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Anyonic statistics of quantum impurities in two dimensions

E. Yakaboylu* and M. Lemeshko†

IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria

(Received 10 December 2017; published 2 July 2018)

We demonstrate that identical impurities immersed in a two-dimensional many-particle bath can be viewed
as flux-tube-charged-particle composites described by fractional statistics. In particular, we find that the bath
manifests itself as an external magnetic flux tube with respect to the impurities, and hence the time-reversal
symmetry is broken for the effective Hamiltonian describing the impurities. The emerging flux tube acts as
a statistical gauge field after a certain critical coupling. This critical coupling corresponds to the intersection
point between the quasiparticle state and the phonon wing, where the angular momentum is transferred from the
impurity to the bath. This amounts to a novel configuration with emerging anyons. The proposed setup paves the
way to realizing anyons using electrons interacting with superfluid helium or lattice phonons, as well as using
atomic impurities in ultracold gases.
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The spin-statistics theorem can be elegantly explained
within the unification of quantum mechanics and special
relativity under the name of quantum field theory [1–4]. There,
the so-called microcausality, which guarantees the Lorentz
invariance of the S matrix, immediately leads to the right
statistics [5]. Accordingly, particles with integer spins obey
Bose-Einstein statistics, whereas half-integer-spin particles
are fermions. In a more compact way, when two identical
particles are swapped, the wave function of the system is
either symmetric or anti-symmetric depending on the particles’
spin, s:

|ψ1ψ2〉 = (−1)2s |ψ2ψ1〉. (1)

This is, however, true only in three spatial dimensions; in a
two-dimensional world the situation is drastically different. As
pointed out for the first time by Leinaas and Myrheim [6], in
the two-dimensional case, exchange of two identical particles
induces an arbitrary phase, because of the topological basis of
two spatial dimensions where the world lines of particles can
braid around each other [6–8]. At the fundamental level this
reflects the fact that spin is not quantized in a 2 + 1 dimensional
spacetime, as the corresponding little group of the Poincaré
group is given by SO(2), where there is only one single axis of
rotation [9,10].

If we consider the spin-statistics theorem (1) as a general
rule, an arbitrary spin value immediately yields the condition
|ψ1ψ2〉 = eiξ |ψ2ψ1〉 with ξ ≡ 2πs. Here the so-called statis-
tical parameter ξ identifies the statistical nature of the system:
while ξ = 0 for bosons and ξ = π for fermions, in general, ξ

can assume any intermediate values. In relative coordinates of
two particles, (r,ϕ), this condition can be written as

ψ ′(r,ϕ + π ) = eiξ ψ ′(r,ϕ). (2)
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This implies, however, an unusual boundary condition,
ψ ′(r,ϕ + 2π ) = e2iξ ψ ′(r,ϕ). Nevertheless, assuming that
ψ ′(r,ϕ) is an eigenstate of a Hamiltonian Ĥ ′, one
can introduce a single-valued wave function, ψ(r,ϕ) =
exp[−2iξϕ/(2π )]ψ ′(r,ϕ), which is governed by the Hamil-
tonian

e−2iξϕ/(2π) Ĥ ′
{

∂

∂ϕ

}
e2iξϕ/(2π) = Ĥ

{
∂

∂ϕ
+ i

2ξ

2π

}
, (3)

where {· · · } on the left-hand side implies that the Ĥ ′ operator
contains a term proportional to ∂/∂ϕ, and similarly for the
right-hand side (units of h̄ ≡ 1 are used hereafter). The ap-
pearance of the parameter ξ in the Hamiltonian establishes a
connection between the spin-statistic theorem and gauge fields
[6,11]. Namely, the particles that obey the free Schrödinger
equation are described by fractional statistics in the primed
gauge, whereas in the unprimed gauge they turn into bosons
interacting with an effective magnetic gauge field. Further-
more, the so-called statistical gauge field, 2ξ/(2π ), implies
that orbital angular momentum of two particles in relative
coordinates is fractional (and can, in fact, assume any value).
In other words, fractionalization of the angular momentum in
relative coordinates indicates fractional statistics [12].

