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Large nonlocality in macroscopic Hall bars made of epitaxial graphene
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We report on nonlocal transport in large-scale epitaxial graphene on silicon carbide under an applied external
magnetic field. The nonlocality is related to the emergence of the quantum Hall regime and persists up to
the millimeter scale. The nonlocal resistance reaches values comparable to the local (Hall and longitudinal)
resistances. At moderate magnetic fields, it is almost independent on the in-plane component of the magnetic
field, which suggests that spin currents are not at play. The nonlocality cannot be explained by thermoelectric
effects without assuming extraordinary large Nernst and Ettingshausen coefficients. A model based on
counterpropagating edge states backscattered by the bulk reproduces quite well the experimental data.
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I. INTRODUCTION

For electronic devices, nonlocal measurements refer to the
appearance of voltages across contacts which are far away
from the expected path of the charge current. Nonlocality is
remarkably useful to unveil various phenomena which would
be obfuscated by Ohmic contributions in a local configuration,
with voltages measured along the charge flow. Nonlocal volt-
ages appear, for instance, in small mesoscopic devices, when
Ohm’s law breaks down and phase interference comes into
play [1]. Nonlocal measurements are also the cornerstone of
devices like spin valves, where the signal between excitation
and detection is mediated by a neutral spin flow. Nonlocality
can also be linked to strong distortion of the charge current
paths, as it happens in the quantum Hall effect (QHE) regime,
when a quantizing magnetic field forces the charge current to
flow preferentially along the device edges [2].

The remarkable electronic properties of graphene were
discovered a bit more than 10 years ago [3] and nonlocal
measurements revealed them to be a powerful tool to use and
study the properties of this new material. Spin phenomena in
graphene are of great interest, especially because the small
intrinsic spin-orbit coupling favors very long spin relaxation
times [4]. Various spin valve devices [5–7] have been tailored
to take advantage of this. Nonlocality in graphene was also
studied in Hall bar geometries, without the presence of any
magnetic element and even without magnetic field. A strong
nonlocality was often detected close to the charge neutrality
point (CNP), whose origin is still a matter of debate [8]. The
nonlocal signal has been attributed to the spin Hall effect (SHE)
[9,10], thermo(magneto)electric effects [11], valley currents
[12,13], or even to some unknown physical phenomena [14].

In this paper, we are mainly interested in another type of
giant nonlocality which is observed in graphene in the QHE

regime close to the charge neutrality point (corresponding to a
filling factor ν = 0). The nonlocality was originally attributed
to the existence of a spin current, triggered by the imbalance of
Hall resistivities for spin up and down due to Zeeman splitting
[15]. Later, additional experimental evidences demonstrated
that this nonlocality is not only due to this so-called Zeeman
spin Hall effect (ZSHE) and that other mechanisms come
into play. First, thermal effects also give rise to a strong
nonlocal current. At the excitation point, heat flow is induced
by the Ettingshausen effect, perpendicular to the charge flow.
The associated thermal gradient produces in turn a nonlocal
voltage via the Nernst effect [11,16]. Second, theory does not
predict counterpropagating edge states to be present at the
CNP in the QHE (except for very clean samples); nevertheless,
assuming their ad hoc existence allows reproducing quite well
several experimental results, either in graphene [17,18] or in
two-dimensional HgCdTe-based quantum wells [19], which
have a very small gap and a band structure quite similar to
graphene.

It is well established that graphene properties are strongly
influenced by the substrate. To date, nonlocal properties of
epitaxial graphene on silicon carbide (G/SiC), under magnetic
fields close to the CNP, have not been reported. The main
objective of this paper is to fill this gap, taking advantage of
the distinct characteristics of the G/SiC devices: the mobility
is low (which prevents the unnecessary complication of an
interaction-induced gap opening at ν = 0), the spatial homo-
geneity is good (allowing macroscopic devices at the millime-
ter scale, with well-controlled and reproduced geometries), and
the QHE is remarkably robust (allowing G/SiC devices to be
used as electrical resistance standards [20,21]).

We studied nonlocality in G/SiC by varying the sample
size, the temperature, and by applying a magnetic field with
a controlled orientation. We found systematically extremely
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large and unexpected nonlocal voltages. Our findings rule out
ZSHE as the main origin of the nonlocality. On the contrary, an
extended version of the model of McEuen et al. [2], which takes
into account both edge and bulk conductivity, describes our
results surprisingly well, qualitatively and semiquantitatively.

