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Atomistic calculations of passivated nanostructures remain difficult due to the computational demands related
to the high number of atoms to be typically considered. The empirical pseudopotential method (EPM) offers
a good alternative in this sense, but finding trustable pseudopotentials for passivants in this method is still
elusive. Following the idea of extracting nonspherically symmetric potentials from density functional theory
(DFT) calculations, hydrogen pseudopotentials for silicon passivation are derived here and used to calculate the
electronic states of low-dimensional structures within the EPM scheme. The single-particle Schrödinger equation
is solved with the ensuing pseudopotentials for slabs with surfaces on the (111), (110), and (100) planes, as well
as for passivated quantum dots and wires of different size. In all cases, the band gap is traced as a function of the
sample size, showing good convergence towards the bulk value. For the slabs, the surface local density of states
is also calculated and compared successfully to experiments. The derivation of the nonspherical pseudopotentials
is based on an analytic formulation of the crystal potential and its connection to a series of DFT calculations,
resulting in reliable, highly transferable and first-principles based passivant pseudopotentials to be used with the
EPM.
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I. INTRODUCTION

Different features of semiconductor nanostructures are the
basis of an increasing collection of potential applications in the
field of nanotechnology, all intending to exploit the quantum
confinement effects that nanostructures exhibit due to their
reduced dimensions. This includes, for example, quantum
information and quantum computation processes with quan-
tum dots [1–5], solar cells [6,7], field effect transistors [8],
high-performance light miters [9], and sensors of biological
and chemical species [10].

In a wide range of these semiconductor-based potential
devices, the surface of the nanostructure plays a significant
role, as for example the case of colloidal systems [11]. At the
nanoscale, the surface to bulk atoms ratio may be considerable
and can therefore highly affect the electronic eigenvalues of
the system. In this sense, an appropriate consideration of
the surface in the theoretical calculations is of fundamental
relevance to be able to accurately consider the surface effects.

The local version of the empirical pseudopotential method
(EPM) [12–14] has been successfully and widely used to
theoretically study different phenomena in the field of semi-
conductor physics. In this method, spherically symmetric
potentials are used to construct and solve the single-particle
Hamiltonian of a system, and the ensuing wave functions
used to calculate different physical properties. The main
achievement of the EPM is the lower computational cost in
comparison to more elaborated techniques like, for example,
density functional theory (DFT), since the electronic density
does not have to be optimized, omitting the self-consistent
cycles needed to minimize the total energy. Besides, within the
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EPM, the eigenvalues spectrum can be restricted by specialized
diagonalization techniques to regions near the optical band
gap [15], where the states mainly involved in the optical and
transport properties of the nanostructures are located, avoiding
the calculation of the whole spectrum from the ground state.

Depending on the size of the system, the electronic structure
of semiconductor nanostructures can be treated with different
methods [16]. For the very small systems comprehending up
to few hundreds atoms, first-principles techniques like DFT
or quantum Monte Carlo can be employed providing accurate
results, but despite the sophistication of these methods, they
become rapidly inefficient for bigger nanostructures, which can
be composed for some millions atoms. At the opposite side
in terms of the sample size, we can list mean-field theories
such as the k · p and the envelope function model. Here,
the rapid oscillations of the atomic structure are averaged to
construct a continuum well behaved potential, and the kinetic
energy is parametrized by an effective mass in such a way that
the parabolicity of the band extremes of the bulk system are
properly reproduced [17].

The empirical pseudopotential method seats between the
first principles and the mean-field techniques, where the
systems treated contain from few thousands to millions atoms
[18]. In this regime, first-principles methods become inefficient
because of the computational demands due to the number of
atoms, and mean-field methods can miss predominant effects
coming from the atomic structure.

In the EPM, the total screened crystal potential V (r ) is
approximated by a superposition of atomic pseudopotentials
v(|r|) centered at the atom positions Rn,

V (r ) =
N∑
n

v(|r − Rn|) , (1)
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where N is the total number of atoms and it has been assumed
for simplicity that there is only one type of atom in the system.
A main characteristic of the method is that the pseudopotentials
used are spherically symmetric and hence completely real
in reciprocal space. Considering that there is only one atom
type, by Fourier transforming Eq. (1), the crystal potential in
reciprocal space V (G) can be written as [19,20]

V (G) =
∑

α

e−iG·Rα vα (G) , (2)

with

vα (G) = 1

�c

∫
∞

vα (r )e−iG·r d3r , (3)

where the vα (G) are adjusted to fit experimental known values
or ab initio calculations. Notice here that in real space the total
and atomic potentials are real quantities, but that they can be
complex in reciprocal space. In particular, since the bulk atomic
pseudopotentials are considered as spherically symmetric, they
are real in both, the real and reciprocal space.