After all, we do live in an (at least) 3 + 1 dimensional
spacetime, and spin is quantized. Nevertheless, the role of
the statistical gauge field can be substituted by a magnetic
gauge field as long as it induces a topological phase. For
instance, if we exchange two charged particles inside a constant
magnetic field or by enclosing the magnetic flux of a solenoid
as in the case of the AB effect [13], we naturally obtain a
phase factor in the form of Eq. (2), with ξ given by the
magnetic flux. Such kind of configurations, however, do not
induce a statistical phase. This is because there either the flux
depends on the path of the exchange loop or there exists an
exchange loop that may not enclose the solenoid at all. A
magnetic field can induce a statistical phase if the resulting flux
depends only on the winding number of the exchange loop. The
latter configuration, on the other hand, can be realized in the
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following way. If one attaches a flux tube to each of the charged
particles and swaps the resulting flux-tube-charged-particle
composites, the exchange loop always encloses the flux of one
of the composites. Furthermore, it will be the same for all
possible exchange loops so that the emerging phase becomes
statistical or topological, i.e., independent of the geometry of
the exchange loop. Therefore, the flux-tube-charged-particle
composites are described by fractional statistics. This is, in
fact, exactly what Wilczek considered in order to introduce
the concept of the anyon, a particle that obeys any statistics
[11,14].

Since Wilczek coined the term anyon, there has been a large
amount of studies of both Abelian and non-Abelian anyons.
Both of them were predicted to be realized in certain fractional
quantum Hall systems [15–20]. In particular, non-Abelian
statistics has received a significant amount of attention, as it
enables unitary gate operations necessary for quantum com-
putation [21–24] (also see Ref. [18], and references therein).
Apart from the fractional quantum Hall configurations, emerg-
ing Abelian and non-Abelian anyons have also been studied,
with experimental proposals, in several systems [25–31] based
on the Kitaev model [21,32].

In this paper, we consider two identical impurities im-
mersed in a two-dimensional many-particle bath, and show
that the emerging quasiparticle can be seen as a charged
particle interacting with a gauge field of a flux tube in relative
coordinates. The emerging gauge field is the manifestation of
the many-particle bath with respect to the impurity, and acts as
a statistical gauge field after a certain critical coupling, leading
to fractional statistics for impurities. Our proposal gives a
promising opportunity for experimental observation of anyons
in state-of-the-art experiments on two-dimensional materials
and quantum liquids.

Let us start by considering two indentical noninteracting
impurities trapped in a two-dimensional (2D) bosonic bath,
which can be realized with atoms in a 2D Bose-Einstein
condensate as well as electrons on superfluid helium films or
in 2D polar semiconductors and ionic crystals. At the Fröhlich
level [33], the corresponding Hamiltonian is given by

Ĥ2imp = 1

2m
P̂

2
1 + 1

2m
P̂

2
2 +

∑
k

ω(k)b̂†kb̂k

+
∑

k

V (k)[(e−ik·x̂1 + e−ik·x̂2 )b̂†k + H.c.], (4)

with
∑

k ≡ ∫
d2k/(2π )2. Here P̂ i and x̂i are, respectively, the

linear momentum operator and the coordinate of each impurity
with mass m. The third term corresponds to the kinetic energy
of the bosons parametrized by the dispersion relation, ω(k).
The bosonic creation and annihilation operators, b̂

†
k and b̂k,

obey the commutation relation [b̂k,b̂
†
k′] = (2π )2δ(2)(k − k′).

The second line in Eq. (4) describes the interaction between
the impurities and the bosonic bath with the coupling strength
V (k), and H.c. stands for the Hermitian conjugate.

