architecture
of these amplifiers: the number of modes occupied by the signal, idler, and pump waves and the number of
independent ports through which these waves enter into the circuit. The scattering properties of these amplifiers
are also reviewed. The main focus of this work are the computations of the dynamic range and phase-space
distributions of the fluctuations of the modes of the amplifiers.
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I. INTRODUCTION

Photons of microwave radiation in the band 3–12 GHz
(25–100 mm wavelength) have an energy approximately 105

smaller than those of visible light. Yet, at a temperature 2 × 104

smaller than room temperature, now routinely achievable with
commercial dilution refrigerators, it is possible to detect and
process signals whose energy is equivalent to that of single
microwave photons [1]. There are three advantages of single-
photon microwave electronics when compared with quantum
optics. First, signal envelopes with a relative bandwidth of
a few percent at carrier frequencies of a few GHz can be
controlled with much greater relative precision than their
equivalent at few hundreds of THz. This is because microwave
generators tend to have better short-term stability than lasers,
and also because microwave components are mechanically
very stable, particularly when cooled, compared with tradi-
tional optical components. Second, on-chip circuitry of single-
photon microwave electronics can be well in the lumped
element regime and, consequently, the control of spatial mode
structure is more easily achieved than in the optical domain.
Third, there exists a simple, robust, nondissipative component,
the Josephson tunnel junction, whose nonlinearity can domi-
nate over the linear characteristics of the circuit at the single-
photon level. Many quantum signal processing functions have
thus been realized, both digital and analog. In this work, we
concentrate on analog Josephson amplifying devices pumped
with one or several microwave tones. In particular, only devices
that demonstrate linear amplification with added noise at the
level of the standard quantum limit [2] are considered here.
These devices have taken the work pioneered by Yurke at the
Bell labs 30 years ago [3,4] to the point where original ex-
periments can be performed successfully owing to Josephson
amplifiers as the first link in the chain of measurements [5,6].
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The main desired characteristics of a Josephson amplifier
are (i) low added noise: the noise added by the amplifier
should be no larger than the minimum imposed by quantum
mechanics; (ii) high gain: the gain of the amplifier should
be large enough (in practice, 20 dB or more) to beat the
noise added by the subsequent stages in the amplifier chain;
(iii) large bandwidth: the amplifier should have a constant
gain over a bandwidth that is large enough for the de-
sired application, ranging from several MHz to several GHz;
(iv) large dynamic range: the amplifier should function as a
linear device with output signal power proportional to the input
signal power for a wide range of input signal power (this range
of power, known as the dynamic range of the amplifier, should
be large enough so that more than just a few incident photons
can be reliably detected); (v) unidirectional: the amplifier
should, ideally, amplify only signals incident from the system
being probed and deamplify signals coming from subsequent
devices in the amplification chain (this is necessary to prevent
spurious noise in other parts of the setup to propagate back
into the system under measurement); (vi) ease of operation:
the necessary energy for the amplification process should be
delivered to the amplifier in a manner that is as simple and
robust as possible, without very precise tuning; (vii) ease of
construction: the circuit implementing the amplifier should
have a minimal number of parts, and the parts should not
require too delicate tolerances.

The aim of this paper is to discuss the physics behind
these Josephson parametric amplifiers in the high-gain regime
where pump depletion effects can cause a reduction of the
dynamic range of the amplifiers [item (iv) in the list above].
In particular, we provide a self-consistent, mean-field analysis
of the dynamic range and stability of these amplifiers in this
pump depletion regime. Furthermore, we analyze, in the same
regime, the phase-space distribution of the modes participat-
ing in the amplification process, building an understanding
of the manner in which quantum fluctuations modify the
parametric instability, the dark side of the phenomenon of
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amplification. This analysis is done within the framework
of the Fokker-Planck equation. Although the focus of the
paper is rather narrow compared to the above list of desired
amplifier characteristics, for the sake of pedagogical clarity
and to make the text self-contained, we review the fundamental
amplifier characteristics like gain and bandwidth, which have
been calculated elsewhere [7–10]. We also compare several
circuit realizations of these amplifiers, classified according to
their number of modes and access ports.

The paper is organized as follows. In Sec. II, the notion of
effective parametric amplifier Hamiltonian is introduced. The
important distinction between the degenerate and nondegen-
erate amplifiers that arises from a fundamental difference in
the nature and number of degrees of freedom of the two kinds
of devices is discussed. The linear scattering theory of these
amplifiers is presented in this section. In practical amplifiers,
the linear scattering theory ceases to be a sufficient description
when the amplitude of the signal being amplified ceases to be
infinitesimal compared to that of the pump tone giving rise to
amplification. Then, the amplified output signal power is no
longer a linear function of the input signal power. This more
involved topic behind reduction of dynamic range, i.e., pump
depletion effects leading to a reduction of gain of the device,
is discussed in Sec. III. Phase-space fluctuations of the signals
are calculated in Sec. IV. Several practical implementations
of amplifiers are given in Sec. V. A concluding summary
is provided in Sec. VII. For pedagogical reasons and to
make the paper self-sufficient, we have also included several
appendices that familiarize the reader with the formalism
required for theoretical analysis of the topics discussed in
the main text. Appendix A extends the concept of classical
signals to the quantum domain in the field of microwave
electronics. Appendix B describes the important theoretical
tool of the quantum Langevin equation (QLE) and input-output
theory. Using this theory, the amplifier characteristics can
be calculated, starting from the circuit Hamiltonian and the
coupling parameters of its ports. We keep our treatments of
the concepts in the appendices sufficiently general and present
them beyond the usual rotating-wave approximation (RWA).
Details of some of the calculations of the results presented in
the main text are given in Appendices C and D.

II. MODEL AMPLIFIERS

An amplifying circuit can be conveniently described as a
collection of simple harmonic modes with time-dependent cou-
plings. First, we address, using this model, the question of how
a linear amplification function can arise from the Hamiltonian.
Thus, let us consider the time-dependent effective quadratic
Hamiltonian

H

h̄
=

∑
m

ωma†
mam

+ i
∑
m�p

geff
mp{amapei(�mpt+θmp) − H.c.}, (1)

where am are bosonic mode annihilation operators and m,p

are circuit mode indices. The real, positive parameters ωm and
geff

ml are, in general, functions of elementary parameters of the
circuit combined with the values of time-dependent driving

FIG. 1. Frequency landscape for the nondegenerate (i) and de-
generate (ii) parametric amplifiers. The dashed lines correspond to
response curves of each mode, as measured by a probe tone injected
in the circuit elements of the mode. The vertical arrows correspond to
the spectral densities of the signal and the idler tones arriving in the
circuit through its ports. The horizontal arrows denote the frequency
translations between signal and idler operated by the parametrical
modulation induced by the pump tone.

fields imposed from the outside and treated classically. We
will see later in Sec. V how these effective parameters arise.
The driving fields excite the circuit, thus providing energy for
the amplification process and are often nicknamed “pumps.”
Another important ingredient of the model is that there are
ports that couple the modes m to outside circuitry. In the
case of one port per mode, this coupling is described by
constants κm, the rate of excitation decay of mode m through
the port. The phase factors eiθmp depend on the details of the
excitation, while the drive frequencies �mp are in the vicinity
of ωm + ωp (or sometimes |ωm − ωp|; this corresponds to
photon conversion and we do not consider this case here). By
vicinity, we mean within the bandwidth determined by the port
coupling constants: |�mp − ωm − ωp| � κmκp/(κm + κp). In
this paper, we will limit ourselves to two elementary cases:
(i) the two-port, two-mode, nondegenerate parametric ampli-
fier with Hamiltonian

H NDPA

h̄
= ωaa

†a + ωbb
†b + igab(abei(�abt+θ) − H.c.) (2)

and port coupling constants κa and κb, and (ii) the one-port,
one-mode, degenerate parametric amplifier with Hamiltonian

H DPA

h̄
= ωaa

†a + igaa(a2ei(�aa t+θ) − H.c.). (3)

In this last case, there is a single port coupling constant κa .
The frequency landscapes corresponding to the two cases are
represented schematically on Fig. 1.

We deal with these model systems using the quantum
Langevin equations (QLEs), under rotating-wave and Markov
approximations (for derivation, see Appendix B). For the
modes a,b in the nondegenerate case, the QLEs are given by

da

dt
= − i

h̄
[a,H NDPA] − κa

2
a + √

κaa
in,

db

dt
= − i

h̄
[b,H NDPA] − κb

2
b + √

κbb
in, (4)
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where the input and output fields satisfy the boundary condi-
tions

aout = −ain + √
κaa, bout = −bin + √

κbb. (5)

Similarly, in the degenerate case, the QLE takes the form

da

dt
= − i

h̄
[a,H DPA] − κa

2
a + √

κaa
in (6)

with the boundary condition

aout = −ain + √
κaa. (7)

From Eqs. (4) and (5), we obtain for the nondegenerate case

F (ωa,κa)aout(t) + gab

√
κa

κb

e−i(�abt+θ)bout(t)†

= −F (ωa, − κa)ain(t) − gab

√
κa

κb

e−i(�abt+θ)bin(t)†,

F (ωb,κb)bout(t) + gab

√
κb

κa

e−i(�abt+θ)aout(t)†

= −F (ωb, − κb)bin(t) − gab

√
κb

κa

e−i(�abt+θ)ain(t)†, (8)

where F (ω,κ) = d/dt + iω + κ/2. For the degenerate para-
metric amplifier (paramp), there is only one equation:

F (ωa,κa)aout(t) + 2gaae
−i(�aa t+θ)aout(t)†

= −F (ωa, − κa)ain(t) − 2gaae
−i(�aa t+θ)ain(t)†. (9)

Going to the Fourier domain and solving for outgoing waves
as a function of the incoming waves, we find for the nonde-
generate case⎡
⎢⎢⎢⎣

aout[+ωS]

aout[−ωS]

bout[+ωI ]

bout[−ωI ]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rSS 0 0 sSI

0 r∗
SS s∗

SI 0

0 s∗
IS r∗

II 0

sIS 0 0 rII

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

ain[+ωS]

ain[−ωS]

bin[+ωI ]

bin[−ωI ]

⎤
⎥⎥⎥⎦,

(10)

where ωS,ωI are the two signal and image (or idler) frequen-
cies, respectively, linked precisely by ωS + ωI = �ab. The
operators at the negative frequencies should be interpreted as
Hermitian conjugates of the same operators at the positive fre-
quencies: ain/out[−ω] = ain/out[ω]†, bin/out[−ω] = bin/out[ω]†

(see Appendix A for details). Unlike in the case of simple
harmonic circuits, an input signal at one frequency can here be
processed into an output signal at another frequency. There is
also a change in sign of the frequency in this process, which is
called phase conjugation, and this is why we need to represent
the scattering by a 4 × 4 matrix. This matrix can be sepa-
rated into two blocks related by complex conjugation relating
Fourier coefficients with opposite frequencies, a mathematical
operation independent of the physical phenomenon of phase
conjugation. Phase conjugation manifests itself practically in
the following manner: if one advances the phase of the input
signal by a given quantity, the phase of the conjugated output
signal becomes retarded by the same quantity. The elements

of the scattering matrix are given by

rSS = χ−1
a (ωS)∗χ−1

b (ωI )∗ + ρ2
ab

χ−1
a (ωS)χ−1

b (ωI )∗ − ρ2
ab

, (11)

rII = χ−1
a (ωS)χ−1

b (ωI ) + ρ2
ab

χ−1
a (ωS)χ−1

b (ωI )∗ − ρ2
ab

, (12)

sSI = −2ρabe
−iθ

χ−1
a (ωS)χ−1

b (ωI )∗ − ρ2
ab

, (13)

sIS = −2ρabe
iθ

χ−1
a (ωS)χ−1

b (ωI )∗ − ρ2
ab

. (14)

These expressions contain two ingredients: the single-mode
bare susceptibilities χ , which are given by

χm(ω) = 1

1 − 2i(ω − ωm)/κm

, (15)

and the reduced effective mode coupling given by

ρab = 2gab√
κaκb

. (16)

Its modulus squared is often called the mode cooperativity.
When the drive tone of the amplifier is optimally tuned at
�ab = ωa + ωb and the monochromatic input signals are on
resonance with their corresponding mode ωS = ωa,ωI = ωb,
the scattering matrix takes the simpler form, with rSS =
rII = √

G0 and sSI = s∗
IS = −√

G0 − 1e−iθ . Here, the zero-
detuning, optimal amplifier power gain G0 is

G0 =
(

1 + ρ2
ab

1 − ρ2
ab

)2

. (17)

It can be shown that the stability of the amplifier requires that
ρab < 1, i.e., there is a ceiling to the effective coupling between
modes of the circuit, beyond which amplification turns into
spontaneous parametric oscillation. We will see later in Sec. III
how this raw notion of stability ceiling is modified when the
pump is treated more realistically.

Note that the determinant of the scattering matrix is unity
even in the fully general case. Also, it is important to realize
that, quite generally, the scattering is not reciprocal. A wave
going from port b to port a acquires a phase factor e−iθ from the
drive which is conjugate to the phase factor eiθ accompanying
the scattering from port a to port b.

We now turn to the degenerate case in which the scattering
relations, involving only one port, still are expressed as a 4 × 4
matrix:⎡

⎢⎢⎢⎣
aout[+ωS]

aout[−ωS]

aout[+ωI ]

aout[−ωI ]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rSS 0 0 sSI

0 r∗
SS s∗

SI 0

0 s∗
IS r∗

II 0

sIS 0 0 rII

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

ain[+ωS]

ain[−ωS]

ain[+ωI ]

ain[−ωI ]

⎤
⎥⎥⎥⎦.

Now, the different frequencies are carried on the same port
and are all in the vicinity of the single resonance of the unique
mode. Nevertheless, the scattering coefficients are similar to
the previous expressions, with the substitution χb(ω) = χa(ω).
A simplification occurs if the drive frequency is precisely tuned
to twice the effective resonant frequency, i.e., �aa = 2ωa ,
in which case χa(ωI ) = χa(ωS)∗ and the subblock of the
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scattering matrix takes the form[
aout[+ωS]

aout[−ωI ]

]
= 1

D

[
M1 M2

M∗
2 M1

][
ain[+ωS]

ain[−ωI ]

]
, (18)

with M1 = |χ−1
a (ωS)|2 + ρ2

aa, M2 = −2ρaae
−iθ , and D =

χ−2
a (ωS) − ρ2

aa. Here, ρaa = 4gaa/κa . We also introduce the
in-phase and quadrature components of the incoming and
outgoing waves:

a
in,out
‖,⊥ [δω] = ain,out[ωS] ± e−iθ ain,out[−ωI ], (19)

where δω = ωS − ωa = ωa − ωI . The meaning of this trans-
formation can be illustrated by the following consideration,
which supposes θ = 0 for simplicity. Classically, if a signal is
such that

y(t) = f (t) cos (ωat) + g(t) sin (ωat), (20)

with in-phase and quadrature modulation components f (t) and
g(t) slow compared to (ωa)−1, then

y‖[δω] = f [δω], y⊥[δω] = g[δω]. (21)

One can easily check that the effect of the angle θ associated
with the time dependence of the effective Hamiltonian is just
to rotate the component signals in the Fresnel plane. In the
representation where the in-phase and quadrature components
form the basis signals, we find that the scattering matrix is
diagonal:

aout
‖ [δω] =

∣∣χ−1
a (ωS)

∣∣2 + 2ρaa + ρ2
aa

D−
ain

‖ [δω]

= 	‖(δω)ain
‖ [δω], (22)

aout
⊥ [δω] =

∣∣χ−1
a (ωS)

∣∣2 − 2ρaa + ρ2
aa

D−
ain

⊥ [δω]

= 	⊥(δω)ain
⊥ [δω]. (23)

The property of the scattering matrix to have unity determinant
imposes

G‖G⊥ = 1. (24)

where G‖,⊥ = |	‖,⊥(δω)|2. Thus, in this mode of operation
of the degenerate parametric amplifier, one quadrature of the
signal is amplified while the other is de-amplified. If the
input signal consists only of vacuum fluctuations, the amplifier
squeezes these fluctuations for one quadrature, making it less
uncertain than the so-called standard quantum limit, which is
associated to a standard deviation corresponding to the square
root of a quarter of a photon (the half-photon of the zero-point
motion is split evenly between the two quadratures, and only
one is squeezed) [11,12].