Under this approximation, the EPM has been used for long
time providing accurate results in bulk systems, but the situa-
tion is not the same in the case of passivated systems, where
the atomic structure is truncated and the dangling bonds have
to be passivated somehow. Distinct routes have been employed
to generate passivants for different semiconductor compounds,
but the main criteria to establish the pseudopotentials is that the
energy gap of a given nanostructure is higher than the energy
gap of the bulk system and/or the unlikely surface states are
removed from the band gap [21,22].

The passivant pseudopotentials for the EPM so far reported
keep the spherical symmetry of the bulk atoms, they are
commonly fitted to a symmetric function like, for example, a
series of Gaussians where the widths, amplitudes, and centers
are adjusted until getting acceptable results [21,23,24]. This
approximation is not accurate for passivants since there are
dipole-moments induced due to charge transfer processes, all
over the surface where the dangling-bonds are passivated, and
the EPM does not take care of charge transfer phenomena
intrinsically.

Passivant pseudopotentials without spherical symmetry for
the semiempirical pseudopotentials method (SPEM) [25] have
been recently generated and their accuracy demonstrated by
comparison to DFT calculations [20]. The semiempirical
potentials are distinct from the local empirical potentials
in the sense that the former separates the atomic potential
into a local and a nonlocal part, where the nonlocal part is
angular momentum dependent. By going beyond the spherical
approximation, the charge transfer phenomena at the surface
are introduced into the calculations and, therefore, the related
electric dipoles are reproduced in good approximation. It also
means that the passivants have to be included as complex
pseudopotentials (CPSPs) in reciprocal space, since they are
not symmetric anymore in real space [20], in contrast to the
bulk atoms that are described by fully real pseudopotentials in
real and reciprocal space.

Following the same ideas, the method to generate CPSPs
is extended in this work to be implemented in the empir-
ical pseudopotential method, and used to extract passivant
pseudopotentials for silicon. The procedure is based on an

analytic and straightforward formulation that relates the atomic
potentials and positions to the total crystal potential of a couple
of carefully chosen samples. The basic idea of the method is
as follows: (i) to take the crystal potential of two different
passivated slabs of the same material calculated with DFT
and the local density approximation (LDA), (ii) to use the
calculated total potentials and the atomic bulk pseudopotentials
as input for the analytic formulation, (iii) to solve a system of
equations to extract the real and imaginary parts of the complex
passivant pseudopotentials, and (iv) to fine adjust the CPSP in
order to match the convergence of the energy gap to the bulk
value and remove possible surface states from the band gap
[21,22].

It is worth clarifying three aspects of the procedure de-
scribed above: first, the method needs two components to
work—the LDA-DFT calculated total crystal potential and the
atomic potentials (previously known) of the host system to
be passivated, and these two components must correspond in
order to include an appropriate band offset in the resulting
CPSP. Second, the methods needs two total crystal potentials
for the case of binary systems, since there are two different
passivants to treat, but if the host system is composed by only
one atom, only one total crystal potential in enough. Third,
the final adjustment (tuning) must be very small so that the ab
initio characteristics of DFT are conserved.

In the last part of this work, a hydrogen-based CPSP
for silicon is derived and used to calculate the electronic
structure of different systems. First of all, the band gap of
silicon slabs with orientations along the [111], [110], and [100]
directions is presented, since these calculations were used to
tune the CPSP and ensure the convergence to the bulk value.
Subsequently, the energy band gap of quantum wires (QWs)
and dots (QDs) is traced as a function of the sample size. In
this part, realistic rounded structures are used; there are reports
of this kind of studies using the EPM, but based on rather
fanciful squared shapes (probably to keep the same surface
face over the whole sample) and always using spherically
symmetric passivant potentials [26–28], and some others using
more feasible structures are based in methods that require
robust computational facilities [29,30]. Finally, the surface
local density of states (LDOS) is calculated for the slabs and
compared to ultraviolet-photoemission spectroscopy (UPS)
measurements [31], and the EPM wave functions compared
to DFT, in both cases showing a good correlation.