First, we introduce relative and center-of-mass coordi-
nates of the impurities: x̂ = x̂2 − x̂1, X̂ = (x̂2 + x̂1)/2, which
yield the linear momentum operators P̂x = ( P̂2 − P̂1)/2,
P̂X = P̂2 + P̂1. In terms of the new coordinates, Eq. (4) can

be rewritten as

Ĥ2imp = 1

4m
P̂

2
X + 1

m
P̂

2
x +

∑
k

ω(k)b̂†kb̂k

+ 2
∑

k

V (k) cos(k · x̂/2)[e−ik·X̂ b̂
†
k + H.c.]. (5)

The Hamiltonian (5) commutes with the total linear momentum
of the system, �̂ = P̂X + ∑

k k b̂
†
kb̂k. Therefore, if we apply

the unitary Lee-Low-Pines transformation [34],

T̂ = exp

[
−i X̂ ·

∑
k

k b̂
†
kb̂k

]
, (6)

the center-of-mass momentum P̂X becomes a constant of
motion in this translated frame. After setting its eigenvalue
to zero [which corresponds to the zero total linear momentum
in the original frame of Eq. (5)], the transformed Hamiltonian
reads

Ĥrel ≡ T̂ −1Ĥ2impT̂ = 1

m
P̂

2
x +

∑
k

ω̃(k)b̂†kb̂k

+ 2
∑

k

V (k) cos(k · x̂/2)[b̂†k + b̂k] + 1

4m
	̂, (7)

where ω̃(k) = ω(k) + k2/(4m) and 	̂ = ∑
k,k′ k ·

k′ b̂†kb̂
†
k′ b̂kb̂k′ is the effective phonon-phonon interaction.

Thus, the two-impurity problem reduces to a single-
impurity problem in relative coordinates of the two impurities.
Next, we decompose the creation and annihilation operators in
polar coordinates,

b̂
†
k =

√
2π

k

∑
μ

iμe−iμϕk b̂
†
kμ, (8)

such that [b̂kμ,b̂
†
k′μ′] = δ(k − k′)δμμ′ . Then, the Hamiltonian

(7) can be rewritten as

Ĥrel = 1

mr̂2
L̂2

z + 1

m
P̂ 2

r +
∑
kμ

ω̃(k)b̂†kμb̂kμ

+
∑
kμ

Yμ(k,r̂)[e−iμϕ̂ b̂
†
kμ + eiμϕ̂ b̂kμ] + 1

4m
	̂′, (9)

with
∑

k ≡ ∫
dk. Here L̂z ≡ −i∂/∂ϕ is the azimuthal angular

momentum operator of the two impurities in relative coordi-
nates, and P̂ 2

r is the radial part of P̂
2
x [35]. Furthermore, 	̂′ =∑

kμk′μ′ kk′ b̂†kμb̂
†
k′μ′ b̂kμ−1b̂k′μ′+1 is the corresponding effective

phonon-phonon interaction in polar coordinates. The impurity-
bath coupling strength, on the other hand, is given by

Yμ(k,r̂) =
√

k/(2π ) V (k)Jμ(kr̂/2)[1 + (−1)μ], (10)

where we used the Jacobi-Anger expansion, exp[ik · x] =∑
μ iμJμ(kr) exp[iμ(ϕ − ϕk)], with Jμ(kr) being the Bessel

function of the first kind.
We are interested in the properties of the system under

particle exchange, which affects only the relative angle ϕ

[cf. Eq. (2)]. Accordingly, we assume that the change of the
distance between two impurities is very slow compared to its
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angular motion. In this adiabatic limit we can omit the radial
kinetic energy. We can further neglect the phonon-phonon
interaction 	′ as its expectation value in single bath excitations
vanishes. Thereby, the Hamiltonian (9) reduces to

Ĥϕ = BL̂2
z +

∑
kμ

ω̃(k)b̂†kμb̂kμ

+
∑
kμ

Yμ(k,r)[e−iμϕ̂ b̂
†
kμ + eiμϕ̂ b̂kμ], (11)

where B = 1/(mr2). Equation (11) is the main Hamiltonian
that we are interested in. It describes the relative angular motion
of two impurities immersed in a 2D bath, whose interaction
with the bath depends on the relative distance r . In fact, the
Hamiltonian (11) can also be used to describe a system of
a quantum planar rotor interacting with a 2D many-particle
environment.