II. SAMPLE PREPARATION AND METHODS

The G/SiC were grown epitaxially on the Si-terminated face
of semi-insulating 4H-SiC at high temperature, T = 2000 K.
Hall bars of various sizes were patterned on G/SiC using
standard electron-beam lithography. The samples were then
encapsulated in a bilayer of resists as described in Ref. [22].
The resists can be used to lower the Fermi level closer to the
Dirac point using either UV illumination [23] or the corona
discharge method [24].

Local and nonlocal magnetotransport measurements were
made on four G/SiC Hall bars, called G13, G14, G21, and G34.
The samples have a length of 420 μm and a width of 100 μm,
except for G34, which has a length of 100 μm and a width of
20 μm. The Hall bars G13, G14, and G21 originate from the
same graphene growth. The Hall bar G34 comes from another
growth. The angle of the SiC steps with respect to the Hall bar
axis was also carefully checked. This angle is about 30◦ for
G13, G14, and G21, and 0◦ for G34.

Each sample was prepared close to the charge neutrality
point at room temperature using the corona method as de-
scribed in our previous work [22]. Afterwards, each sample
was cooled down to low temperature T = 1.7 K several times
(up to 13 times for G14) in order to assess the reproducibility
of the nonlocality and to vary the residual doping. At low tem-
peratures, all prepared samples had low Hall carrier densities
nH with values in the range nH = −(0.9−3) × 1010 cm−2,
corresponding to a Fermi energy EF � –20 meV below the
CNP. This ensures that the Fermi energy resides in the electron-
hole puddles, as the potential fluctuation in G/SiC is of the order
of a few tens of meV [25].

In the following, we define the resistance Rij,kl = Vkl/Iij ,
where Vkl is the ac voltage drop between contacts k and l

measured by lock-in technique, and Iij is a low-frequency
(∼10 Hz) ac current biased between contacts i and j .

III. RESULTS

A. Local measurements

For all samples, we label the contacts as reported in
the inset of Fig. 1(a). Figure 1(a) shows the transverse and
longitudinal magnetoresistances for sample G34. We observe
that under magnetic field, the Hall resistance changes sign
when the magnetic field B increases, evolving from negative
to positive values (from holes to electrons). Furthermore, an
unexpected bump is observed in the longitudinal resistance at
B � 2 T, approximately at the magnetic field for which the
Hall resistance cancels.

This remarkable behavior was recently reported by our
group [22] in similar samples. The evolution of the mag-
netoresistances cannot be explained by a standard two-fluid
Drude model. Charge transfer as a function of magnetic field is
almost systematically observed at high fields in G/SiC samples,
because of the quantum capacitive coupling between graphene

FIG. 1. Local and nonlocal measurements for sample G34.
(a) Transverse and (b) longitudinal magnetoresistances at T = 1.7 K
and I = 10 nA. (b), (c) Nonlocal resistances R28,37 and R28,46 as a
function of magnetic field. The red dashed lines represent the nonlocal
resistance calculated from the Ohmic contribution law, see main text.
The inset in (a) is an optical image of one of the largest samples (Hall
bar width 100 μm, Hall bar length 420 μm) where the labeling of the
contacts, as used in the main text, is reported.

and the so-called “dead graphene layer,” as explained by the
model developed in Ref. [26]. However, this model, in its
original form, cannot explain the data observed in Fig. 1(a),
as the cancellation of the Hall resistance and the bump of the
longitudinal resistance occur at far too small magnetic field.
The data suggest that the Fermi energy increases with B in
such a way that the Fermi level evolves from the bottom to the
top of the electron-hole puddles.

The exact relation between B and EF depends on disorder
and cannot be established precisely. In the following, we do
not discuss its origin. By contrast, we focus on the remarkable
evolution of the nonlocal voltages in the Hall bars prepared
close to the CNP in the presence of a magnetic field.

B. Nonlocal measurement

Figure 1(b) shows nonlocal resistance R28,37 as a function
of magnetic field at T = 1.7 K. The solid line represents
the experimental data. The nonlocal resistance quickly drops
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at very low magnetic field and then starts increasing. The
nonlocal resistance reaches values of the order of 1 k�.
This value saturates at higher magnetic fields corresponding
to the electron-doped region. The nonlocal resistance R28,46

[Fig. 1(c)], further away from the current injection contacts,
follows a similar field dependence and reaches also a rather
large value of �500 � above B = 2 T.