In the nondegenerate case (i) a more complex form
of squeezing, two-mode squeezing, occurs in the four-
dimensional phase space of the quadratures of the two prop-
agating signals incident on the circuit [11,12]. The nonde-
generate parametric amplifier is usually employed as a sort
of radio frequency (rf) op-amp: the idler port is connected
to a cold matched load emulating an infinite transmission
line at zero temperature and the device viewed from the
signal port functions as a reflection amplifier operating in the

phase-preserving mode: for signals having a bandwidth small
compared to that of the amplifier, we have

aout =
√

G

(
ain +

√
1 − 1

G
bin†

)
. (25)

The second term on the right of this last expression shows that
quantum noise entering through the b port must necessarily be
added to the amplified signal [2]. This added noise contribution
amounts, in the large gain limit G � 1 and for an idler port
at zero temperature, to a half-photon at the signal frequency,
referred to the input. It can be seen as an evil necessary to
preserve the commutation relation

[aout,aout†] = [ain,ain†]. (26)

More practically, the extra half-photon of noise can also be
seen as a consequence of the Heisenberg uncertainty prin-
ciple. A phase-preserving amplifier processes equally both
quadratures, which in quantum mechanics are noncommuting
observables. Since the process of amplification is equivalent
to measurement, the extra noise forbids that both quadratures
are known precisely simultaneously, in accordance with the
central principle of quantum mechanics. An amplifier func-
tioning in this Heisenberg regime where the efficiency of the
amplification process is only limited by irreducible quantum
fluctuations is said to be quantum limited.

III. DYNAMIC RANGE OF AMPLIFIERS

In the previous section, we have described the linear
scattering theory of ideal amplifiers using effective, time-
dependent, quadratic Hamiltonians. With such models, one
can, in principle, achieve arbitrary high gains in amplifiers.
However, in realistic situations, there are two major effects
that reduce of the gain of the amplifiers, as described below.

First, the nonlinearity giving rise to the desired mode mixing
rarely ever yields only the desired quadratic Hamiltonian. In
practice, higher-order terms such as quartic (Kerr) terms cannot
be neglected even if their amplitude is smaller than the main
quadratic terms. In the presence of pump and incident signals,
these relatively small quartic terms are sufficient to shift the
resonator frequencies appreciably (this effect is also known as
the ac-Stark shift). This results in the incident pump of Eqs. (2)
and (3) being off resonant and, thus, the gain of these devices
is lowered [see Eqs. (11)–(14)]. Recent results (see Ref. [13])
indicate that this is the dominant source of gain saturation in
current parametric amplifiers. More details on how this arises
are given in the discussion of implementation of parametric
amplifiers [see Sec. V A, in particular Eqs. (74)–(76)]. We
note that, recently, a method to implement three-wave mixing
while suppressing the detrimental effects of the fourth-order
nonlinearity has been proposed [14,15].

Second, pump depletion, which occurs due to the large
magnitude of the signal being amplified, also limits the gains
of amplifiers. When the amplitude of the incident signal being
amplified is infinitesimal compared to that of the pump, the
number of photons required from the pump for amplification
is negligible compared to the total number of photons present
in it. Thus, the pump tone can be considered to be stiff
and its amplitude and phase can be treated as parameters
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without dynamics. This is the case in Sec. II. However, as
the amplitude of the signal grows, the number of photons
required for amplification also grows. As a result, the pump
tone gets depleted, which leads to a reduction of the gain of
the device. Note that even in absence of any incident signal,
vacuum fluctuations are always incident on all the ports, which
forbid, in a precise analysis, to consider the pump as perfectly
stiff. This is because amplification of these vacuum fluctuations
also leads to a reduction of the dynamic range of the device.

In this section, we calculate the gain saturation of our
model amplifiers. In our analysis, we only consider pump
depletion due to the finite size of the incident signal. We
model the pump as a classical drive incident on a low-Q
mode coupled to the modes being amplified. We calculate the
resultant gain and the output signal power in a self-consistent
manner. In effect, we perform a mean-field calculation for the
incident pump tone, neglecting its quantum fluctuations. For
simplicity, we consider the situation when the pump tones meet
the resonance condition for amplification and neglect incident
thermal photons on all the ports.1

Thus, we start with the following Hamiltonian for the
nondegenerate parametric amplifier:

H̃ NDPA =
∑

α=a,b,c

ωαα†α + ih̄g3(abc† − a†b†c), (27)

where a,b,c, respectively, denote the signal, idler, and pump
modes for the device2 (see Sec. V D for a practical implemen-
tation). The QLEs for the modes a,b,c are given by

da

dt
= −iωaa − κa

2
a − g3b

†c + √
κaa

in, (28)

db

dt
= −iωbb − κb

2
b − g3a

†c + √
κbb

in, (29)

dc

dt
= −iωcc − κc

2
c + g3ab + √

κcc
in. (30)

Here, ωa , ωb, ωc denote the frequencies and κa , κb, κc the decay
rates for the modes a,b,c. Furthermore, g3 denote the nonlinear
coupling between them. We require the Q factor of mode c to
be much lower than that of a,b: κc � κa,κb. The annihilation
operators for the signal, idler, and the pump are given by
ain, bin, and cin. The incident pump tone is in a coherent state
with amplitude (phase) |〈cin〉| (θc), on resonance with the cavity
frequency ωc. In practice, the pump tone is often delivered
through a rather high-Q, but off-resonance resonator which
ends up being populated with very few photons. This type of
impedance mismatch, while closer to reality, involves more
elements to be described correctly, and we have simplified it
without losing the end results. In any case,

√
κc|〈cin〉| � g2na ,

where na is the number of photons in steady state in the a

mode. Under the stiff pump approximation, the term g3ab in
Eq. (35) is neglected. Thus, the mode c is in a coherent state,
with its amplitude, in steady state, given by

〈c〉0 = 2√
κc

|〈cin〉|e−i(ωct+θc). (31)

1For similar analysis in a related topic, see Refs. [16,17].
2Such a trilinear Hamiltonian arises also in treatment of Hawking

radiation from a quantized source [18].

Replacing c → 〈c〉0 in Eqs. (28) and (29) results in the
linearized dynamical equations for a,b, given earlier in Eq. (8),
with

gab = 2g3|〈cin〉|√
κc

, �ab = ωc,θ = θc. (32)

For the degenerate case, the corresponding Hamiltonian is
given by

H̃ DPA =
∑

α=a,c

ωαα†α + ih̄g2(a2c† − a†2c), (33)

where a,c, respectively, denote the signal and pump modes for
the device (for its practical implementation, see Sec. V C). The
QLEs for the modes a,c are given by

da

dt
= −iωaa − κa

2
a − 2g2a

†c + √
κaa

in, (34)

dc

dt
= −iωbb − κb

2
b + g2a

2 + √
κcc

in. (35)

The stiff pump approximation, in this case, leads to a linear
QLE for a, giving rise to the scattering matrix in Eq. (18) in
Sec. II. The parameters of the scattering matrix relate to the
pump tone parameters as follows:

gaa = 2g2|〈cin〉|√
κc

, �aa = ωc,θc = θ. (36)

In order to incorporate the effect of pump depletion for the
nondegenerate (degenerate) case, one needs to include the
previously neglected term g3ab (g2a

2) in the analysis and
solve for a,b,c (a,c) self-consistently. Since we are interested
in parameter regimes where the pump depletion is small, yet
non-negligible, we will treat the pump mode as a coherent
state and perform a perturbation analysis around the undepleted
value for 〈c〉:

〈c〉 = 〈c〉0e
−iωct + 〈δc(t)〉 (37)

and solve for 〈δc(t)〉 self-consistently. The equations of motion
for 〈δc(t)〉, for the nondegenerate and degenerate cases, are
respectively given by

d〈δc(t)〉
dt

=
(

−iωc − κc

2

)
〈δc〉 + g3〈ab〉 (38)

and

d〈δc(t)〉
dt

=
(

−iωc − κc

2

)
〈δc〉 + g2〈a2〉. (39)

Consider the nondegenerate case. In the Fourier domain,
Eq. (38) can be written as

〈δc[ω]〉 = 1
κc

2 − i(ω − ωc)

g3√
2πκaκb

∫ ∞

0
dω′〈(ain[ω′]

+ aout[ω′])(bin[ω − ω′] + bout[ω − ω′])〉,
where in the last line, we have used the input-output relations
(5). We treat the case when there is an incident tone on the a

mode with a photon flux per unit time P in
a,coh [see Eq. (A67)

for definition]. Our results can be generalized easily to the
more complicated case of both a and b modes being driven.
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Substituting the expression of aout[ω − ω′], aout[ω′] from
Eq. (10), after several lines of algebra, we arrive at

〈δc[ω]〉 = 1
κc

2 − i(ω − ωc)

g3√
2πκaκb

δ(ω − ωc)

×
[
−8πρabe

−iθP in
a,coh(

1 − ρ2
ab

)2 − 4ρabe
−iθ

×
∫ ωc

0
dω′ χ−1

b (ωc − ω′)∗∣∣χa
−1(ω′)χb

−1(ωc − ω′)∗ − ρ2
ab

∣∣2

]
,

where we have neglected the number of thermal photons
present in the transmission lines. Fourier transforming back,
we get

〈δc(t)〉= 8g3e
−i(ωct+θ)

√
κaκbκc

[ −ρab(
1 − ρ2

ab

)2 P in
a,coh−

√
κaκb

8

ρab

1 − ρ2
ab

]
.

Using the above expression for 〈δc(t)〉, we arrive at the self-
consistency relation for ρab:

ρab = ρ0
ab

∣∣∣∣1 − ρ0
ab

ρab(
1 − ρ2

ab

)2

P in
a,coh

P in
c

− g3

2
√

κc|〈cin〉|
ρab

1 − ρ2
ab

∣∣∣∣,
where the second and third terms on the right denote the pump
depletion due to incident signal and vacuum fluctuations on the
signal port. Here, ρ0

ab = 4g3|〈cin〉|/√κaκbκc. Using the above
equation, one can compute the gain and the output signal power
(see Appendix C) given by

G =
(

1 + ρ2
ab

1 − ρ2
ab

)2

, (40)

P out
a,tot = GP in

a,coh + κa√
G

(G − 1)
1 + ρ2

ab

8
. (41)

Figure 2 shows the resulting gain as a function of coherent
incident signal power (P in

a,coh) for the nondegenerate case. The
different curves correspond to undepleted gain of 5 to 30 dB, in
steps of 5 dB. The black dots on each curve correspond to the
point where the gain of the amplifier is lowered by 1 dB. These
points lie on a straight line, with a slope of ∼−0.7. This is in
reasonable agreement with the asymptotic value of the slope
in the limit of high gain, predicted to be − 2

3 (see Eq. (103) in
Ref. [9]).

In Fig. 3, the total output signal power is plotted as a
function of P in

a,coh. The solid curves denote the output power
for undepleted gain of 5 to 30 dB, in steps of 5 dB. As
the incident coherent signal power goes to zero, the output
power tends to a constant value which corresponds to amplified
vacuum fluctuations incident on the signal port. The black
dotted-dashed line corresponds to unity undepleted gain when
the pump tone is switched off. Finally, the dashed black line
corresponds to the maximum output power that the device
can produce before the onset of spontaneous parametric os-
cillation.3 For low enough incident power, the dashed line

3This curve can be obtained as follows. Solving the coupled nonlin-
ear set of equations [Eqs. (28)–(30)] in steady state, one obtains the
smallest pump power which gives rise to multiple, stable, steady-state

FIG. 2. Theoretical gain of a nondegenerate parametric amplifier
as a function coherent incident signal power, taking into account
the effect of pump depletion. The different solid lines correspond
to undepleted gain of 5 to 30 dB, in steps of 5 dB. For definite,
realistic system parameters, we have chosen ωa/2π = 10 GHz,
ωb/2π = 7 GHz, ωc/2π = 17 GHz, κa/2π = κb/2π = 100 MHz,
κc/2π = 600 MHz, and g3/2π = 0.1 MHz. The black dots on each
curve correspond to the 1-dB compression point, where the gain of the
amplifier drops by 1 dB. These dots lie on a straight line (the black line
in the figure), whose slope in the given plot is ∼−0.7. The asymptotic
value of the slope in the limit of high gain is − 2

3 (see Ref. [9]).

eventually approaches a constant value like the solid curves.
This regime falls outside the range of incident powers shown
in the plot. The shaded region above the dashed line indicates
the region where the system shows spontaneous oscillation. In
this region, the noise spectrum of the amplifier output develops
a peak at the self-oscillation frequency, which rides on top of a
continuous background. Note that as the incident signal power
is increased, the pump power needed for onset of oscillation,
i.e., the threshold pump power, increases (see Fig. 4). For suffi-
ciently high incident signal power, the system ceases to exhibit
parametric oscillation (denoted by the black circle in Figs. 3
and 4). We note that the solid curves asymptotically do not
approach the dashed line of the onset of parametric oscillation
(there is a gap of about 5 dB). The reason for that is as follows.
The self-consistent theory for the solid curves [Eqs. (40) and
(41)] is derived using the linear scattering relations of the
parametric amplifier [see Eq. (10)]. Thus, onset of parametric
oscillation, which is inherently a nonlinear effect, is beyond
the scope of this theory. We believe a more complete theory of
pump depletion will be able to address this discrepancy. The
details of such a theory are left for a future work.