It is straightforward to show that the Hamiltonian (11)
commutes with the total angular momentum of the impurity-
bath system, Ĵz = L̂z + 
̂z, where 
̂z = ∑

kμ μ b̂
†
kμb̂kμ is

the collective angular momentum operator of the many-body
bath, such that 
̂z b̂

†
kμ|0〉 = μ b̂

†
kμ|0〉. Accordingly, under the

canonical transformation

Ŝ = exp(−iϕ̂ ⊗ 
̂z), (12)

the total angular momentum reduces solely to the angular
momentum of the impurity Ŝ−1ĴzŜ = L̂z, and hence the
angular momentum part of the impurity decouples from the
rest of the Hamiltonian in this corotating frame. As a result,
we can replace L̂z with its corresponding eigenvalue, M , in
which case the Hamiltonian (11) reduces to

Ĥbos = B(M − 
̂z)
2 +

∑
kμ

ω̃(k)b̂†kμb̂kμ

+
∑
kμ

Yμ(k,r)[b̂†kμ + b̂kμ]. (13)

Thus, the eigenstate of the Hamiltonian (11) can be written as

|�〉 = Ŝ|M〉 ⊗ |bosn〉, (14)

where the boson state, |bosn〉, is the eigenstate of the Hamil-
tonian (13) with some quantum number n. We would like
to emphasize that although Eq. (14) is reminiscent of the
Born-Oppenheimer approximation, the decoupling performed
here is exact and represents a unique feature of a 2D quantum
impurity problem. We also note that such a decoupling is exact
even for the most general Hamiltonian (9), as the latter also
commutes with the total angular momentum Ĵz.

In the solution (14), M gives the value of the total angular
momentum of the entire system (the impurity plus the many-
body environment), where the impurity, in fact, represents two
impurities in their relative coordinates. Now, we can ask the
following question: What is the angular momentum of two
impurities in relative coordinates in the presence of a many-
particle bath? The answer to this question can be obtained in
the following way.

In a recent article [36], it was shown that in any impurity
problem a many-body environment manifests itself as an ex-
ternal gauge field with respect to the impurity interacting with
it. Hence, an impurity problem can be viewed as interaction

of a charged particle with this gauge field. Such a formalism
allows one to study geometric and topological properties of
impurity problems. Along these lines, in the relative angle ϕ,
the Hamiltonian (11) can be written as

Ĥϕ = −B∂2
ϕ + Ĥmb(ϕ), (15)

with Ĥmb(ϕ) = ∑
kμ ω̃(k)b̂†kμb̂kμ + ∑

kμ Yμ(k,r) ×
[e−iμϕb̂

†
kμ + eiμϕb̂kμ] being the many-body Hamiltonian.

It follows from Eq. (14) that the eigenstate that fulfills the
eigenvalue equation

Ĥϕ|�(ϕ)〉 = E|�(ϕ)〉 (16)

can be decomposed as |�(ϕ)〉 ≡ 〈ϕ|�〉 = χ (ϕ)|ψn(ϕ)〉, where
χ (ϕ) = 〈ϕ|M〉 = exp(iMϕ)/

√
2π and |ψn(ϕ)〉 = Ŝ(ϕ)|bosn〉

are the wave function of two impurities in relative coordinates
and the many-body bath state, respectively. After we project
onto the basis vector 〈ψn(ϕ)|, the eigenvalue equation (16)
reduces to the following one for the wave function of the two
impurities:

−B

(
∂

∂ϕ
− iAϕ

)2

χ (ϕ) = E′ χ (ϕ). (17)