Similar trends have been observed for the three other
samples, as shown, for instance, in Fig. 2 (solid lines) for the
Hall bar G14. In this case, the nonlocal resistances R46,37 and
R46,28 reach higher values (10 k�) than in the Hall bar G34,
even if the Hall bar G14 is about 4 times larger.

C. Semiclassical current spreading

The first contribution to consider is how the classical
spreading of the charge flow inside the Hall bar gives rise to a
nonlocal resistance. It follows the equation [27]

ROhmic = 4

π
ρxx exp(−πL/W ), (1)

where ρxx is the resistivity, L is the distance separating the
current injection from the voltage detection, and W is the Hall
bar width.

The dashed lines in Figs. 1(b) and 1(c) correspond to the
nonlocal resistance calculated using the Ohmic contribution
law, Eq. (1), where the resistivity is estimated from the local
resistance: ρxx � R15,87. The geometric factor is L/W = 1
for R28,37 and L/W = 2 for R28,46. The Ohmic contribution
corresponds well to the measured nonlocal resistances at B =
0 T and its drop at very low field |B| < 1 T. However, Eq. (1)
fails to explain how the nonlocal resistances increase at higher
B and rapidly underestimate them.

D. Zeeman spin Hall effect

Nonlocal resistances are often explained by spin diffusion:
when a charge current flows, spin currents are created transver-
sally via spin Hall effect. These spin currents induce a nonlocal
voltage outside the charge current path detected via the inverse
spin Hall effect. This charge/spin coupling originates from
intrinsic spin-orbit coupling or extrinsic effects in the case of
graphene. The spin-induced nonlocal resistance is given by
[28]

RNL = ρxx

W

8λs

θ2
SH exp (−L/λs), (2)

where θSH is the Hall spin angle and λs is the spin diffusion
length.

The observed nonlocal resistance can be traced as a function
of L for different samples and fitted with Eq. (2) as a function of
θSH and λs . We could not find any reasonable fit of Eq. (2) from
any of the data. In particular, the nonlocal resistance was much
smaller (up to ten times) in the smallest sample (L = 20 μm,
Fig. 1) than in the largest ones (L = 100 μm, Fig. 2). And
for most of our measurements, see Appendix B, Eq. (2) gives
much larger spin diffusion length λs > 200 μm than what is
reported in the literature [6]. Therefore, the observed nonlocal
resistance does not seem to originate from spin currents.

Equation (2) was introduced in Ref. [28], where SHE
was of spin-orbital origin. However, SHE may have several

FIG. 2. (a) Nonlocal resistances R46,37 and R46,28 as a function
of the perpendicular component of the magnetic field for several
tilt angles, measured at T = 1.7 K and I = 10 nA on sample G14.
(b) Evolution of the nonlocal resistance R46,21 for sample G21, at
T = 1.3 K and I = 10 μA, with a total magnetic field Btot set at an
angle θ with respect to the sample plane. (b) Dependence of R46,21

on squared total magnetic field B2
tot for different fixed out-of-plane

magnetic fields B⊥ = 20,25, and 30 T. The green dashed line fits the
quadratic dependence on the total magnetic field: RNL

46,21 = R0 + βB2
tot

for B⊥ = 20 T, where β = 0.06 �/T2 and R0 = 350 �. For B⊥ = 25
and 30 T, the same quadratic dependence is found.

extrinsic origins and Eq. (2) will be still valid. Let us assume
in the following that SHE is induced by interplay between the
Zeeman interaction and magnetotransport. This effect, called
the Zeeman spin Hall effect [15,29], is maximized near the
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charge neutrality point. The magnetic field splits the Dirac
cone via Zeeman effect and generates electron- and holelike
carriers with opposite spins. The Hall angle is then given by
[15]

θSH = 1

2ρxx

∂ρxy

∂μ
Ez, (3)

where μ is the chemical potential and EZ is the Zeeman
splitting. As ZSHE does not impact the validity of Eq. (2),
introducing Eq. (3) into Eq. (2) predicts a nonlocal resistance
for ZSHE proportional to

RNL ∝ 1

ρxx

(
∂ρxy

∂μ
EZ

)2

. (4)

The longitudinal and Hall resistances depend mainly on the
out-of-plane component of the magnetic field B⊥, whereas EZ

is proportional to the total magnetic field Btot. So Eq. (4) can
be rewritten as

RNL = β(B⊥)B2
tot, (5)

where β is a function which depends only on B⊥. The relation
was first noticed in Ref. [11] and can be used to check the part
of the ZSHE contribution to RNL.