The aforementioned parametric oscillation in these para-
metric amplifiers is analogous to the second-order phase
transition occurring in ferromagnets. For the nondegenerate
case, consider a two-dimensional ferromagnet (which has a
complex scalar magnetization order parameter) in four or

solutions for the modes a,b,c. The pump power immediately below
this value is the maximum allowed pump power. In practice, the
equations are solved numerically for different pump powers.
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FIG. 3. Total output signal power as a function of coherent
incident signal power for the nondegenerate paramp. The different
solid lines correspond to undepleted gain of 5 to 30 dB, in steps of 5 dB.
The system parameters are chosen as in Fig. 2. As incident coherent
signal power goes to zero, the output power tends to a constant
value corresponding to amplified vacuum fluctuations incident on
the signal port. The black dotted-dashed line corresponds to the
pump tone being switched off. The black dashed line corresponds
to the maximum output signal power before the onset of spontaneous
oscillation. With sufficient increase of the incident signal power, the
system ceases to exhibit spontaneous oscillation, hence, the black
dot at the end of the line. In the entire shaded region, the system
shows parametric oscillation. The gray color gradient schematically
indicates the difference between the two possible classical amplitudes
of the output signal in the region of parametric oscillation. This
difference goes to zero when the incident power is large enough
for the system to stop showing parametric oscillation. The vertical
orange line corresponds to the power of half a photon of noise
incident on the signal port. Note that in addition to the constraint
imposed on the magnitude of incident pump power by spontaneous
oscillation threshold, additional restrictions arise due to the Josephson
nonlinearity. This is because higher-order nonlinear effects become
relevant in addition to those presented in the Hamiltonian of Eq. (27).
The exact value of the maximum output power depends on the exact
implementation of this device using Josephson circuits and will scale
with the junction energy EJ . For some typical values for the Josephson
parametric amplifier, see Secs. III and IV of Ref. [9].

higher dimensions. Here, the dimension is chosen to make the
analogy with our mean-field calculations more appropriate.
For simplicity, we choose the pump phase appropriately so
that Eqs. (28)–(30) allow for solutions for a0e

−iωa t , b0e
−iωbt

where a0, b0 are real. In this analogy, the role of the complex
magnetization order parameter is played by a0 + ib0. The role
of the inverse temperature is played by the incident pump tone
amplitude cin. The incident signal ain acts like an external
applied magnetic field. In this analogy, the black dashed line
corresponds to a second-order phase transition, terminating
at a critical point. However, note the qualitative difference to
conventional phase transitions in this analogy. In ferromagnets,
in presence of magnetic field, the second-order phase transition
disappears in favor of a smooth crossover. In the nondegenerate
amplifier, the parametric oscillation persists for a range of the
incident signal.

FIG. 4. Shift of threshold of spontaneous oscillation upon in-
crease of coherent signal power. The system parameters are chosen
as in Fig. 2.

The calculations for the degenerate case proceed analo-
gously and lead to

〈δc(t)〉 = 8g2e
−i(ωct+θ)

κaκc

[ −2ρaa(
1 − ρ2

aa

)2 P in
a,coh − κa

8

ρaa

1 − ρ2
aa

]
.

Here, we have neglected the generated second-order harmonic.
This harmonic does not contribute to amplification within the
RWA. Using the above expression for 〈δc(t)〉, we arrive at the
self-consistency relation for ρaa:

ρaa = ρ0
aa

∣∣∣∣1 − ρ0
aa

ρaa(
1 − ρ2

aa

)2

P in
a,coh

P in
c

− g2

2
√

κc|〈cin〉|
ρaa

1 − ρ2
aa

∣∣∣∣,
where ρ0

aa = 8g2|〈cin〉/(κa

√
κc). The gain and the output power

on the signal port are, respectively, given by

G =
(

1 + ρ2
aa

1 − ρ2
aa

)2

, (42)

P out
a,tot = (2G − 1)P in

a,coh + κa√
G

(G − 1)
1 + ρ2

aa

8
. (43)

The plots for the degenerate case are shown in Appendix D.
Analogies with phase transitions in ferromagnets can also be
constructed for the degenerate case and are omitted for brevity.

IV. PHASE-SPACE DISTRIBUTION OF PARAMETRIC
AMPLIFIERS: BELOW, AT, AND ABOVE THRESHOLD

Whereas in the previous sections we have analyzed degener-
ate and nondegenerate parametric amplifiers in the Heisenberg
picture, here in this section we turn to the Schrödinger picture
and the associated Lindblad master equation to analyze the
phase-space distributions of the modes. This approach has
the merit of directly yielding the variance of the fluctuations
of the signal and idler waves. Starting from the Lindblad
equation, we derive an effective Fokker-Planck equation for the
Wigner distribution for the relevant modes. These are subse-
quently solved analytically to get the results. Our calculations
extend those given in Chap. 10 of Ref. [19]. Here, we begin
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with the case of a degenerate paramp since it is computationally
easier.

A. Degenerate parametric amplifier

The Lindblad equation for the density matrix for the modes
of a degenerate paramp is given by

dρ

dt
= − i

h̄
[H̃ DPA + Hdrive,ρ] + (κaD[a] + κcD[c])ρ, (44)

where H̃ DPA is defined in Eq. (33),

Hdrive = h̄(εaa
†e−iωa t + εcc

†e−iωct + H.c.), (45)

and D[a]· = a · a† − (a†a · + · a†a)/2 is the Lindblad super-
operator. Here, εa (c) denote the incident signal (pump) tone.
Using the definition of the Wigner distribution (W ) in terms
of the symmetrized characteristic function (see Chap. 10
of Ref. [19] and Chap. 4 of Ref. [20]), one can write the
equation of motion for W (α,α∗,γ,γ ∗), where α,γ denote the
complex numbers corresponding to amplitudes of the modes
a,c, respectively. The resulting equation is given by

∂W

∂t
=

[
∂

∂α

{(
κa

2
+ iωa

)
α + 2g2α

∗γ + iεae
−iωa t

}

+ ∂

∂γ

{(
κc

2
+ iωc

)
γ − g2α

2 + iεce
−iωct

}
+ c.c.

+ κa

2

∂2

∂α∂α∗ + κc

2

∂2

∂γ ∂γ ∗

− g2

4

(
∂3

∂α2∂γ ∗ + c.c.

)]
W. (46)

While the above equation describes the full dynamics of the
Wigner distribution, it is not amenable to analytical solution. To
achieve the latter, we expand the mode amplitudes around the
semiclassical solutions and look at small fluctuations around
these solutions. For the degenerate case, this approach is valid
for all values of pump and signal power (see below for the
nondegenerate case). For nonzero incident signal power (εa =
0), the fluctuations of the modes are small compared to their
semiclassical values by a factor of 1/(nthr

p )1/2 (the proof is
identical to that presented in Chap. 10 of Ref. [19] and Chap.
8 of Ref. [20]). Here, nthr

p is the number of pump (c-mode)
photons required to give rise to spontaneous oscillation of the
mode a for εa = 0. The formula for nthr

p is

nthr
p = κ2

a

16g2
2

, (47)

which is obtained by setting ρ0
aa of Sec. III to 1. This scaling

of the fluctuations is a manifestation of the fluctuations of the
modes remaining Gaussian for all values of the pump power
(see Fig. 5 below, bottom panels). However, the situation is
different for zero incident signal power (εa = 0) at the thresh-
old of spontaneous oscillation. For εa = 0, at the threshold,
the fluctuations are damped by a factor of 1/(nthr

p )1/4 (see
Chap. 10 of Ref. [19] for proof). This is a manifestation of
the non-Gaussian behavior of the fluctuations of the signal
mode (see Fig. 5 below, top center panel). In the following,
we perform the calculations for εa = 0. Since the details for

FIG. 5. Fluctuations of the signal mode for a degenerate para-
metric amplifier. For realistic system parameters, we have chosen
ωa/2π = 10 GHz, ωc/2π = 20 GHz, κa/2π = 100 MHz, κc/2π =
600 MHz, and g2/2π = 0.1 MHz. The top (bottom) panels show
the phase-space fluctuations in absence (presence) of incident signal.
The top left (right) panel shows the fluctuations when the system is
below (above) the oscillation threshold. The top center panel shows
the non-Gaussian fluctuations of the system at threshold, as indicated
by the nonelliptical contour lines. In presence of an incident signal
(here, we have chosen an incident signal power of −110 dBm), upon
increase of pump power, the fluctuations remain Gaussian (bottom
panels).

εa = 0 are given in Chap. 10 of Ref. [19], we do not repeat that
calculation here. We define

α̃ =
√

nthr
p 〈ã〉 + z̃, γ̃ =

√
nthr

p 〈c̃〉 + ũ, (48)

where α̃ = eiωatα, γ̃ = eiωctγ , z̃ = eiωat z, ũ = eiωctu, and ã =
eiωata, c̃ = eiωct c. Here, z,u denote the fluctuations around
semiclassical solutions 〈a〉,〈c〉. Performing the analysis self-
consistently and omitting some algebra, we arrive at the
equations of motion for the semiclassical solutions:

d〈ã〉
dt

= −κa

2
〈ã〉 − κa

2
〈ã†〉〈c̃〉 + λa, (49)

d〈c̃〉
dt

= −κc

2
〈c̃〉 + κa

4
〈ã†〉2 + λc, (50)

where λa,c = −4ig2εa,c/κa,c. Note that these equations are
merely scaled, semiclassical versions of the QLEs derived in
Sec. III. The fluctuation around these semiclassical solutions
is given by the Wigner distribution W̄ (z̃,z̃∗,ũ,ũ∗), which obeys

∂W̄

∂t
=

[
∂

∂z̃

{
κa

2
z̃ + κa

2
(〈ã†〉ũ + 〈c̃〉z̃∗)

}

+ ∂

∂ũ

{
κb

2
ũ − κa

2
〈ã〉z̃

}
+ c.c.

+ κa

2

∂2

∂z̃∂z̃∗ + κc

2

∂2

∂ũ∂ũ∗

]
W̄ . (51)

This equation for W̄ is a Fokker-Planck equation and, thus,
can be exactly solved as a function of time. Therefore, any
correlation function of the modes can also be analytically
computed using this equation. Next, we give the steady-state
properties of W̄ when λa,c ∈ Re. Computations for other
choices of λa,b can be performed analogously. In steady state,

W̄ (z̃,z̃∗,ũ,ũ∗) = F1(z̃1,ũ1)F2(z̃2,ũ2), (52)

045405-8



QUANTUM-LIMITED PARAMETRIC AMPLIFICATION WITH … PHYSICAL REVIEW B 98, 045405 (2018)

where z̃ = z̃1 + iz̃2, ũ = ũ1 + iũ2, and F1,F2 individually
obey the following Fokker-Planck equations:[

∂

∂z̃j

{
κa

2
(1 − (−1)j c0)z̃j + κa

2
a0ũj

}

+ ∂

∂ũj

{
− κa

2
a0z̃j + κc

2
ũj

}

+ κa

8

∂2

∂z̃2
j

+ κc

8

∂2

∂ũ2
j

]
Fj (z̃j ,ũj ) = 0, j = 1,2. (53)

Here, a0,c0 denote the semiclassical solutions obtained by
solving Eqs. (49) and (50) in steady state. For nonzero εa ,
the fluctuations around the semiclassical solutions remain
Gaussian for all values of the pump εc, even though the
system shows parametric oscillation (see Sec. III) for a range
of εa . This should be compared to the case when εa = 0.
In that case, below and above the threshold for spontaneous
oscillation, the fluctuations around the semiclassical solu-
tion are Gaussian, while the system exhibits non-Gaussian
behavior at threshold. The results of the calculations are
shown in Fig. 5. The top panels show the case when εa = 0.
The top left and top right panels show the fluctuations
of the a mode around semiclassical solution below and above
the spontaneous oscillation threshold. The top center panel
shows the non-Gaussian behavior of the system at the threshold
in absence of incident signal, as indicated by the contour
lines which are no longer ellipses. The bottom panels show
the Wigner function of the signal mode when εa = 0 for the
corresponding pump powers. Note that for εa = 0, the output
amplified signal exhibits correlations with the pump tone. This
is evident from the factorization of the Wigner function [see
Eq. (52)], where one quadrature of the signal is correlated
with one of the pump. As the amplitude of the incoming
signal becomes smaller, this correlation decreases and vanishes
completely only in the limit εa = 0.

B. Nondegenerate parametric amplifier

Next, we describe the phase-space distribution of the modes
of a nondegenerate parametric amplifier when there is an
incident signal on the a mode. The case when both a and b

modes are driven can be treated analogously. The equation of
motion for the system is given by

dρ

dt
= − i

h̄
[H̃ NDPA + Hdrive,ρ]

+ (κaD[a] + κbD[b] + κcD[c])ρ, (54)

where H̃ NDPA is defined in Eq. (27) and

Hdrive = h̄(εaa
†e−iωa t + εcc

†e−iωct + H.c.). (55)

As in Sec. III, we consider the case when only the signal
mode is driven, with εa (c) denoting the incident signal (pump)
tone. Then, the equation of motion for the Wigner distribution
W (α,α∗,β,β∗,γ,γ ∗) is

∂W

∂t
=

[
∂

∂α

{(
κa

2
+ iωa

)
α + g3β

∗γ + iεae
−iωa t

}

+ ∂

∂β

{(
κb

2
+ iωb

)
β + g3α

∗γ
}

+ ∂

∂γ

{(
κc

2
+ iωc

)
γ − g3αβ + iεce

−iωct

}
+ c.c.

+ κa

2

∂2

∂α∂α∗ + κb

2

∂2

∂β∂β∗ + κc

2

∂2

∂γ ∂γ ∗

− g3

4

(
∂3

∂α2∂β∗ + c.c.

)]
W. (56)

For nonzero incident signal power (εa = 0), the analysis is
analogous to the degenerate case. The fluctuations around the
semiclassical amplitudes remain Gaussian for all values of
pump powers. They are smaller than the classical amplitudes
by the factor of 1/(nthr

p )1/2, where now

nthr
p = κaκb

4g2
3

. (57)

This is obtained by setting ρ0
ab of Sec. III to 1. In absence of

incident signal, below and at the threshold of oscillation, the
fluctuations of the modes a,b are, respectively, Gaussian and
non-Gaussian and the scaling is identical as in the degenerate
case. However, above threshold there is a qualitative difference
between the degenerate and nondegenerate cases. Unlike the
degenerate case, the phases of self-oscillating amplitude of
the modes a,b are undetermined above threshold in absence of
an incident signal. This, together with the decay of the modes
a,b, gives rise to phase diffusion. A full treatment of this effect
needs the use of the positive-P distribution (see Ref. [21] for
more details) and goes beyond the scope of this paper. Here,
we will only treat the case when there is an incident signal
which is relevant for amplifiers. Then, the Wigner distribution
is sufficient to analyze the system. We define

α̃ =
√

nthr
p 〈ã〉 + z̃, β̃ =

√
nthr

p 〈b̃〉 + w̃, γ̃ =
√

nthr
p 〈c̃〉 + ũ.

(58)

Here, α̃ = eiωatα, β̃ = eiωbtβ, γ̃ = eiωctγ , z̃ = eiωat z, w̃ =
eiωbtw, ũ = eiωctu and ã = eiωata, b̃ = eiωbtb, c̃ = eiωct c. The
variables z,w,u denote the fluctuations around the semiclas-
sical solutions 〈a〉,〈b〉,〈c〉. Expanding self-consistently, one
arrives at the semiclassical equations of motion:

d〈ã〉
dt

= −κa

2
〈ã〉 −

√
κaκb

2
〈b̃†〉〈c̃〉 + λa, (59)

d〈b̃〉
dt

= −κb

2
〈b̃〉 −

√
κaκb

2
〈ã†〉〈c̃〉, (60)

d〈c̃〉
dt

= −κc

2
〈c̃〉 +

√
κaκb

2
〈ã〉〈b̃〉 + λc, (61)

where λa,c = −2ig3εa,c/
√

κaκb. Once again, these are merely
the scaled, semiclassical versions of the QLEs derived in
Sec. III. The fluctuations are determined by the Wigner
distribution W̄ (z̃,z̃∗,w̃,w̃∗,ũ,ũ∗), which obeys the following:

∂W̄

∂t
=

[
∂

∂z̃

{
κa

2
z̃ +

√
κaκb

2
(〈b̃†〉ũ + 〈c̃〉w̃∗)

}

+ ∂

∂w̃

{
κb

2
w̃ +

√
κaκb

2
(〈ã†〉ũ + 〈c̃〉z̃∗)

}
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+ ∂

∂ũ

{
κc

2
ũ −

√
κaκb

2
(〈ã〉w̃ + 〈b̃〉z̃)

}
+ c.c.