Here E′ = E − B
∑

m�=n |〈ψn(ϕ)|i∂ϕ|ψm(ϕ)〉|2 − 〈ψn(ϕ)

|Ĥmb|ψn(ϕ)〉 is the energy of the impurities interacting with
the gauge field

Aϕ = 〈ψn(ϕ)|i∂ϕ|ψn(ϕ)〉 = 〈bosn|
̂z|bosn〉 = 〈
̂z〉, (18)

which is the expectation value of the collective angular mo-
mentum of the bath. In the Schrödinger equation (17), the
many-body bath manifests itself as an external magnetic gauge
field. Therefore, the corresponding time-reversal symmetry
is broken for impurities immersed in the bath. The broken
symmetry for impurities, in turn, implies that the time-reversal
symmetry for the bosonic Hamiltonian is also broken, which
can be seen from Hamiltonian (13), so that the total Hamilto-
nian (11) remains time-reversal invariant. In other words, as we
discuss below, while the angular momentum of the total system
is given by the integer M , the impurities’ angular momentum
in relative coordinates is noninteger.

The magnetic flux, which is given by

 =
∮

Aϕ dϕ = 2π 〈
̂z〉, (19)

then, can be calculated by finding the eigenstate |bosn〉 from
the Hamiltonian (13). Equivalently, it can be calculated in the
following way. First, it follows from the Hamiltonian (13)
that ∂Ĥbos/∂M = 2B(M − 
̂z). Then, by using the Hellmann-
Feynman theorem, one obtains



2π
= M − 1

2B

∂E

∂M
, (20)

where E is the corresponding energy eigenvalue of the Hamil-
tonian (13) or (11), and it can be evaluated with the aid of
certain variational [37,38] as well as renormalization group
approaches [39,40], or diagrammatic Monte Carlo methods
[41–43].

Here, we follow the variational approach. For this pur-
pose, we introduce the following variational ansatz for the
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Hamiltonian (11) [37]:

|�v〉 =
√

Z|M〉|0〉 +
∑
kμ

βkμ|M − μ〉b̂†kμ|0〉, (21)

which is an eigenstate of the total angular momentum operator
Ĵz. Here,

√
Z and βkμ are the variational parameters with

the normalization condition |Z| + ∑
kμ |βkμ|2 = 1. Minimiza-

tion of the functional 〈�v|H − E|�v〉 with respect to the
parameters

√
Z

∗
and β∗

kμ yields the variational energy, E =
BM2 − �M (E), where

�M (E) =
∑
kμ

Yμ(k,r)2

B(M − μ)2 + ω̃(k) − E
(22)

is the self-energy. The energy is found self-consistently as the
solution of the Dyson equation for the Green’s function

GM (E) = 1

BM2 − �M (E) − E
, (23)

and the entire excitation spectrum of the system is captured by
the spectral function AM = Im[GM (E + i0+)]. In Fig. 1(a),
we show the resulting spectral function for the lowest two
states, M = 0,2, by considering a constant dispersion relation,

ω(k) = ω0, and the coupling strength |V (k)| =
√√

2παF /k,
with αF being the Fröhlich particle-phonon coupling constant
in units of m = ω0 = 1 [44–46]. Dark sharp peaks in the

M=2

M =0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

FIG. 1. (a) The spectral function of the relative angular motion
of two impurities immersed in a 2D bath, AM , with Ẽ = E/B, and
(b) the magnetic flux /(2π ), as a function of the coupling constant
α̃ ≡ αF /(rB2). The vertical dashed line indicates the critical coupling,
after which the magnetic flux becomes constant and behaves as a
statistical gauge field. See the text.

spectrum correspond to quasiparticle states, and we observe
that their energy decreases with increasing coupling α̃ ≡
αF /(rB2). The blurred peaks, on the other hand, correspond
to the phonon wings.