Figure 2(a) plots the nonlocal resistances R46,37 and R46,28

as a function of the out-of-plane component of the magnetic
field, B⊥ = Btot cos θ , for several tilt angles θ , for sample
G14. It is clear that the nonlocal resistances R46,37(B⊥) and
R46,28(B⊥) do not depend on the in-plane component B‖ of the
magnetic field and Eq. (5) cannot fit the results.

Nevertheless, the square factor B2
tot in Eq. (5) could become

dominant at high enough magnetic fields. In order to test this
prediction, we measured the local and nonlocal resistances for
another sample, G21, at very large B. The nonlocal resistance
R46,21 is shown in Fig. 2(b) as a function of a pulsed magnetic
field for different tilt angles. There is a weak dependence of
the nonlocal resistance on the in-plane magnetic field which
appears at magnetic fields higher than 10 T. In Fig. 2(c) we
replotted R46,21 as a function of B2

tot for B⊥ = 20, 25, and
30 T. The data can be fitted by Eq. (5), assuming there is an
additional constant term: R46,21 = R0 + βB2

tot. The slope β,
equal to 0.06 �/T2, is slightly smaller (by a factor of 2) than
the values reported in Ref. [11].

Therefore, we could identify a part of the nonlocal resistance
which obeys Eq. (5) and which we attribute to ZSHE. However,
the main part of the nonlocal resistance (R0) does not depend
on B‖ and must have another origin.

E. Thermoelectric effects

A thermal origin for nonlocal voltages was proposed in
Ref. [11]. In the presence of a transverse magnetic field, the
Ettingshausen effect [30] and Joule heating generate a heat flow
perpendicular to the injected current. This induces a thermal
gradient ∂T /∂x which propagates into the Hall bar and is
converted into nonlocal voltages by the Nernst effect, which is
quantified by the Nernst coefficient [30] Syx = Ey(∂T /∂x).

Joule heating and the Ettingshausen effect have very distinct
experimental signatures. Joule heating induces a temperature
gradient proportional to the heating power, ∂T /∂x ∝ QJoule =
RI 2. Because of this quadratic dependence on the current,

FIG. 3. (a) Nonlocal magnetoresistance R28,37 measured on sam-
ple G34 at T = 1.7 K and I = 1 μA (black line). The two-contact
resistance R28,28 (blue line) used to estimate QJoule is also shown.
(b) Measured second harmonic resistance R

2f

28,37 (blue line) and
corresponding estimation of the Nernst coefficient Syx following
Eq. (6).

Joule heating can only appear in the second harmonic of the
nonlocal resistance, R2f

TE. By contrast, the Ettingshausen effect
is proportional to the current, ∂T /∂x ∝ QEtt ∝ T SyxI , and
appears directly in the first harmonic of the nonlocal resistance,
RTE.

It is then possible to show that Ettingshausen and Joule
signals are proportional, which allows extracting a value of
the Nernst coefficient [11]:

Syx = γQJoule

T I

RTE

R
2f

TE

, (6)

where γ is a constant which depends on the sample geometry.
Figure 3(a) shows the first harmonic of the nonlocal re-

sistance R28,37 measured in sample G34 at I28 = 1 μA, T =
1.7 K, and low frequency f � 10 Hz. The Ohmic contribution
R2c = R28,28, used to estimate the Joule heating, is also shown.
The second harmonic resistance R