+ κa

2

∂2

∂z̃∂z̃∗ + κb

2

∂2

∂w̃∂w̃∗ + κc

2

∂2

∂ũ∂ũ∗

]
W̄ . (62)

For simplicity, we choose κa = κb = κ and the phases of
εa,εc so that the semiclassical solutions are real. In steady
state, the above Fokker-Planck equation factorizes and W̄ =∏

j=1,2 Fj (z̃j ,w̃j ,ũj ), where Fj obeys

[
κ

2

∂

∂z̃j

{
z̃j − (−1)j c0w̃j + b0ũj

}
+ κ

2

∂

∂w̃j

{
w̃j

− (−1)j c0z̃j + a0ũj

}
+ κc

2

∂

∂ũj

{
ũj − κ

κc

a0w̃j

− κ

κc

b0z̃j

}
+ κ

8

(
∂2

∂z̃2
j

+ ∂2

∂w̃2
j

)
+ κc

8

∂2

∂ũ2
j

]
Fj = 0, (63)

j = 1,2, and a0, b0, and c0 denote the steady-state solutions of
Eqs. (59)–(61). The above equations can be solved analytically.
The cut of the Wigner distribution showing the phase-space
fluctuations of the signal mode is given in Fig. 6. Due
to the presence of the incident signal, the fluctuations are
always Gaussian (as in the degenerate case). The three panels
correspond to pump powers that, in absence of incident signal,
correspond to below, at, and above threshold of spontaneous
oscillation. Note that the incident signal also removes the phase
diffusion present in the nondegenerate parametric oscillator
above threshold [21] (see right panel). The modes a,b are
correlated with the pump mode for finite εa [this can be also
seen from the factorization of the Wigner function in Eq. (63)].
This correlation is exactly zero only for εa = 0. Of course, in
this case of two-mode squeezing, the modes a,b stay correlated
for all values of εa .

FIG. 6. Phase-space fluctuations of thea mode of a nondegenerate
parametric amplifier in presence of incident signal. For definite,
realistic system parameters, we have chosen ωa/2π = 10 GHz,
ωb/2π = 7 GHz, ωc/2π = 17 GHz, κa/2π = κb/2π = 100 MHz,
κc/2π = 600 MHz, and g3/2π = 0.1 MHz. The incident signal
power is chosen to be −110 dBm. The left, center, and right panels,
respectively, correspond to below, at, and above the threshold for
spontaneous oscillation. The fluctuations remain Gaussian for all
pump powers. Note that here we show only the case of nonzero
incident signal. A treatment of the case of zero incident signal below
and at threshold gives identical behavior to the degenerate case (see
Fig. 5, top left and center panels). For zero incident signal power,
above threshold, the system shows phase diffusion. The behavior of
the system for this case is treated using the positive-P distribution [21]
and is beyond the scope of this paper.

V. PRACTICAL AMPLIFIER CIRCUITS BASED ON
JOSEPHSON JUNCTION CIRCUITS

In this section, we provide several circuit realizations of
the degenerate amplifiers (Secs. V A, V B, and V C) and a
nondegenerate amplifier (Sec. V D). The circuit construction,
together with pros and cons of each approach, is discussed.
A concise summary of the different circuit constructions is
provided in Fig. 11.

A. Driven microwave oscillator whose inductance is a single
Josephson element: Duffing-type dynamics

We first examine the simplest case of a one-mode, one-port
circuit in which the inductance is just the Josephson element
of superconducting tunnel junction (see Fig. 7) [22,23]. The
Hamiltonian of such systems is given by

H = Hcirc − h̄

2e
ϕI + Henv, (64)

Hcirc = −EJ cos ϕ + Q2

2C�

, (65)

where EJ = ( h̄
2e

)
2
/LJ is the Josephson energy, C� = CJ +

Cext is the total capacitance in parallel with the Josephson
element, ϕ the gauge-invariant phase difference across the
junction, Q the charge conjugate to the phase [ϕ,Q] = 2ei,
Henv the Hamiltonian of the transmission line, including the
pump arriving through this channel, and I the current operator
belonging to the degrees of freedom of the line. The amplifier
functions with 〈ϕ〉 having excursions much less than π/2 and
the cosine function in the Hamiltonian can be expanded to
fourth order only, with the ϕ4 term treated as a perturbation
[24,25]. Introducing the ladder operators of the single mode of
the circuit

ϕ = ϕZPF(a + a†) (66)

and working in the framework of both an expansion in
ϕZPF = (2e2/h̄)1/2(LJ /C�)1/4 and RWA, the Hamiltonian of
the circuit simplifies to

Hcirc

h̄
= ω̃aa

†a + K

2
a†a(a†a − 1), (67)

FIG. 7. One-mode, one-port Josephson amplifier involving only
the Josephson inductance. Left panel is schematic of Josephson tunnel
junction, itself consisting of a Josephson tunnel element playing the
role of nonlinear inductance (cross, LJ ) and a junction capacitance
CJ , in parallel with an external capacitance Cext and a transmission
line bringing in the current I (t). The variable ϕ is the phase across
the junction. On the right panel, simplified schematic based on an
RWA treatment where the oscillator is reduced to its frequency ωa and
damping rate κ , with the Josephson nonlinearity manifesting itself as
a simple Kerr component (opposing arcs symbols) characterized by
the parameter K , the shift in frequency of the oscillator corresponding
to one photon. The degree of freedom is described by the standing
photon ladder operator a.
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where, in the regime ϕZPF � 1, K = −e2/(2h̄C�), and ω̃a =
1/

√
LJ C� + K . The QLE applied to this system yields

d

dt
a = −i(ω̃a + Ka†a)a − κ

2
a + √

κain(t), (68)

where ω̃a � κa � K . This last equation is the quantum
version, in the RWA approximation, of the equation describ-
ing systems modeled by the Duffing equation. The classical
Duffing oscillator obeys the equation

mẍ + ηẋ + mω2
0x(1 + μx2) = fD cos (ωDt) + fP (t) (69)

for the position variable x having mass m, small amplitude
spring constant mω2

0, friction coefficient η, and driven at
frequency ωD , which is close to the small-amplitude resonant
frequency ω0. A small probe force fP (t) allows to study
the displacement response of the system. Nonlinearity of
the oscillator corresponds here to the spring constant being
dependent quadratically on position.

Here, for our amplifier, κ plays the role of the damping rate
η/m, and K plays the role of μ. Let us now suppose that, in
addition to the signal to be processed, the a port also receives
an intense drive tone described by a propagating coherent state
with amplitude αin and frequency �. We treat this drive by the
change of variable

ain(t) = αine−i�t + δain(t), (70)

a(t) = αe−i�t + δa(t). (71)

We aim to solve for the semiclassical amplitude α from
Eq. (68):

dα

dt
− i�α = −iω̃aα − iK|α|2α − κa

2
α + √

κaα
in. (72)

By treating the nonlinear term as a perturbation, we obtain the
self-consistent algebraic equation in steady state:

α = i
√

κaα
in

(� − ω̃a) + iκa

2 − K|α|2 , (73)

which in general yields for the c number α a complex value
|α − α0| � 1. Here,

α0 = i
√

κaα
in

(� − ω̃a) + iκa

2 − 4K|αin|2/κa

. (74)

Expanding a around this value [using Eq. (71)] and keeping
up to second-order terms, we arrive at the effective Hamilto-
nian for the degenerate parametric amplifier arising from the
pumping of the Josephson junction

H

h̄
= ωaδa

†δa + [gaae
i(�aa t+θ)(δa)2 + H.c.] (75)

with

ωa = ω̃a + 2K|α|2, gaae
iθ = Kα∗2

2
, �aa = 2�. (76)

The analysis of the amplifier based on the Hamiltonian given
by Eq. (75) is justified only for dα/dt small compared to other
spurious couplings/measurement times. Note that Eq. (76)
puts into light two drawbacks of this type of amplifier: the
center frequency of the band of the amplifier shifts as the
pump amplitude is increased and the pump tone needs to be

FIG. 8. Parametrically driven oscillator based on the property of
the Josephson inductance of a dc-SQUID (two Josephson junctions
in parallel forming a loop, here represented by a thicker line) to be
modulated by the variation of an external flux �ext . The modulation
arises from an RF drive current ID(t) = IRF

D cos �t in the primary of a
transformer that creates though its mutual inductance M a sinusoidal
flux variation in the loop of the dc-SQUID.

at the center of the band for optimal amplification. The use of
two pump frequencies �1 and �2 such that �aa = �1 + �2

facilitates the use of this parametric amplifier [7].
The device has noticeable gain when K|αin|2/κ2

a is of
order unity, implying that the number of pump photons in the
oscillator is of order κa/K , a large number by hypothesis. This
justifies our treatment of the pump drive as a c number. Ne-
glected terms such as the non-RWA term (δa)3ei�t have smaller
factors and can themselves be treated as perturbations on top
of the standard degenerate parametric amplifier formalism. It
is worth noting that for this device, the pump tone and the
signal tone must enter the circuit on the same port, which is
inconvenient given the widely different amplitude levels of
these two waves.

Amplifiers based on the same Duffing type of non-linearity
can also be fabricated with two-port circuits containing arrays
of Josephson junctions [26–28].

B. A parametrically driven oscillator: The dc-SQUID driven by
RF flux variation

Another class of Josephson circuit implementing parametric
amplifiers at microwave frequencies is the RF flux-driven dc-
SQUID (see Fig. 8).

It turns out that this parametric drive can be implemented
in Josephson circuits by taking a dc-SQUID, which is formed
by two nominally identical Josephson junctions in parallel and
modulating at the RF pump frequency the flux �ext threading
the superconducting loop between them (here the term dc
refers to the circulating current in the loop due to an external
bias flux). One exploits the functional form of the Josephson
inductance of the dc-SQUID

L
SQUID
J = LJ

cos
∣∣π �ext

�0

∣∣ , (77)

where �0 = h/2e is the flux quantum and LJ /2 is the Joseph-
son inductance of each individual junction. When

�ext = �0

4
[1 + ε cos (�t)], (78)

with � close to the resonant frequency of the SQUID
1/

√
C�L

SQUID
J and ε � 1, one implements the parametrically

driven harmonic oscillator with relative frequency modulation
parameter μr = πε/4. This modulation is produced by a drive
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FIG. 9. Implementation of a degenerate parametric amplifier
using two cavity modes (a,c) coupled by a Josephson junction (mode
q). A stiff pump and a weak resonant drive on mode c, together with
the Josephson nonlinearity, give rise to the desired Hamiltonian given
in Eq. (33).

current ID(t) = IRF
D cos (�t) at the primary of the transformer

coupling the transmission line of an RF pump to the flux of
the SQUID (see Fig. 8). Classically, the parametrically driven
harmonic oscillator obeys the equation

mẍ + ηẋ + mω2
0x[1 + μr cos (�t)] = fP (t). (79)

In contrast with the Duffing oscillator above, this system is
described by a fully linear, albeit time-dependent, equation.
The drive, instead of appearing as a force coupled directly to
position, now modulates the spring constant with a relative
amplitude μr . The system behaves as an amplifier when
the argument of the cosine modulation term is such that the
drive frequency � is close to the resonant frequency ω0. In
the weak damping limit η � mω0, the quantum version of this
oscillator is directly a one-port, one-mode system described by
our degenerate amplifier Hamiltonian

H

h̄
= ωaa

†a + [gaae
i�aa t a2 + H.c.], (80)

where

�aa = �, (81)

gaa = μrω0/4. (82)

Note that now the drive frequency needs to be near twice
the resonance frequency of the amplified mode, unlike in the
Duffing case, and it is thus easier to decouple the pump tone
from the weak signal to be amplified. This type of amplifier
has been implemented in several labs [29–33].

C. Double-pumped degenerate parametric amplifier

Consider two cavity modes a,c coupled by a single Joseph-
son junction, treated as a qubit mode q (see Fig. 9). The
resonant frequencies (decay rates) of the three modes are
denoted by ωx(κx), x = a,c,q. By applying a stiff pump
and a weak resonant drive on the mode c, for κc � κa , this
system was used for stabilization of Schrödinger cat states
[34]. We now show that the same system, for κa ∼ κc, acts as
a degenerate parametric amplifier described in Secs. II and III.
We will follow derivation given in the Supplemental Material
of Ref. [34].

The total Hamiltonian of the system is given by

H = ωqq
†q + ωaa

†a + ωcc
†c − EJ (cos ϕ + ϕ2/2)

+ 2 Re(εpe−iωpt + εce
−iωd t )(c + c†),

ϕ = ϕq
ZPF(q + q†) + ϕa

ZPF(a + a†) + ϕZPF
c (c + c†). (83)

Here, εp,c are the drive strengths. The frequencies of the
incident drives ωp,ωd will be determined from the following

calculation. Under rotating-wave approximation and eliminat-
ing the fast dynamics (for details, see Supplemental Material
of Ref. [34]), we arrive at the resultant Hamiltonian for the
modes a,c:

H = ω̃aa
†a + ω̃cc

†c + (ig2a
†c + εcc

† + H.c.)

− χaa

2
a†2

a2 − χcc

2
c†

2
c2 − χaca

†ac†c. (84)

Here, the self-Kerr, cross-Kerr, and nonlinear couplings of the
modes a,c are, respectively, given by

χmm = EJ ϕ4
m

2h̄
, χmm′ = EJ ϕ2

mϕ2
m′

h̄
, g2 = χacξ

∗
p

2
, (85)

where ξp = −iεp/[κc/2 + i(ωc − ωp)]. We have omitted the
Hamiltonian terms involving the qubit mode since it does
not participate in the dynamics and merely provides the
nonlinearity for the interaction between a and c. Here,

ω̃a = ωa − ωd + ωp

2
− χaa − χac|ξp|2, (86)

ω̃c = ωc − ωd − χcc − χcc|ξp|2. (87)

Here, the terms χac|ξp|2, χcc|ξp|2 denote the ac-Stark shift due
to the presence of the incident pump. To arrive at the degenerate
parametric amplifier Hamiltonian [Eq. (33)], we solve for
ωp,ωd by setting ω̃a = ω̃c = 0. The resultant Hamiltonian for
ω̃a = ω̃c = 0 corresponds to that of the degenerate paramp
when the modes a,c are considered in their respective rotating
frames. The physical process that underlies the amplification
mechanism can be understood easily for negligible cross-
Kerr and self-Kerr couplings, when the frequency constraint
becomes

ωc = ωd, 2ωa = ωp + ωd. (88)

Thus, the amplification of the a mode occurs when one photon
of the pump (at ωp) and one photon of the drive (at ωd ) are
converted to two photons of the signal (at ωa).

D. Three-mode circuit employing the purely dispersive
Josephson three-wave mixer

We have just described several ways in which a circuit
involving Josephson junctions can implement the degenerate
parametric amplifier. The nondegenerate parametric amplifier
can be implemented by a three-mode, three-port circuit em-
ploying four junctions forming the so-called Josephson ring
modulator, a purely dispersive three-wave mixer (see Fig. 10
and for further details, Refs. [8,9,35]).