Next, we calculate the flux from Eq. (20):



2π
=

∑
kμ μ Yμ(k,r)2/[B(M − μ)2 + ω̃(k) − E]2

1 + ∑
kμ Yμ(k,r)2/[B(M − μ)2 + ω̃(k) − E]2

,

(24)

which vanishes for the M = 0 state. In Fig. 1(b) we show the
corresponding flux for the M = 2 state as a function of the
coupling constant α̃. We find that the flux first increases up
to a certain value of the coupling constant, but afterwards
it saturates, and becomes independent from the coupling
parameter and hence the relative distance r . This critical
coupling corresponds to the point of intersection between the
quasiparticle state and the phonon wing, where the angular
momentum is transferred from the impurity to the bath.

Since the flux becomes robust after the critical coupling, it
can substitute for the role of the statistical gauge field. First,
the covariant angular momentum operator of two impurities in
relative coordinates reads −i∂ϕ − /(2π ), whose eigenvalue
is given by M − /(2π ). Here, due to the single-valuedness of
the wave function χ (ϕ + 2π ) = χ (ϕ), the values of M have to
be integer. Moreover, if we neglect the spin degree of freedom,
M is an even integer due to the fact that in the absence of
the bath the spin-statistics theorem requires χ (ϕ + π ) = χ (ϕ)
[14]. However, because the flux  is a nonintegral number, the
angular momentum of two impurities in relative coordinates
becomes fractional. Thus, in relative coordinates, two impu-
rities confined on a 2D many-body environment effectively
behave as a charged particle rotating around a magnetic flux

FIG. 2. (a) After the critical coupling, (cf. Fig. 1), two impurities
immersed in a two-dimensional bath behave as a charged particle
orbiting around a magnetic flux tube in relative coordinates. The
latter is the manifestation of the bath with respect to the impurities.
Consequently, the angular momentum of the two impurities in relative
coordinates becomes fractional. (b) Inside the bath, the impurities
turn into flux-tube-charged-particle composites, and obey anyonic
statistics upon exchange. See the text.
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tube. This is the manifestation of the many-body bath with
respect to the impurities.  is schematically illustrated in
Fig. 2(a).

Furthermore, the flux  is the total magnetic flux seen by the
two impurities in relative coordinates, and therefore, in analogy
to Wilczek’s flux-tube-charged-particle composite, /2 = ξ

can be interpreted as the magnetic flux of a flux tube around
which each impurity orbits. In fact, if we introduce a gauge,
A′

ϕ = Aϕ − ∂ϕη = 0, with η = ϕ/(2π ), the corresponding
two-impurity wave function in this gauge obeys the free
Schrödinger equation, and can be written as

χ ′(ϕ) = ei ϕ/(2π)χ (ϕ). (25)

Then, a π rotation in relative coordinates, which swaps the two
impurities, yields a statistical phase

χ ′(ϕ + π ) = eiξχ ′(ϕ). (26)

Thus, in the presence of a bath, each impurity turns into a
tightly bound flux-tube-charged-particle composite, which is
depicted in Fig. 2(b). In his original setup, Wilczek introduced
the flux tube as a solenoid, around which the particle orbits, and
the emerging statistics depends only on the flux of the solenoid,
independent from the exchange geometry. In our problem,
on the other hand, the flux tube arises as a manifestation of
the many-particle bath, and, for given impurities and bath,
every exchange loop yields the same flux after the critical
coupling.

In conclusion, in relative coordinates a two-impurity prob-
lem reduces to a problem of a single charged particle orbiting
around a magnetic flux tube. We have shown that the emerging
gauge field of the magnetic flux behaves as a statistical gauge
field after the critical coupling, where the impurity transfers
its angular momentum to the bath. Consequently, a π rotation
in relative coordinates, which corresponds to the exchange
of two impurities, induces an additional topological phase on
the total wave function. While we presented a formalism for
impurities interacting with a bosonic bath, a similar approach
can be developed for an environment with Fermi statistics or
for Bose-Fermi mixtures. From the experimental point of view,
direct measurement of the anyonic statistics corresponds to
measuring the fractional value of the angular momentum of the
two impurities in relative coordinates. In the context of atomic
impurities in ultracold gases, this can potentially be extracted
from time-of-flight measurements [47] or momentum-resolved
Bragg scattering [48].
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