2f

28,37 is reported in Fig. 3(b).
The same figure also shows Syx(B) calculated using Eq. (6).
From the Hall bar geometry we estimate γ � 0.3. The Nernst
coefficient appears to be asymmetric with B, as expected.
However, Syx also reaches unrealistically high values of more
than Syx � 20 mV/K at |B| � 6 T. This is 100 times larger
than values typically reported at the charge neutrality point in
graphene [31–33]. This suggests that the nonlocality does not
originate from thermal effects. It is also worth noting that the
2f signal was unmeasurable at currents lower than 1 μA. This
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FIG. 4. (a) Magnetoresistances R23,64, R13,64, R83,64, and R73,64

for the Hall bar G14, at T = 1.7 K and I = 10 nA. The resistances
R∞ expected for perfectly transmitted counterpropagating edge states
are also reported for the four configurations. (b) Magnetoresistances
R1(28),46 and R1(28),37 for the same Hall bar G14, under the same
experimental conditions.

indicates that the thermoelectric contribution is weak for the
typically used currents of 10 nA.

F. Counterpropagating edge states

So far, the role of edge states when Landau levels are
formed has not been mentioned. Nevertheless, their existence
has been assumed in several similar experiments to explain
the nonlocality [17–19]. It was also clearly observed that in
clean samples, counterpropagating edge states are formed and
lead to an insulating state under perpendicular magnetic field,
which can start exhibiting well-quantized values when the
relative spin contribution is increased under a tilted magnetic
field [34]. Besides, a recent theory predicts the existence of
additional edge states in G/SiC at low filling factors [35]. These
edge states appear because the electrostatic potential imposes
a charge modulation at the sample edge [36].

Figure 4(a) shows four different nonlocal resistances Ri3,64

measured in Hall bar G14 for a given corona preparation, where
only the current injection contact, i, changes. We find that
the resistance increases progressively in the following order:
R23,64, R13,64, R83,64, and R73,64. From the Landauer-Büttiker

formalism, one gets an estimate for these resistances, assuming
that there is an infinite mean-free path for backscattering
between the two edge states: R∞

23,64 = h/4e2, R∞
13,64 = h/2e2,

R∞
83,64 = 3h/4e2, and R∞

73,64 = h/e2. Thus, the resistance vari-
ation from one configuration to the other is in qualitative
agreement with the edge states model.

However, this estimate quantitatively gives only the correct
order of magnitude for the resistances. A strong±B asymmetry
is also noticeable. An interesting configuration consists of
injecting current from contact 1, grounding both contacts 2
and 8, while the nonlocal resistances R1(28),37 and R1(28),46 are
measured between contact pairs (3,7) and (4,6), respectively.
In such a configuration, the Ettingshausen effect induces a
heat flow perpendicular to the main Hall bar axis. Similarly,
ZSHE induces a spin current which is also perpendicular to
the Hall bar axis. Moreover, if edge states are responsible
for the nonlocality and circulate around the sample, then they
should impose all contacts 3–7 to have the same null potential.
Therefore, in all cases, one expects R1(28),37 = R1(28),46 = 0.

Figure 4(b) shows the magnetoresistances R1(28),37 and
R1(28),46 for sample G14. Surprisingly, these two resistances,
again, become large when B increases. Also, they are mainly
antisymmetric with B, while ZSHE and thermal effects are
symmetric in B. This confirms that both ZSHE and the thermal
effect are of little importance in the appearance of nonlocal
resistances. Moreover, this experiment demonstrates that bulk
conductivity plays a role in the appearance of the nonlocality
and an edge-to-bulk leakage is present.

IV. SUMMARY AND CONCLUSION

The main results of this work are summarized in Fig. 5,
which reports the maxima of the nonlocal resistances Rmax

28,37
(L/W = 1) and Rmax

28,46 (L/W = 2) for three different Hall bars
and various corona preparations. The maxima corresponding
to the same Hall bar and the same preparation are linked
by a dotted line. These data can be compared with four
models. The solid blue line corresponds to the nonlocal
resistance given the deviation of the current flow, as given by
Eq. (1) with ρxx = 10 k�, the typical transverse resistance
measured in the devices. The orange line corresponds to
the spin diffusion model and is given by Eq. (2), assuming
unrealistically high values θsh = 1 and λ = 100 μm [18]. The
thermoelectric contribution is given by the formula R28,37 =
(W/w)S2