Three microwave standing-wave resonators are coupled by
this last element and are described by the Hamiltonian

H

h̄
= ωaa

†a + ωbb
†b + ωcc

†c

+ g3(a + a†)(b + b†)(c + c†), (89)

together with their port coupling κa , κb, and κc. The frequency
scales are such that

ωc � ωb > ωa > κc � κa � κb � g3. (90)

The trilinear coupling term, treated as a perturbation, pos-
sesses the precious property that it does not, at the lowest
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FIG. 10. Schematic circuit of the purely dispersive three-wave
mixer (dashed line) involving three microwave modes, themselves
coupled to three ports. The system functions as a nondegenerate
parametric amplifier with mode a and b playing the role of the signal
and idler, while mode c is used to couple in the pump tone. While
there are in principle four modes coupled by the junctions (cross
inside a square, denoting both the Josephson element and associated
capacitance), the symmetry of the circuit when the junctions are
identical, imposes that only three modes participate in the nonlinear
interaction. A flux threading the ring of junctions induces a current
(arrows) that replaces one of the four waves coupled by the junction.

order, offset the frequency of the quadratic terms when the
modes are occupied by coherent signals, unlike the Kerr
term above K

2 a†a(a†a − 1). Other terms of higher order have
been neglected in the Hamiltonian (89). They ensure that the
system remains stable when the amplitudes become large,
as the trilinear coupling renders by itself the Hamiltonian
unstable. In the regime where the c mode is driven by a large
coherent field αin

c e−i�t , we can neglect the fluctuating part of
the corresponding operator. The previous Hamiltonian can be
treated as

H eff

h̄
= ωaa

†a + ωbb
†b

+ 2gab(a + a†)(b + b†) cos(�abt + θ ), (91)

where

gab cos (�abt + θ ) = g3Re

[ √
κcα

in
c e−i�t

−i
(
ωD

ab − ωc

) + κc

]
, (92)

�ab = �. (93)

When one works within the framework of the rotating-wave
approximation and �ab � ωa + ωb, the fast rotating terms can
be neglected and one recovers the Hamiltonian of the generic
nondegenerate parametric amplifier

H NDPA

h̄
= ωaa

†a + ωbb
†b + [gababei(�abt+θ) + H.c.]. (94)

We note that the presence of higher-order Kerr nonlinear terms
in the Hamiltonian [8,35] not described here lowers the gain of
the device due to ac-Stark shift (see discussion at the beginning
of Sec. III). A remedy for this drawback has been proposed
recently in Refs. [14,15].

VI. RELATED OTHER TOPICS AND FUTURE
DIRECTIONS

Before concluding, we point out several recent amplifier
developments which are subject of current research, but were
not discussed in this work.

First, a dc and ac flux-driven SQUID performing as an
amplifier can be viewed as a nonlinear circuit element, referred
to as the “pumpistor,” with a phase-sensitive impedance which
can turn negative [36] This approach was not presented in
this paper since we focused on the interaction between the
signal and the pump, an effect that cannot be addressed by the
“pumpistor” idea.

Second, Ref. [37] proposes an impedance-engineering ap-
proach to evade the gain-bandwidth product limitation of
amplifiers. In this approach, the nonlinear circuit element
based on a Josephson junction is connected to a multipole
environment. The resulting impedance seen by this element
is modified by tuning this environment, thereby providing an
additional control to enhance the bandwidth of the amplifier.
This impedance-engineering approach is qualitatively different
from the one presented in this paper. In contrast to starting with
a given Hamiltonian and analyzing its scattering properties,
Ref. [37] starts with a susceptibility function and subsequently,
constructs the Hamiltonian and the circuit subjecting the
susceptibility function to certain requirements. Thus, while
our paper provides the “direct” scattering analysis of a given
Hamiltonian, Ref. [37] provides the “inverse” scattering ap-
proach of Hamiltonian construction. Furthermore, the ampli-
fier constructed in this way differs from those presented in this
paper in another aspect. Due to the specific form demanded of
the susceptibility function of Ref. [37], the pumped nonlinear
part of the circuit sees a fundamentally non-Markovian bath,
unlike in the amplifiers described here. Of course, the input-
output framework used in our work is powerful enough to
model such a non-Markovian environment by considering ad-
ditional degrees of freedom in the system intercalated between
the nonlinear element and the transmission line (see Part IV of
Ref. [38]).

Third, as pointed out in the Introduction, a key desired
property of an amplifier is its unidirectionality [point (v) of
the desiderata]. For the amplifiers described in the body of
the paper, additional circuit elements such as circulators and
isolators play this crucial function. However, they suffer from
the drawback of being lossy and bulky components. Amplifiers
which are intrinsically directional and do not suffer from the
aforementioned drawbacks have been proposed and, for some,
realized [28,39–41]. This is an actively researched topic and
goes beyond the scope of this paper.

Fourth, amplification using dissipation engineering evading
both the gain-bandwidth compromise and the instability at the
onset of parametric oscillation in amplifiers [41,42] were also
not covered in this paper.

VII. SUMMARY

To summarize, we have described in this paper degenerate
and nondegenerate parametric amplifiers based on Josephson
junction circuits. The key organizing concept is the effective
quadratic time-dependent Hamiltonian which comes in two
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FIG. 11. Minimalistic versions of the various Josephson circuits implementing parametric amplification of quantum signals. The circuits
are classified according to the degenerate/nondegenerate character of the amplifying process (one or two standing modes). The four-wave
(4W) or the three-wave (3W) labels characterize the mixing process for the signal and idler waves taking place in the Josephson junctions.
In the three-wave process, the place of one of the four-waves incident on the junction is replaced by a dc current generated by the
externally applied flux �. We also distinguish circuits by the number of ports through which the signal, idler, and the pump waves are
delivered. In the upper left corner (minimal complexity), the three waves are approximately at the same frequency and arrive through
the same port, whereas in the lower right corner (maximal complexity), the three waves are both spatially and spectrally separated. In
the upper right corner, we have represented two implementations of the one-port, four-wave, nondegenerate parametric amplifier. In the
circuit on the left-hand side, the two modes share a common junction but are symmetrically coupled to the port, whereas on the right-hand
side, the two modes are gauge coupled and are asymmetrically coupled to the port. An important direction not fully explored by this table is the
use of extra modes to do broadband parametric amplification with impedance engineering [37]. In the example shown in the upper right corner,
a one-port, nondegenerate four-wave device constructed from two modes can be engineered, by proper choice of its parameters, to evade the
constraint on the gain-bandwidth product discussed, for instance, in Ref. [9].

forms: degenerate and nondegenerate, depending on whether
the signal and idler waves occupy the same physical degree
of freedom or two separate ones. In Fig. 11, we summarize
the different circuit configurations leading, on one hand,
to the degenerate case and, on the other hand, to the nondegen-
erate case (left and right columns, respectively). The figure also
classifies circuits depending on the number of access ports, the
simpler case being that of one-port carrying the signal, idler,
and pump waves (upper left panels), while the case in which
the signal, idler, and the pump waves are separated in both
temporally and spatially is shown in the bottom right panel.
The circuit complexity increases when going from the upper
left corner of Fig. 11 to the lower right one. Moreover, we have

described the linear scattering properties of these amplifiers in
the stiff-pump approximation. Subsequently, we computed the
effects of pump depletion and the phase-space properties of
signal modes for both degenerate and nondegenerate cases.
Finally, we reviewed some practical implementations of such
amplifiers.
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APPENDIX A: QUANTUM SIGNALS PROPAGATING
ALONG A TRANSMISSION LINE

Crudely speaking, quantum signals are electromagnetic ex-
citations of a transmission line that involve only a few photons.
The state of these excitations must display some degree of
quantum purity for the signals to carry quantum information,
which is the subject of interest in Josephson circuits. In this
Appendix, we provide the basic mathematical background for
the concept of quantized electromagnetic excitations in the
microwave domain [11,43]. Starting from the microscopic
Hamiltonian of a transmission line, we arrive at the concept
of left- and right-moving propagating photon-flux operators
(see Fig. 12). As will be shown below, they obey the same
commutation relations as those of elementary bosonic modes
in vacuum. These operators are subsequently used to define the
concept of a photonic excitation in a propagating wave packet.

1. Hamiltonian description of a quantum transmission line

Here, we follow a route found in previous works (see
Chap. 3 of Refs. [12,43,44]) with some clarifications par-
ticularly necessary for electrical circuits that we hope the
reader will find useful. Consider an infinite transmission line,
a one-dimensional electromagnetic medium characterized by
a propagation velocity vp and a characteristic impedance Zc.
A microwave coaxial line serves as the canonical example of
such a medium (see Fig. 13).

Position along the line is indexed by the real number
x ∈ (−∞, + ∞). We suppose that the line is ideal, with both
vp and Zc independent of frequency ω. The TEM modes
propagating on this transmission line can be equivalently
described by propagating modes sustained by the infinite LC

FIG. 12. Schematic of dispersion of quantized left-moving
(shown in blue) and right-moving (shown in red) waves in a dis-
persionless one-dimensional medium (transmission line) with prop-
agation velocity vp . Reflection about the vertical axis (k = 0) axis
corresponds to transformation of a left-moving wave into a right-
moving wave and vice versa, while reflection about the horizontal
axis (ω = 0) corresponds to Hermitian conjugation (see below for
more details).

FIG. 13. (a) Electromagnetic transmission line implemented as a
coaxial cable. The parameter x denotes the position along the line, I

denotes the current along the line in the positive direction, and V the
voltage between the inner and outer conductors. The characteristic
impedance and the propagation velocity are denoted by Zc and vp ,
respectively. The line has a continuous density of modes in the limit
where its length 2d → ∞. In (b), a ladder circuit model with cell
dimension δx models the infinite transmission line. Its capacitance
and inductance per unit length are given by L� = L/δx and C� =
C/δx, respectively. In the limit where the signal frequency ω is small
compared to 1/

√
LC, Zc = √

L/C, and vp = 1/
√

L�C�.

ladder shown in Fig. 13(b), in the limit when the wavelength
of the propagating modes are much larger than the size of
the unit cell. The inductance and capacitance per unit length
are given by L� = L/δx and C� = C/δx, respectively.4 In
terms of L�,C�, the propagating velocity and the characteristic
impedance are given by

vp = 1

L�C�

, Zc =
√

L�

C�

. (A1)

Following Ref. [45], we define a flux operator

�(x,t) =
∫ t

−∞
dt ′V (x,t ′), (A2)

where V (x,t) = ∂t�(x,t) is the local voltage operator at posi-
tion x on the transmission line at time t . The average voltage
drop across a segment of length δx with inductance L�δx is
−δx∂x∂t 〈�(x,t)〉. The average flux through the inductance
is given by −δx∂x〈�(x,t)〉 and the operator for the current
flowing through the inductance is given by the usual relation

I (x,t) = −∂x�(x,t)/L�. (A3)

The Lagrangian that describes the system is given by

Lline =
∫ ∞

−∞
dx

{
C�

2

(
∂�

∂t

)2

− 1

2L�

(
∂�

∂x

)2}
, (A4)

4This model of a coaxial transmission line is due to Nyquist and
corresponds to an actual microscopic description of the line, where
L�,C� correspond to the inductance and capacitance per unit length
of the line. This should be differentiated from the Caldeira-Leggett
model of resistance and impedance in terms of an infinite number of
LC oscillators. The Caldeira-Leggett model describes the effective
behavior of the resistor in terms of the LC oscillators even though
underlying microscopic description of the resistor has nothing to do
with LC oscillators.
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which, through the Euler-Lagrange’s equation of motion,
results in the dispersionless wave propagation equation

∂2�

∂x2
− 1

v2
p

∂2�

∂t2
= 0. (A5)

The canonical conjugate momentum is the charge density
�(x,t):

�(x,t) ≡ ∂Lline

∂(∂t�)
= C�

∂�

∂t
= C�V (x,t) (A6)

and, thus, the Hamiltonian describing the transmission is given
as

Hline =
∫ ∞

−∞
dx

{
1

2C�

�(x,t)2 + 1

2L�

(∂�

∂x

)2
}
. (A7)

We define the following Fourier transforms:

q(ω,t) ≡ 1√
2πvp

∫ ∞

−∞
dx �(x,t)e−iωx/vp , (A8)

p(ω,t) ≡ 1√
2πvp

∫ ∞

−∞
dx �(x,t)e−iωx/vp . (A9)

Here, the variable ω/vp denotes the wave vector of the spatial
Fourier component and is not a frequency (the reason for this
notation choice will become clear later). The positive and
negative values of ω indicate wave momentum in +x and −x

directions, respectively (the red and blue lines of Fig. 12).
For a mode propagating with wave vector ω/vp, the energy
is given by h̄|ω| (see below). Also, note that p(ω,t), and
not q(ω,t), is the Fourier transform of the charge density.
We adopt this notation because the flux and charge operators
�(x,t) and �(x,t), respectively, correspond to the position
and momentum operators of the equivalent mechanical sys-
tem. This choice is appropriate because there are nonlinear,
nondissipative inductances, but no nonlinear, nondissipative
capacitances. Since �(x,t),�(x,t) are Hermitian operators, it
follows trivially that

q(ω,t)† = q(−ω,t), p(ω,t)† = p(−ω,t). (A10)

In terms of the Fourier-transformed operators, the Hamiltonian
is given by

Hline =
∫ ∞

−∞
dω

{
1

2C�

p(ω,t)p(−ω,t)+ ω2C�

2
q(ω,t)q(−ω,t)

}
,

(A11)

where we have used Eq. (A1). Next, we define a(ω,t), which
plays the role of annihilation operator for different modes of
the transmission line:

a(ω,t) =
√

|ω|C�

2h̄
q(ω,t) + i√

2h̄|ω|C�

p(ω,t). (A12)

These a(ω,t) operators will be used in turn to define the
propagating field operators. Note that with this definition,
a(ω,t)† = a(−ω,t). Thus, the Hamiltonian can be rewritten in
terms of these operators as

Hline =
∫ ∞

−∞
dω

h̄|ω|
2

{a(ω,t)†a(ω,t) + a(ω,t)a(ω,t)†}.
(A13)

Next, we use the canonical quantization relation for the
continuous field operators

[�(x,t),�(x ′,t)] = ih̄δ(x − x ′), (A14)

which, in the Fourier domain, becomes

[q(ω,t),p(ω′,t)] = ih̄δ(ω + ω′). (A15)

This leads to the following standard commutation relation for
the annihilation field operator a(ω,t):

[a(ω,t),a(ω′,t)†] = δ(ω − ω′),

[a(ω,t),a(ω′,t)] = 0. (A16)

The Heisenberg equation of motion for the operator a(ω,t) is
given by

da(ω,t)

dt
= − i

h̄
[a(ω,t),Hline]

= −i|ω|a(ω,t), (A17)

which can be solved to give

a(ω,t) = e−i|ω|(t−t0)
a(ω,t0), (A18)

where t0 is some initial time (eventually, we will take t0 to be
−∞). This, together with Eq. (A8), leads to

q(ω,t) =
√

h̄

2|ω|C�

{a(ω,t0)e−i|ω|(t−t0) + a(−ω,t0)†ei|ω|(t−t0)},

(A19)

p(ω,t) = −i

√
h̄|ω|C�

2
{a(ω,t0)e−i|ω|(t−t0)

− a(−ω,t0)†ei|ω|(t−t0)}. (A20)