xyT /dκxx , where W is the Hall bar width, w is the
width of the lateral probes (W/w � 5), d = 0.3 nm is the
graphene thickness, κxx is the thermal conductivity, and Sxy is
the Nernst coefficient. The second nonlocal resistance, located
further away from the injection point, can be estimated as a
fraction of R28,37: R28,46 � R28,37/3 [11]. From the literature
[31,37], taking κxx = 1 Wm−1 K−1 and Sxy = 100 μV/K, we
get the estimate indicated by the red solid line in Fig. 5. These
three models severely underestimate the observed nonlocal
resistances. At the contrary, assuming perfectly transmitted
counterpropagating edge states in the Hall bars, we obtain the
purple line in Fig. 5, which overestimates the experimental
nonlocal resistances. An even better agreement with the data
can be obtained by adapting the model of McEuen et al. [2]
to the graphene case (see Appendix A). The model includes
indeed another parameter, ρ0, which describes the edge-to-bulk
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FIG. 5. (a) Open symbols: maxima of the nonlocal magnetore-
sistances Rmax

28,37 (L/W = 1) and Rmax
28,46 (L/W = 2), measured at

T = 1.7 K in the interval –13 T to 13 T (excluding the B = 0 T
peak). The dotted lines link maxima corresponding to the same Hall
bar and the same corona preparation. Red dotted lines: Hall bar G14
(five different corona preparations); black dotted line: Hall bar G13;
green dotted line: Hall bar G34. The solid lines are given by the models
of current flow (blue line), spin diffusion (orange line), thermoelectric
model (red line), and perfectly transmitted edge states (purple line).
The color map shows the edge-to-bulk leakage parameter ρ0 as a
function of the calculated maxima of nonlocal resistances, following
the model presented in Appendix A.

leakage when the Fermi energy is exactly at the CNP. The
color map in Fig. 5 shows the evolution of the maximum of
the nonlocal resistances, Rmax

NL (ρ0),when ρ0 is varied. For small
values of ρ0 (ρ0 = 10−3h/e2), the nonlocal resistances corre-
spond to what is expected for perfectly transmitted edge states
(purple line). As ρ0 increases, the bulk shunts the edge current
and the nonlocal resistances decrease. From the figure, we can
get a rough estimate for ρ0. For the Hall bars G14, G13, and
G34 we obtain log10(ρ0e

2/h) = (−1.4 ± 0.5),(−0.5 ± 0.6),
and (0 ± 0.02) respectively. However, these values reflect only
poorly the real edge-to-bulk leakage, as a complete treatment
should take into account backscattering between the edge
states.

To conclude, we have investigated the local and the nonlocal
voltages appearing in epitaxial graphene Hall bars close to the
CNP. Very large nonlocal resistances are observed systemat-
ically when the QHE regime takes place. In some cases, the
nonlocal resistances are so large that they approach h/2e2 and
can surpass the local resistances. These high resistances are
only observed when the samples have been prepared to have
the Fermi energy close to the Dirac point at B = 0 T. They
also strongly decrease when the current or the temperature
increases. A model of edge conduction explains the data
qualitatively and semi-quantitatively.

We did not discuss the residual ±B asymmetry in the local
and nonlocal magnetoresistances, which can be seen clearly in
most of our measurements, as shown in Figs. 1–4. A similar
asymmetry was recently observed and interpreted in Ref. [18]
in terms of spin-dependent current at the grain boundaries
of chemical-vapor-deposited graphene. The asymmetry could
also be reproduced in our model if it is assumed that the conduc-
tion (of either edge or bulk states) depends on spin polarization.
However, we do not expect such grain boundaries in our G/SiC
samples, and the in-plane component of the magnetic field has
no effect on the nonlocality. As a consequence, this asymmetry
needs further analysis.
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APPENDIX A

Let us assume that two counterpropagating edges states are
present in the samples and are spin degenerate. We assume
that coherence plays no role and that interchannel scattering
can be weak, which yields to two independent electrochemical
potentials for the two edge states. These edge states coexist
with a disordered bulk, as shown in Fig. 6(a). We reuse the
model proposed by McEuen et al. [2] in which each segment
of the Hall bar is modeled by a barrier which backscatters
the edge states through the bulk from one side of the segment
to the other, see Figs. 6(b) and 6(c). We neglect interchannel
scattering inside graphene. The transmission probability Tj of
the j th segment can be traced back to an effective resistivity

FIG. 6. (a) Simplified scheme of the N = 0 Landau-level struc-
ture, with the disordered bulk and the two spin-degenerate edge states.
(b) A model of the device where each segment is replaced by a barrier
which backscatters separately the two counterpropagating N = 0
edge states. (c) Close view of one segment. (d) Energy evolution of
the effective resistivities ρe and ρh used in the model near the charge
neutrality point, ρeρh = (ρ0)2 for simplicity.
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FIG. 7. Evolution of the sample resistances as a function of
log(ρh/ρ0) ∝ EF , from strongly backscattered to almost perfectly
transmitted edge states: (a) ρ0 = h/e2, (b) ρ0 = h/e2 × 10−1; and
(c) ρ0 = h/e2 × 10−3. The same cases as the experiment in Fig. 4 are
plotted: R15,34 (longitudinal resistance, solid blue line), R15,37 (Hall
resistance, solid black line), R82,73 and R82,64 (nonlocal resistances,
dashed red and magenta lines), and R1(28),37 and R1(28),46 (nonlocal
resistances, dotted green and dark green lines).

by the equation

ρN (Lj/Wj ) = (h/e2)(1 − Tj )/Tj , (A1)

where N = (e,h) labels the edge states, Lj and Wj are the
length and width of the j th segment, and ρN is the effective
resistivity of the N th channel only. When the Fermi energy EF

increases from the valence band to the conduction band and
scans the vicinity of the charge neutrality point, ρh increases
to infinity and ρe decreases to zero. Thus, there must be a
Fermi energy E0, where both effective resistivities are equal:
ρe(EF = E0) = ρh(EF = E0) = ρ0. The exact relation be-
tween ρe and ρh is not known. For the sake of simplicity, we
assume that ρeρh = (ρ0)2, as shown in Fig. 6(d).

Then all resistances can be calculated using the Landauer-
Büttiker formalism [1,38] as a function of only two parameters,
ρh and ρ0. Interchannel scattering is taken into account only
in the Ohmic contacts. Figure 7 shows several calculated local
and nonlocal resistances as a function of log(ρh/ρ0), which
increases monotonously with EF . The important parameter is

FIG. 8. (a) Nonlocal resistances for G14, at T = 1.7 K (12th cool-
down) and at different fixed negative magnetic fields. (b) Same as (a)
but for positive magnetic field. (c) Spin diffusion length, and (d) Hall
angle coefficient extracted from the fit using Eq. (2).

ρ0, which controls if the edges states are decoupled from the
bulk (ρ0 	 h/e2) or backscattered (ρ0 � h/e2) at EF = E0.
At high ρ0 [ρ0 = h/e2, panel (a)], all nonlocal resistances
are negligible when compared to the local longitudinal resis-
tances. At lower ρ0 [ρ0 = h/e2 × 10−1, panel (b)], nonlocal
and local resistances become comparable. Finally, at even
lower ρ0 [ρ0 = h/e2 × 10−3, panel (c)], close to EF = E0

backscattering is negligible and all resistances correspond to
what is expected for perfectly transmitted edges states. In this
last case, the nonlocal resistances close to the CNP can be
significantly larger than the local ones.

Interestingly, the model also predicts sizable nonlocal resis-
tances R1(28),37 and R1(28),46 at the onset of the ν = ±2 plateaus,
where one edge state is almost perfectly transmitted, whereas
the second edge state has a transmission close to 1/2. This
configuration corresponds precisely to the situation depicted
in the original paper of McEuen et al., when only the upper LL
of the filled conduction band is backscattered through the bulk.
From Fig. 4, we find experimentally R1(28),37 � 0.15h/e2,
R1(28),46 � 0.05h/e2, which is of the same order of magnitude
than the maximal resistance values obtained from Fig. 7(c):
R1(28),37 � 0.04h/e2 and R1(28),46 � 0.02h/e2. Therefore this
simple model reproduces roughly the amplitudes of the mea-
sured magnetoresistances. Moreover, the model also predicts
that R1(28),37 and R1(28),46 change sign when B is reversed
(or identically when the valence and conduction band are ex-
changed), in agreement with the experimental results of Fig. 4.

APPENDIX B

Figure 8 shows the nonlocal resistances R28,37 (L/W =
1) and R28,46 (L/W = 2) measured for G14, during one
of the cool-downs at low temperature. The coefficient λsh

extracted from the fit can be higher than 200 μm, see panel
(c). The θsh parameter given by the fit also has very high
values.
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