Now, we can solve for the field operators �(x,t), �(x,t)
arriving at

�(x,t) =
√

Zc

2π

∫ ∞

−∞
dω

√
h̄

2|ω|e
iωx/vp

× {a(ω,t0)e−i|ω|(t−t0) + H.c.}

=
√

Zc

2π

∫ ∞

0
dω

√
h̄

2ω
{a(ω,t0)e−iω(t−x/vp)eiωt0

+ a(−ω,t0)e−iω(t+x/vp)eiωt0 + H.c.}, (A21)

�(x,t) = − i

vp

√
2πZc

∫ ∞

−∞
dω

√
h̄|ω|

2
eiωx/vp

× {a(ω,t0)e−i|ω|(t−t0) − H.c.}

= − i

vp

√
2πZc

∫ ∞

0
dω

√
h̄ω

2
{a(ω,t0)e−iω(t−x/vp)

× eiωt0 + a(−ω,t0)e−iω(t+x/vp)eiωt0 − H.c.}. (A22)

Note that, as expected, the operators�(x,t), �(x,t) are Hermi-
tian and have two traveling-wave components corresponding
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to the two opposite traveling directions (see Fig. 12). From
these quantities, it is easy to calculate the voltage and current
operators using Eqs. (A2) and (A3), leading to

V (x,t) = V →(x,t) + V ←(x,t),

I (x,t) = I→(x,t) − I←(x,t), (A23)

I�(x,t) = 1

Zc

V �(x,t), (A24)

where

V �(x,t) = −i

√
Zc

2π

∫ ∞

0
dω

√
h̄ω

2

× {a(±ω,t0)e−iω(t∓x/vp)eiωt0 − H.c.}. (A25)

Here, we have expressed the current and voltage operators
as superpositions of those operators propagating in opposite
directions. As expected, the right- (left)-propagating waves
involve the operators a(ω,t0) with positive (negative) wave
vectors. Next, we define the propagating wave amplitude
operators in terms of these propagating current and voltage
operators:

A�(x,t) = A�(t ∓ x/vp) = 1

2

(
V√
Zc

(x,t) ±
√

ZcI (x,t)

)
,

A�(x,t) = −i√
2π

∫ ∞

0
dω

√
h̄ω

2
{a(±ω,t0)e−iω(t∓x/vp)eiωt0

−H.c.}. (A26)

Equation (A26) shows that the spatial dependence can be
obtained trivially from A�(t) ≡ A�(x = 0,t) by setting t →
t ∓ x/vp:

A�(t) = −i√
2π

∫ ∞

0
dω

√
h̄ω

2
{a(±ω,t0)e−iω(t−t0) − H.c.}.

(A27)

These simple and physical propagating wave amplitudes sat-
isfy the following commutation relation:

[Al1 (t1),Al2 (t2)] = ih̄

2

d

d(t1 − t2)
δ(t1 − t2)δl1l2 , (A28)

where l1,l2 = 0,1 according as the denote the direction of
propagation is → , ←. These traveling-wave amplitudes have
also been introduced in earlier treatments of input-output
theory [12,43,46,47]. The wave amplitude, whose dimension
is [watt]1/2, is such that its square is the energy flux of
waves traveling in the direction indicated by the arrow. These
propagating wave amplitude operators describe the power flow
in the transmission line. The net power flowing in the +x

direction is given by

P = 〈A→(x,t)〉2 − 〈A←(x,t)〉2, (A29)

and is equivalent to the usual Poynting vector of electrody-
namics. In terms of these propagating wave amplitudes, the
Hamiltonian can be written as

Hline = 1

vp

∫ ∞

−∞
dx{A→(x,t)2 + A←(x,t)2}, (A30)

which expresses the fact that the total energy is the sum of the
energies of these propagating waves.

In earlier treatments of dispersionless quantum transmission
lines (Chap. 3 of Ref. [12], Chap. 3 of Ref. [43], and Ref. [44]),
it is at this point where the rotating-wave approximation (RWA)
is made before discussing traveling photon wave packets.
These treatments are sufficient when the spectral width of
the traveling pulse is much smaller than the center frequency,
which is usually the case in usual quantum optical systems
operating with center frequencies in the THz range. However,
for microwave circuit-QED systems operating with center
frequencies in the GHz range, it is easy to conceive of a
temporal wave packet that is not well described by these
approximations. Therefore, we go a step further and introduce
the concept of a traveling-wave field-ladder operator without
making RWA. This is described below.

Define the Fourier transforms of the propagating wave
amplitudes as

A�[ω] ≡ 1√
2π

∫ ∞

−∞
dtA�(t)eiωt . (A31)

Here, we have used the square brackets to distinguish the case
when the Fourier transform is taken with respect to time from
the earlier case when the Fourier transform was with respect
to space. Since A�(t) in a Hermitian operator, it follows that
A�[ω]† = A�[−ω]. Using Eqs. (A27) and (A31), one readily
obtains

A�[ω] = −i

√
h̄|ω|

2
a(±|ω|,t0)e+i|ω|t0 , ω > 0

= i

√
h̄|ω|

2
a(±|ω|,t0)†e−i|ω|t0 , ω < 0 (A32)

where the upper (lower) sign in front of |ω| corresponds to
right- (left-) moving waves. The two signs correspond to the
two branches of the blue (left arrow) and red (right arrow)
lines representing the propagating modes in Fig. 12, while the
argument of A denotes the position along the branch. These
result in the following commutator relation:

[Al1 [ω1],Al2 [ω2]] = h̄(ω1 − ω2)

4
δ(ω1 + ω2)δl1l2 , (A33)

which is the frequency-domain counterpart of Eq. (A28) and
l1,l2 stand for the sense of propagation.

Now, we are ready to define the traveling-wave field-ladder
operators

al[ω] ≡ 1√
h̄|ω|/2

Al[ω]. (A34)

These frequency-domain, traveling-wave, field-ladder oper-
ators al[ω] have commutation relations bearing a marked
resemblance to the ladder operators of a set of standing-wave
harmonic oscillators (in the continuum):

[al1 [ω1],al2 [ω2]] = sgn(ω1 − ω2)δ(ω1 + ω2)δl1l2 . (A35)

This formula represents the central result of this subsection.
Note that

al[ω]† = al[−ω]. (A36)
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In terms of the reciprocal space field operators a(ω,t), these
traveling-wave field-ladder operators are given by

a�[ω] = −ia(±|ω|,t0)e+i|ω|t0 , ω > 0 (A37)

= ia(±|ω|,t0)†e−i|ω|t0 , ω < 0. (A38)

As expected, we see that the right- (left-) propagating waves
involve the field operators a(ω,t) with positive (negative) wave
vectors. The above equations establish the connection between
the traveling field operators al[ω] defined on the upper and
lower halves of Fig. 12.

Going back to the time domain, one can evaluate the
propagating traveling-wave field-ladder operators at x = 0 to
be

a�(t) = 1√
2π

∫ ∞

−∞
dω a�[ω]e−iωt

= −i√
2π

∫ ∞

0
dω{a(±ω,t0)e−iω(t−t0)

− a(±ω,t0)†eiω(t−t0)}. (A39)

It is important to note that a�(t) is a Hermitian operator, and
it satisfies the commutation relation

[al1 (t1),al2 (t2)] = i

π
p.p.

1

t2 − t1
δl1l2 , (A40)

where p.p. denotes the principal part. In Appendix B, we will
make the rotating-wave approximation on this propagating
field operator a�(t), which amounts to dropping the second
term involving in a(ω,t0)† in Eq. (A39).

With the results obtained in this section, we can proceed to
define propagating photon excitations of the transmission line.
This is done below. We emphasize that for defining the photon
excitations of the line, we will not need the RWA.

2. Definition of a traveling photon wave packet

In order to properly define the photons of the line, one needs
to introduce an orthonormal signal basis consisting of “first-
quantization” wavelets [48] wl

mp(t) such that∫ +∞

−∞
dt wl1

m1p1
(t)wl2

m2p2
(t)∗ = δm1,m2δp1,p2δl1,l2 ,

wl
mp(t)∗ = wl

−mp(t),

+∞∑
m=−∞

+∞∑
p=−∞

wl
mp(t1)wl

−mp(t2) = δ(t1 − t2). (A41)

The pair of indices (|m|,p) ∈ N+ × Z defines a propagating
temporal mode of the line, and the combined amplitudes of
the two corresponding wavelets can be seen as an elementary
degree of freedom of the field. There are two conjugate
wavelets per mode since the phase space of each mode is
bidimensional.

It is necessary to request that the support of wl
mp[ω], the

Fourier transform of wl
mp(t), is entirely contained in the pos-

itive frequency sector if m > 0 and in the negative frequency
sector if m < 0:

wl
mp[ω] = wl

mp[ω]�(ω) if m > 0, (A42)

wl
mp[ω] = wl

mp[ω]�(−ω) if m < 0. (A43)

In these last expressions, �(ω) is the Heaviside function.5

This complete wavelet basis is a purely classical signal
processing concept and its existence solely results from the
property of the signals to be square-integrable functions. Any
continuous signal f (t) such that

∫ +∞
−∞ |f (t)|2dt < ∞ can

indeed be decomposed into a countable infinite number of
elementary signals

f (t) =
+∞∑

m=−∞

+∞∑
p=−∞

f−mpwmp(t), (A44)

fmp =
∫ +∞

−∞
dt wmp(t)f (t). (A45)

A common example of such a wavelet is the Shannon wavelet

wmp(t) = 2

√
τ

2π

sin
[

π
τ

(t − pτ )
]

t
ei2πmt/τ (A46)

whose Fourier transform is

wmp[ω] =
√

τ

2π
1 2π

τ
(m−1/2), 2π

τ
(m+1/2)(ω)eipωτ , (A47)

where 1x1,x2 (x) is the indicator function which is 0 everywhere
except in the interval [x1,x2], where its value is unity. Many
other useful bases, involving more continuous wavelets, exist
[48]. In the above example, the center frequency and time
location of the wavelet is 2πm/τ and pτ , respectively (in order
to form a complete basis, the pitch in frequency �ω and pitch
in time �t of the wavelet basis has to satisfy �ω�t � 2π ).

The discreteness of the signal component indices is the
justification for the term “first quantization” and no quantum
mechanics is involved here since all functions are at this stage
c-number valued. Second quantization intervenes when we
define the discrete ladder-field operators, with indices m > 0
and p:

ψ l
mp =

∫ +∞

−∞
dω wl

mp(ω)al[ω] (A48)

=
∫ +∞

−∞
dt wl

mp(−t)al(t), (A49)

ψ l
−mp = ψ l†

mp. (A50)

We introduce the shorthand μ = (l,|m|,p) as the index of
the spatiotemporal mode, also called the flying oscillator. The
photon-number operator is given by

nμ = ψ†
μψμ (A51)

and the discrete ladder operators ψμ satisfy the same commu-
tation relation as standing-mode ladder operators:

[ψμ1
,ψ†

μ2
] =

∫ +∞

−∞

∫ +∞

−∞
dω1dω2w

l1
m1p1

(ω1)wl2
m2p2

(ω2)∗

×[al1 [ω1],al2 [ω2]]

= δμ1,μ2 . (A52)

5The index value m = 0 corresponds to special wavelets that have
to be treated separately.

045405-18



QUANTUM-LIMITED PARAMETRIC AMPLIFICATION WITH … PHYSICAL REVIEW B 98, 045405 (2018)

An important remark can be made: if the photon ampli-
tude operator ψμ is non-Hermitian, this is only because its
first-quantization component wl

mp(t) is complex. Its second-
quantization component al(t) is a Hermitian operator. It is also
important to note that, in general, the frequency of a photon
is ill defined, in contrast with what could be inferred from
elementary introductions to quantum mechanics. This feature
happens as soon as the duration of the wavelet corresponding
to that particular photon is not very long compared with the
inverse of the wavelet center frequency. Thus, the concept of
photon for a propagating signal has to be clearly distinguished
from an energy quantum. A propagating photon is an elemen-
tary excitation of the field carrying a quantum of action, and
corresponds to a field wave function orthogonal to the vacuum:

|�1μ〉 = ψ†
μ|vac〉, (A53)

〈vac|�1μ〉 = 0. (A54)

A wavelet can contain several photons in mode μ:

|�nμ〉 = 1√
n!

(ψ†
μ)n|vac〉 (A55)

and each multiphoton state (Fock state) is orthogonal to the
others

〈�n2μ|�n1μ〉 = δn1n2 . (A56)

Several modes can simultaneously be excited:

|�σ 〉 = 1√
n1!

(ψ†
μ1

)n1
1√
n2!

(ψ†
μ2

)n2 . . . |vac〉, (A57)

where the sequence of indices σ = (n1,μ1; n2,μ2; n3,μ3; . . . )
is a mode-photon occupancy configuration. Finally, the most
general wave function of the field of the transmission line is
a superposition of all field photon configurations in all the
spatiotemporal modes of the line:

|�〉 =
∑

σ

Cσ |�σ 〉. (A58)

There are exponentially many more quantum coefficients Cσ

than the classical coefficients fμ in Eq. (A45)! And it is also
important to understand that a state with a well-defined number
of photons in a certain wavelet basis can be fully entangled in
another basis.

A wavelet can also support a so-called coherent state instead
of a well-defined number of photons:

|αμ〉 = e−|αμ|2/2
∑

n

α
n/2
μ√
n!

|�nμ〉 (A59)

= e−|αμ|2/2eαμψ†
μ |vac〉, (A60)

and if all wavelets are in a coherent state, we obtain a coherent
field state

|�{α}〉 =
∏
μ

|αμ〉 (A61)

= e−∑
μ(|αμ|2/2−αμψ†

μ)|vac〉. (A62)

Thus, the set of complex coefficients αμ plays the role of
the coefficients fμ in Eq. (A45). Somewhat surprisingly, this

property of being a coherent state remains true in every wavelet
basis [as can be inferred from the quadratic form in the
exponent of Eq. (A62)].

The state of the line is in general not pure and must be
described by a density matrix ρσσ ′ . This ultimate quantum field
description tool leads to the important notion of information
contained in the signal. In general, in quantum mechanics, we
can define for a system with a finite-dimension Hilbert space,
the Shannon–Von Neumann entropy

S = −trρ ln ρ. (A63)

The information contained in the system is then straightfor-
wardly computed as

I = S(ρmix) − S(ρ), (A64)

where ρmix is the fully mixed state in which all basis states are
equiprobable, with no off-diagonal correlations. The extension
of these ideas to a transmission line on which a signal
propagates is not trivial since the number of temporal modes
is infinite and each temporal mode has a Hilbert space with
infinite dimensionality. Some constraints need to be provided,
for instance, a fixed total energy for both ρ and ρmix. We can
also, in another instance, fix the maximum number of excitation
in each temporal mode. Supposing that the maximum number
of excitations is unity in the domain (|m|,p) ∈ {1,2, . . . ,M} ⊗
{−P, . . . , + P } and that other modes are in the vacuum state,
then, for a state of the line characterized by an average photon
number 〈n|m|p〉 per mode

I =
M∑

m=1

P∑
p=−P

Ib(〈n|m|p〉 − 1/2), (A65)

where Ib(〈X〉) the information contained in a stochastic binary
variable X = ±1:

Ib(x) = log2

[√
1 − x2

(
1 + |x|
1 − |x|

) |x|
2

]
. (A66)

We refer the reader to Ref. [49] for a more complete description
of the information carried by quantum signals.

3. Definition of traveling photon flux

The dimension of the operators al(t) is the inverse square
root of time and it is tempting to interpret them as photon-flux
amplitudes. The propagating photon flux in terms of a�[ω] is
defined as

〈al[ω]al′[ω′]〉
= {

n̄(ω) + 1 + 2πP l
aδ(ω − ωa)

}
δ(ω + ω′)δll′ , ω > 0

= {
n̄(−ω) + 2πP l

aδ(ω + ωa)
}
δ(ω + ω′)δll′ , ω < 0 (A67)

where l,l′ = →,←. Here, P
�
a is the the photon flux of the

incoming drive signal at angular frequency ωa (in units of
photons per unit time) and n̄(ω) is the Bose occupation factor
at the temperature of the electromagnetic excitations of the
line. We have supposed that there is only one relevant signal
frequency, and the generalization to the case with multiple
frequencies is straightforward. Thus, in time domain, the
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traveling photon flux is given by

〈al(t)†al′(t)〉 = δll′

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′〈al[ω]al′[ω′]〉

= δll′

[
1

2π

∫ ∞

0
{2n̄(ω) + 1)dω} + 2P l

a

]
,

where we have used Eq. (A67). Thus, the first term is the
contribution from the thermal and vacuum fluctuations, while
the second term is the classical photon flux.

APPENDIX B: QUANTUM LANGEVIN EQUATION AND
INPUT-OUTPUT THEORY

The main role of the previous section was to introduce the
concept of quantum electromagnetic fields propagating along
a transmission line at microwave frequencies. The elementary
excitations of these fields, microwave photons, can be seen as
the carriers of the information transmitted by the propagating
field. In this section, we describe how these excitations of the
transmission line interact with a localized signal processing
device.

We consider a localized signal processing device as a
lumped-element circuit (i.e., the spatial extent of the scatterer
is much smaller than the wavelength of the radiation being
scattered) which is connected to two semi-infinite transmission
lines [see Fig. 14(a)]. It receives from the input line the
propagating signal carrying the information to be processed
and reemits into the output line another signal carrying the
result of the information processing. A crucial ingredient
in the description of the mapping of the input signal into
the output signal, is the coupling between the circuit, which
houses standing electromagnetic modes, and the transmission
lines, which support propagating modes. This coupling is dealt
with theoretically using the QLE using input-output theory.
For simplicity, we consider the situation in which a lumped-
element circuit with only one electromagnetic mode is coupled
to only one semi-infinite transmission line [Fig. 14(b)]. We will

FIG. 14. Circuit modes and ports: (a) We are interested in quan-
tum signal processing circuits in the lumped-element regime. They
possess, in general, several standing modes. Input lines and output
lines are attached to ports. In the simplest case (b), a circuit with one
standing mode communicates with the outside through only one port,
labeled here as“intermediate.” An ideal circulator separates the input
from the output.

FIG. 15. The damping of a circuit by a resistance Zc = R can take
place in a series or parallel way, depending on whether the resistance
is placed in series with it or across a branch. The Nyquist model
represents the resistance by a transmission line with characteristic
impedance Zc = R. In this model, the voltage or current source is
replaced by an incoming wave.

closely follow the form of input-output theory developed in
Refs. [43,47] (see also Chap. 3 of Ref. [12]). In this so-called
one-mode, one-port configuration, the signal processing occurs
as a transformation of the incoming wave into the reflected
outgoing wave. However, in order to utilize the action of
the one-mode, one-port circuit, a nonreciprocal linear device
called a circulator has to be added in order to separate the in-
coming and outgoing waves into two independent transmission
lines [Fig. 14(b)]. This circuit configuration also provides a
way to model direction, through amplifiers [50]. We can leave
the modeling of the circulator aside for the moment (it is a
three-port device), and derive the equation of motion for an
operator of the lumped circuit element.

The input-output formalism also provides a quantum-
mechanical model for dissipation in these systems. In mi-
crowave circuits, the dissipation can be a resistance connected
in series or in parallel (see Fig. 15). In the following section, we
derive the QLE for the case when the dissipation is caused by a
resistor coupled in series with the circuit. In this case, a voltage
source added in series with the resistor is responsible for
coherent incident signals and fluctuations. The case when the
dissipation is due to a resistor in parallel is treated afterwards.
In the latter case, a current source in parallel with the resistor
drives coherent incident signals and fluctuations.

1. Dissipation due to a resistor in series,
together with a voltage source

a. Derivation of the quantum Langevin equation beyond RWA

Unlike the previous section, we now have a semi-infinite
transmission line with characteristic impedance Zc, extending
to +∞, coupled to a scatterer (located at x = 0), which we
assume to be a lumped circuit with Lagrangian Lsys. The total
Lagrangian of the system plus transmission line is given by

L = Lsys +
∫ ∞

0
dx

{
C�

2

(
∂�

∂t

)2

− 1

2L�

(
∂�

∂x

)2}

+ X

∫ ∞

0
dx κ(x)

∂�

∂t
, (B1)

where C�,L� are defined as before and X is a chargelike system
operator that couples to the transmission line with the coupling
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constant κ(x). We have chosen the coupling Hamiltonian so as
to ensure that the line voltage ∂�

∂t
couples to X, as necessitated

by the insertion of the transmission line in the circuit. The
canonical conjugate momentum � now has a contribution from
the system operator X:

∂L
∂(∂t�)

= C�

∂�

∂t
+ Xκ(x) = �(x,t). (B2)

The operators �(x,t),�(x,t) still obey the commutation rela-
tion

[�(x,t),�(x ′,t)] = ih̄δ(x − x ′). (B3)

One can then write the Hamiltonian for the system and
transmission line

H = Hsys +
∫ ∞

0

[
1

2C�

{�(x,t) − Xκ(x)}2

+ 1

2L�

(∂�

∂x

)2
]
. (B4)

Next, we go to the Fourier domain, by defining the following:

q(ω,t) ≡
√

2

πvp

∫ ∞

0
dx �(x,t) cos

ωx

vp

, (B5)

p(ω,t) ≡
√

2

πvp

∫ ∞

0
dx �(x,t) cos

ωx

vp

, (B6)

κ(ω) ≡
√

2

πvp

∫ ∞

0
dx κ(x) cos

ωx

vp

. (B7)

Here, we have involved only the Fourier cosine expansion. This
is because for a lumped circuit element, the coupling κ(x)
is local and ∝ δ(x). Only the Fourier cosine components of
∂t�(x,t) and therefore of �(x,t) couple to the system variable.
The operators q(ω,t),p(ω,t) satisfy the commutation relation

[q(ω,t),p(ω′,t)] = ih̄δ(ω − ω′). (B8)

In the Fourier domain, the Hamiltonian of the system and the
cosine part of the degrees of freedom of the line reads as

H = Hsys +
∫ ∞

0
dω

[
1

2C�

{p(ω,t) − Xκ(ω)}2

+ ω2C�

2
q(ω,t)2

]
. (B9)

The equations of motion for q(ω,t),p(ω,t) are

dq(ω,t)

dt
= p(ω,t) − Xκ(ω)

C�

, (B10)

dp(ω,t)

dt
= −ω2C�q(ω,t). (B11)

We define annihilation operators for the different spatial modes
of the transmission line as

a(ω,t) =
√

ωC�

2h̄
q(ω,t) + i√

2h̄ωC�

p(ω,t), (B12)

which satisfy the commutation relation

[a(ω,t),a(ω′,t)†] = δ(ω − ω′). (B13)

Finally, the Heisenberg equation of motion of a(ω,t) is

da(ω,t)

dt
= −iωa(ω,t) −

√
ω

2h̄C�

κ(ω)X. (B14)

This can be solved to yield

a(ω,t) = a(ω,t0)e−iω(t−t0)

−
√

ω

2h̄C�

∫ t

t0

dt ′X(t ′)e−iω(t ′−t0), (B15)

a(ω,t) = a(ω,t1)e−iω(t−t1)

+
√

ω

2h̄C�

∫ t1

t

dt ′X(t ′)e−iω(t ′−t1), (B16)

where t0 < t is a time far in the past and t1 > t is a time far
in the future. Eventually, we will take t0 and t1 to −∞ and
∞, respectively, so that the dynamics of the circuit takes place
entirely in the interval [t0,t1]. Now, we can rewrite �(x,t) in
terms of the solutions in the past and the future:

�(x,t) =
∫ ∞

0
dω cos

(
ωx

vp

)√
h̄

πωvpC�

{a(ω,t) + a(ω,t)†},

which leads to (after some algebra)

�(x,t) = �in

(
t − x

vp

)
+ �in

(
t + x

vp

)

− 1

2C�

∫ x
vp

+(t−t0)

x
vp

−(t−t0)
dτ κ(vpτ )X

(
t −

∣∣∣∣τ − x

vp

∣∣∣∣
)

(B17)

= �out

(
t − x

vp

)
+ �out

(
t + x

vp

)

+ 1

2C�

∫ x
vp

−(t−t1)

x
vp

+(t−t1)
dτ κ(vpτ )X

(
t +

∣∣∣∣τ − x

vp

∣∣∣∣
)

,

(B18)

where �in/out denote input and output fields in the past and the
future, defined as

�in(out)

(
t ± x

vp

)
= 1

2

∫ ∞

0
dω

√
h̄

πωvpC�

× {
a(ω,t0(1))e

iωt0(1)e
−iω(t± x

vp
) + H.c.

}
.

(B19)

Next, we take t0,t1 to −∞,∞, respectively. For a lumped
scatterer, the scattered field is outside the region where κ(x) is
nonzero and, thus, τ − x/vp < 0. Therefore,

�(x,t) = �in

(
t + x

vp

)
+ �out

(
t − x

vp

)
, (B20)

�out

(
t ± x

vp

)
= �in

(
t ± x

vp

)

− 1

2C�

∫ ∞

−∞
dτ κ(vpτ )X

(
t ± x

vp

∓ τ

)
.

(B21)
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Equation (B20) shows that the field at any point (x,t) is a sum of
the input and output fields propagating in opposite directions.
Equation (B21) describes the output fields in terms of the input
fields plus some system operator, convolved with the coupling
constant. The equation of motion for a system operator Y is
given by

dY

dt
= − i

h̄
[Y,Hsys] − i

2h̄

∫ ∞

0
dx κ(x)

{
∂�

∂t
,[X,Y ]

}
. (B22)

Choosing

κ(x) = 2
√

ZcvpC�δ(x) (B23)

leads to

dY

dt
= − i

h̄
[Y,Hsys] − i

√
ZcvpC�

2h̄

{
∂�

∂t

∣∣∣∣
x=0

,[X,Y ]

}
, (B24)

where an extra factor of 1
2 arises from the integral being from

0 to ∞. From Eq. (B17), setting x = 0, we get

�(x = 0,t) = 2�in(t) −
√

Zc

vpC�

X(t). (B25)

Inserting this in Eq. (B24), we arrive at

dY

dt
= − i

h̄
[Y,Hsys]

+ i

2h̄

{
Zc

dX

dt
− 2

√
ZcvpC�

∂�in

∂t

∣∣∣∣
x=0

,[X,Y ]

}
.

(B26)

Now, from Eq. (B19), we have

∂�in

∂t

∣∣∣∣
x=0

= −i

2

∫ ∞

0
dω

√
h̄ω

πvpC�

{a(ω,t0)e−iω(t−t0) + H.c.}.
(B27)

We define incoming and outgoing traveling photon field ampli-
tudes (analogous to those in Appendix A) as Ain(t) and Aout(t)
as

Ain(out)(t) = √
vpC�

∂�in(out)

∂t

∣∣∣∣
x=0

= −i√
2π

∫ ∞

0
dω

√
h̄ω

2
{a(ω,t0(1))e

−iω(t−t0(1))+ H.c.},

(B28)

Thus, the QLE for the system operator Y becomes

dY

dt
= − i

h̄
[Y,Hsys] + i

2h̄

{
Zc

dX

dt
− 2

√
ZcA

in(t),[X,Y ]

}
.

(B29)

In deriving this equation, only the Markov approximation is
made, which makes the QLE local in time. This is because we
chose the coupling of the form κ(x) ∝ δ(x). The RWA has not
been made yet (see below). The output field can be computed
from the incoming ones using Eqs. (B20) and (B25):

Aout(t) = Ain(t) −
√

Zc

dX

dt
. (B30)

We point out that this form of the QLE beyond RWA is useful
for analyzing problems such as the spin-boson problem [51]
or the Kondo problem [52–54]. Next, we perform the RWA on
this QLE derived above.

b. Derivation of the quantum Langevin equation under RWA

For simplicity, we will derive the equation for an LC circuit
(a harmonic oscillator). It is straightforward to generalize our
results to include nonlinearities in our system Hamiltonian.
Consider a series LC resonator with inductance L and capac-
itance C coupled in series with a resistor with resistance Zc

and a voltage source Vs . The suitable choice for the position
coordinate of the harmonic oscillator is the charge on the
capacitor, denoted by Q and the corresponding canonically
conjugate momentum is the flux through the inductor, denoted
by �. They obey the commutation relation [Q,�] = ih̄. Then,
the Hamiltonian for the system is given by

Hsys = Q2

2C
+ �2

2L
, (B31)

and the coupling operator X of the previous section is Q. Then,
the QLEs for the operators Q,� are

dQ

dt
= �

L
, (B32)

d�

dt
= −Q

C
− Zc

dQ

dt
+ 2

√
ZcA

in(t). (B33)

Now, we define the annihilation operator for the harmonic
oscillator as

a =
√

Z0

2h̄
Q + i

1√
2h̄Z0

�, (B34)

where Z0 = √
L/C is the characteristic impedance of the LC

oscillator. Then, the equation of motion of the operator a is
given by

da

dt
= −iω0a − Zc

2L
(a − a†)

+
√

Zc

2h̄Z0

∫ ∞

0
dω

√
h̄ω

π
{a(ω,t0)e−iω(t−t0) + H.c.},

(B35)

where ω0 = 1/
√

LC is the resonant frequency of the oscillator.
Since we are interested in frequencies close to the resonant
frequency of the oscillator, we can drop the counter-rotating
terms [terms witha† and a(ω,t0)†]. Further, we can approximate
the

√
ω under the integral with

√
ω0. These two approximations

together comprise the RWA. The resultant equation is

da

dt
= −iω0a − Zc

2L
a

+
√

Zc

L

1√
2π

∫ ∞

0
dω a(ω,t0)e−iω(t−t0). (B36)

Finally, we identify Zc/L = κ , which is the bandwidth of the
resonator. This leaves us with the QLE

da(t)

dt
= −iω0a(t) − κ

2
a(t) + √

κain(t), (B37)

045405-22



QUANTUM-LIMITED PARAMETRIC AMPLIFICATION WITH … PHYSICAL REVIEW B 98, 045405 (2018)

where we have defined

ain(t) = 1√
2π

∫ ∞

0
dω a(ω,t0)e−iω(t−t0). (B38)

Note that only positive frequencies appear in the definition of
the incoming signal. In principle, one can integrate the QLE
and express the circuit variable a(t) in terms of the incoming
field ain(t). The output field can be obtained from the input-
output equation

aout(t) = ain(t) − √
κa(t). (B39)

Again, the appearance of the simple coefficient
√

κ in this
relation results from the Markov approximation. In the simple
case of the harmonic oscillator, the elimination of a between
input and output can be carried out fully at the analytical level
and one obtains(

d

dt
+ iω0 + κ/2

)
aout(t) =

(
d

dt
+ iω0 − κ/2

)
ain(t).

(B40)

Going to the Fourier domain, one obtains the reflection coeffi-
cient r(ω):

aout[ω] = r(ω)ain[ω], (B41)

rRWA(ω) = ω − ω0 − iκ/2

ω − ω0 + iκ/2
. (B42)

The causality property of the circuit, which expresses the
fact that it cannot produce a response before being submitted to
a stimulus, is implemented here by the analytic property of the
complex function rRWA(ω): its pole is in the lower-half complex
plane while its zero is in the upper half. On the other hand, the
property of the reflection coefficient to possess a single pole
instead of a pair is an artifact of RWA. As a matter of fact, when
the circuit is linear as is the case here, one can compute exactly
the reflection coefficient using a more elaborate form of QLE
without RWA, while keeping the Markov approximation. One
then obtains the expression possessing the necessary pair of
poles with values ω± = (−iκ ±

√
−κ2 − 4ω2

0)/2:

r(ω) = ω2 − ω2
0 − iκω

ω2 − ω2
0 + iκω

. (B43)

It is easy to see that in this last equation, r(ω) reduces
to the single-pole expression rRWA(ω) when ω is such that
|1 − ω/ω0| � 1 and in the underdamped limit κ/ω0 � 1.

It is straightforward to generalize our equation for arbitrary
system Hamiltonian:

da

dt
=

Markov
RWA

i

h̄
[Hsys,a] − κ

2
a + √

κain(t) , (B44)

with the boundary condition (for dissipation connected in
series)

aout(t) = ain(t) − √
κa(t) . (B45)

The remarkably simple form of the QLE is due to two approx-
imations: (i) the Markov approximation which considers that
the coupling of the system with the environment is “Ohmic”:
the density of modes of the environment can be considered

white across the set of circuit transition frequencies, as in
an ideal resistance, (ii) the coupling is also supposed to be
weak in the sense that κ is much smaller than any transition
frequency between the energy levels of the lumped circuit.
Although approximations are made, the equation respects the
important commutation relation of the ladder operators:

[a(t),a(t)†] = 1 (B46)

at all times t .
The incoming driving field has in general three components

which are treated on equal footing by the QLE: (i) the
deterministic signal to be processed, (ii) thermal or parasitic
noise accompanying the information-carrying signal, and (iii)
quantum noise or, in other words, the zero-point fluctuations of
the field of the semi-infinite transmission line. The inclusion of
this last component is implemented implicitly in that the QLE
is an operator equation, in contrast with the classical Langevin
equation which is just a differential equation for a c-number
function, albeit stochastic. Note that the coefficient

√
κ in front

of the propagating field amplitude embodies single handedly
the fluctuation-dissipation theorem: the rate at which energy is
radiated away from the circuit (the coefficient κ of the second
term) has to be tightly linked to the coupling constant with
which random radiation, emitted from the black body that the
line plays the role of, corrupt the purity of the state of the circuit.
If one wonders why κ appears under a square root in this cou-
pling coefficient, one just needs to remember that while a is a
dimensionless standing photon-number amplitude, ain(t) is the
dimensioned amplitude corresponding to a photon flux. Con-
sequently, when the semi-infinite line is in thermal equilibrium
(input signal is only black-body noise with temperature T ), the
following relation involving the anticommutator {�,�} holds:

〈{ain[ω1],ain[ω2]}〉T = coth
h̄(|ω1 − ω2|)

4kBT
δ(ω1 + ω2),

where kB is Boltzmann constant, {A,B} = AB + BA and
〈. . .〉T the average in the thermal state. Given an operating
temperature around 20 mK, this expression shows that the
quantum fluctuations become fully dominant over thermal
fluctuations at frequencies above a GHz.

2. Dissipation due to a resistor in parallel, together with a
current source

To compute the QLE for a resistor in parallel (see Fig. 15,
lower panel), the derivation presented in Secs. B 1 a and B 1 b
can be used, with some modifications. The suitable variable
for the semi-infinite transmission line (impedance Zc and
extending to +∞) is the charge at position x, denoted by
Q(x,t). The Lagrangian for the total system plus transmission
is now given by

L = Lsys +
∫ ∞

0
dx

{
L�

2

(
∂Q

∂t

)2

− 1

2C�

(
∂Q

∂x

)2}

+ X

∫ ∞

0
dx κ(x)

∂Q

∂t
, (B47)

where C�,L� are defined as before, Lsys is the Lagrangian
of the system, and X is now a fluxlike system operator that
couples to the transmission line with the coupling constant
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κ(x). Then, all the manipulations in Sec. B 1 a can be done
with the substitutions

�(x,t) → Q(x,t), L� ↔ C�. (B48)

For brevity, we skip the steps and present only the results.
As before, q(ω,t), p(ω,t), and κ(ω) denote the Fourier co-
sine transforms of Q(x,t), �(x,t), κ(x), respectively, where
�(x,t) is the canonically conjugate momentum of Q(x,t).
Note that only in this subsection, q(ω,t), p(ω,t) correspond
to the Fourier transforms of the charge and flux operators of
the semi-infinite transmission line. The annihilation operator
is defined as

a(ω,t) =
√

ωL�

2h̄
q(ω,t) + i√

2h̄ωL�

p(ω,t). (B49)

Solving the Heisenberg equation of motion for the annihilation
operator and plugging it into the expression for Q(x,t), we get

Q(x,t) = Qin

(
t − x

vp

)
+ Qin

(
t + x

vp

)

− 1

2L�

∫ x
vp

+(t−t0)

x
vp

−(t−t0)
dτ κ(vpτ )X

(
t −

∣∣∣∣τ − x

vp

∣∣∣∣
)

(B50)

= Qout

(
t − x

vp

)
+ Qout

(
t + x

vp

)

+ 1

2L�

∫ x
vp

−(t−t1)

x
vp

+(t−t1)
dτ κ(vpτ )X

(
t +

∣∣∣∣τ − x

vp

∣∣∣∣
)

,

(B51)

where Qin/out denote input and output fields in the past and the
future, defined as

Qin(out)

(
t ± x

vp

)
= 1

2

∫ ∞

0
dω

√
h̄

πωvpL�

× {a(ω,t0(1))e
iωt0(1)e

−iω(t− x
vp

) + H.c.}.
(B52)

The equation of motion for a system operator Y is given by

dY

dt
= − i

h̄
[Y,Hsys] − i

2h̄

∫ ∞

0
dx κ(x)

{
∂Q

∂t
,[X,Y ]

}
.

(B53)
Choosing

κ(x) = 2

√
vpL�

Zc

δ(x), (B54)

and noting that √
vpL�

∂Qin

∂t

∣∣∣∣
x=0

= Ain(t), (B55)

the QLE for the system operator Y becomes

dY

dt
= − i

h̄
[Y,Hsys] + i

2h̄

{
1

Zc

dX

dt
− 2√

Zc

Ain(t),[X,Y ]

}
.

(B56)

This is the QLE for a system coupled to a resistor in parallel,
together with a current source where only the Markov approx-
imation has been made. The output field for this case is given
by

Aout(t) = −Ain(t) + 1√
Zc

dX

dt
. (B57)

Note that Eqs. (B56) and (B57) are the parallel connection
counterparts of Eqs. (B29) and (B30) given for series con-
nection. Finally, one can perform identical manipulations as
in Sec. B 1 b to arrive at the same QLE under RWA given in
Eq. (B44):

da

dt
=

Markov
RWA

i

h̄
[Hsys,a] − κ

2
a + √

κain(t) , (B58)

with the modified boundary condition corresponding to parallel
dissipation

aout(t) = −ain(t) + √
κa(t) . (B59)

Here, Eqs. (B58) and (B59) are the parallel counterparts of
Eqs. (B44) and (B45) given for series coupling.

It is important to note that while the overall form of the
QLE under RWA is the same for both kinds of dissipation,
both the damping rates and the input-output boundary relations
are different. In the case of parallel LC resonator (inductance
L and capacitance C) coupled to a resistor in parallel, the
dissipation rate is κ = 1/(ZcC). This should be compared with
the dissipation rate derived in the series configuration where
κ was equal to Zc/L. As expected, the dissipation for a series
(parallel) configuration increases (decreases) with increasing
resistance.

3. Generalized QLE for multiport devices

Continuing to work in the framework of both RWA and the
Markov approximation, one can easily deal with more than one
circuit mode and more than one semi-infinite line. Denoting
by M the circuit standing-mode index and P the port index,
one obtains the multimode, multiport generalized QLE:

d

dt
aM = i

h̄
[H,aM ] +

∑
P

[
−κMP

2
aM + εMP

√
κMP ain

P (t)
]
.

(B60)
Apart from a simple extension of the number of variables,

this new equation contains the rectangular matrix εMP whose
coefficients are εMP = ±1. This matrix can be computed from
the details of the coupling of the lines to particular elements
of the circuit (capacitances or inductances, series or parallel
connections). A simple example of a situation where the εMP

cannot be set to unity by a redefinition of the mode amplitude
aM is presented in Fig. 16. The general input-output equation
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FIG. 16. Example of a two-mode, two-port circuit in which care
must be taken in the amplitude factors of the quantum Langevin
equation.

takes the form

aM =
∑
P

1√
κMP

[
εMP ain

M (t) + (ε−1)MP aout
P (t)

]
. (B61)

APPENDIX C: CALCULATION OF TOTAL OUTPUT
POWER IN PARAMETRIC AMPLIFIERS

1. Degenerate case

In this Appendix, we outline the calculation of the output
power of a degenerate parametric amplifier. We will treat the
gain G as a parameter and, thus, our results apply to both stiff
and depleted calculations. The scattering matrix for this system
is given in Eq. (18) of Sec. II. The output power is defined as

P out
a = 〈aout(t)†aout(t)〉

= 1

2π

∫ ∞

0
dω

∫ ∞

0
dω′〈aout[−ω]aout[ω′]〉ei(ω−ω′)t .

(C1)

In the next step, we substitute the output fields in terms of the
input fields using Eq. (18). Thus, we arrive at

P out
a = 1

2π

∫ ∞

0
dω

∫ ∞

0
dω′ei(ω−ω′)t

×
〈{

M1(ω)

D(ω)∗
ain[−ω] + M∗

2

D(ω)∗
ain[2ωa − ω]

}

×
{

M1(ω′)
D(ω′)

ain[ω′] + M2

D(ω′)
ain[ω′ − 2ωa]

}〉
.

Here, M1(ω) = |χ−1
a (ωS)|2 + ρ2

aa, M2 = −2ρaae
−iθ , and

D(ω) = χ−2
a (ωS) − ρ2

aa. For a coherent tone incident on reso-
nance on the a mode, from Eq. (A67),

〈ain[ω]ain[ω′]〉 = δ(ω + ω′)
{
θ (ω)

[
1 + 2πP in

a δ(ω − ωa)
]

+ θ (−ω)2πP in
a δ(ω + ωa)

}
, (C2)

where we have neglected the thermal photon population. Using
Eq. (C1) and keeping only nonvanishing terms,

P out
a = 1

2π

∫ ∞

0
dω

∫ ∞

0
dω′ei(ω−ω′)t δ(ω − ω′)

×
{

M1(ω)M1(ω′)
D(ω)∗D(ω′)

2πP in
a δ(ω − ωa)

+ |M2|2
D(ω)∗D(ω′)

θ (2ωa − ω)
[
1 + 2πP in

a δ(ω − ωa)
]}

,

(C3)

where we have used that ωa � κa . Simplifying the above
equation, we get

P out
a = (2G − 1)P in

a + 1

2π

∫ 2ωa

0
dω

∣∣∣∣ M2

D(ω)

∣∣∣∣
2

, (C4)

which leads to

P out
a = (2G − 1)P in

a + κa√
G

(G − 1)
1 + ρ2

aa

8
, (C5)

where

G =
(

1 + ρ2
aa

1 − ρ2
aa

)2

. (C6)

In performing the integral, we have again used ωa � κa .
In Eq. (C5), the first term is the amplified classical power.
The second term in the output power arises from vacuum
fluctuations, amplified by a factor G − 1, integrated over the
effective bandwidth ∼κa/

√
G.

2. Nondegenerate case

The output power for the nondegenerate case proceeds
analogously and in the case when only the signal mode is
driven, one arrives at

P out
a = GP in

a + κa√
G

(G − 1)
1 + ρ2

ab

8
, (C7)

where

G =
(

1 + ρ2
ab

1 − ρ2
ab

)2

. (C8)

FIG. 17. Gain of degenerate parametric amplifier as a function of
coherent incident signal power. The different solid lines correspond
to undepleted gain of 5 to 30 dB, in steps of 5 dB. For realistic system
parameters, we have chosen ωa/2π = 10 GHz, ωc/2π = 20 GHz,
κa/2π = 100 MHz, κc/2π = 600 MHz, and g2/2π = 0.1 MHz. The
black dots on each curve correspond to the 1-dB compression point,
where the gain of the amplifier drops by 1 dB. These dots lie on a
straight line (the black line in the figure), whose slope in the given
plot is ∼−0.7. As in the nondegenerate case, the asymptotic value of
the slope in the limit of high gain is − 2

3 (see Ref. [9]).
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FIG. 18. Total output signal power as a function of coherent
incident signal power for the degenerate paramp. The different solid
lines correspond to undepleted gain of 5 to 30 dB, in steps of 5 dB. The
system parameters are chosen as in Fig. 17. As the incident coherent
signal power goes to zero, the output power tends to a constant
value corresponding to amplified vacuum fluctuations. The black
dotted-dashed line corresponds to when the pump tone is switched
off. The black dashed line corresponds to the maximum output signal
power, before the onset of spontaneous oscillation and for the device to
function as an amplifier, one needs to operate below the corresponding
pump powers (see Fig. 19 for an estimate). Sufficient increase of the
incident signal power removes the spontaneous oscillation, indicated
by the black circle. In the shaded region, the system shows parametric
oscillation. The gray color gradient schematically indicates the dif-
ference between the two possible classical amplitudes of the output
signal in the region of parametric oscillation. This difference goes to
zero when the incident power is large enough for the system to stop
showing parametric oscillation. The vertical orange line corresponds
to the power of half a photon of noise incident on the signal port.

APPENDIX D: DYNAMIC RANGE RESULTS FOR THE
DEGENERATE PARAMETRIC AMPLIFIER

In this Appendix, we present the results of the calculations
of the gain, output power, and shift of threshold for the
parametric oscillation in the degenerate parametric amplifier.

FIG. 19. Shift of threshold of spontaneous oscillation upon in-
crease of coherent signal power. The system parameters are chosen
as in Fig. 17.

The behaviors of these quantities are completely analogous to
the nondegenerate case presented in the main text.

Figure 17 shows the resultant gain of the device as a function
of coherent incident signal power (P in

a,coh). The different curves
correspond to undepleted gain of 5 to 30 dB, in steps of 5 dB.

In Fig. 18, the total output signal power is plotted as a
function of P in

a,coh. The solid curves denote the output power for
undepleted gain of 5 to 30 dB, in steps of 5 dB. As the incident
coherent signal power goes to zero, the output power saturates
and corresponds to amplified vacuum fluctuations incident on
the signal port. The black dotted-dashed line corresponds to
zero undepleted gain when the pump tone is switched off.
Finally, the dashed black line corresponds to the maximum
output power that the device can produce before the onset of
spontaneous parametric oscillation.

As incident signal power is increased, the pump power
needed for onset of oscillation, i.e., the threshold pump power,
increases. This is shown in Fig. 19. For sufficiently high
incident signal power, the system ceases to exhibit parametric
oscillation (denoted by the black circle in Figs. 18 and 19).
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