II. PASSIVANT PSEUDOPOTENTIAL GENERATION
FOR THE EPM

A. Method

Even if the pseudopotentials extracted here are intended to
passivate silicon nanostructures, the methodology introduced
is presented in a general formalism, in such a way that it can
be applied to extract passivant pseudopotentials for binary
systems too. It means that for silicon only one total crystal
potential is required, but the following description is delineated
in terms two crystal potentials of different structures.

As mentioned before, to start the process, we need to have
the atomic potentials of the host system and the total crystal
potential of two different passivated slabs [V (1) and V (2)] of the
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same material. Consequently, the slabs have different number
of atoms, but they have to be contained in supercells of the
same size in order to have coincidence between the G-point
grids in reciprocal space [20]. There is no restriction about the
orientation of the slabs, but the [111] direction is chosen here,
in particular, for symmetry reasons that will be clarified later.
The potentials are expected to be effective potentials of the
crystals, including all the interactions of a single electron with
the environment. In this work, we use density functional theory
[32], with the local density approximation, to get the V (1) and
V (2) in concordance with the bulk atomic pseudopotential of
the host system [19,20].

Interpreting the total potential as the superposition of atom
centered pseudopotentials, we can write the potential V (j ) of
each one of the slabs (j ) as

V (j )(r ) =
Nsp∑
α

N
(j )
α∑
n

vα (r − Rα,n) , (4)

where the number of species Nsp is the same for both slabs, but
the number of atoms N

α
of each specie α is different. Applying

a Fourier transformation in the same manner done in Eq. (2),
we can write

V (j )(G) =
Nsp∑
α

N
(j )
α∑
n

e−iG·R(j )
α,nvα (G) (5)

or

V (j )(G) =
Npas∑
α

N
(j )
α∑
m

e−iG·R(j )
α,mvpas,α (G)

+
Nbulk∑

α

N
(j )
α∑
n

e−iG·R(j )
α,nvbulk,α (G) , (6)

where the passivant atomic potentials (vpas,α) have been sep-
arated from the bulk part (vbulk,α). The term of interest in the
last equation is the first summation on the right-hand side,
which is the unknown part. The second summation can be
reproduced since the atom positions and the bulk spherical
pseudopotentials are known. The V (j )(G) can be found from
the Fourier transform of the total potentials in real space
previously calculated with DFT,

V (j )(G) = 1

�c

∫
�c

V (j )(r )e−iG·r d3r . (7)

In this point, we take into account the fact that the passivant
pseudopotentials are not spherically symmetric. Therefore the
vpas,α (G) have a symmetric real and an antisymmetric imag-
inary part in reciprocal space. Defining the next function to
explicitly separate the passivant pseudopotentials components

γ (j )(G) = (Re[vpas,a] + i Im[vpas,a])S (j )
a (G)

+ (Re[vpas,c] + i Im[vpas,c])S (j )
c (G) , (8)

where

S (j )
a (G) =

N
(j )
pas,a∑
m

e−iG·R(j )
a,m , (9)

S (j )
c (G) =

N
(j )
pas,c∑
m

e−iG·R(j )
c,m , (10)

we can rewrite Eq. (6) in the form

γ (j )(G) = V (j )(G) −
Nbulk∑

α

N
(j )
α∑
n

e−iG·R(j )
α,nvbulk,α (G) , (11)

where it has been considered that there are two kind of
passivants, one for the anions (vpas,a) and one for the cations
(vpas,c).

At this stage, we can clarify why we need to have the
total potentials of two different slabs (V (j )): Eq. (8) comprises
four unknowns (the real and imaginary part of each passivant)
and two equalities (the real and the imaginary part of the
equation), if we write the same equation for two different slabs,
we complete a system of four unknowns and four equalities,
making the system solvable. This also explains why we need
only one total crystal potential if the system is composed by
only one bulk atom and, therefore, only one passivant.

A main difference here with respect to the SEPM and
the effective passivants potentials described in Ref. [20] is
the reconstruction of the bulk-atom contribution to the total
potential. In the SEPM, the pseudopotentials are divided into
a local and a nonlocal part and the method is used to extract
only the local part of the potential, here we work with the total
crystal potential and hence the passivant potentials generated
are also total atomic potentials suited for the EPM.

Writing together Eq. (8) for each slab, the ensuing system
of equations can be expressed in a matrix form as

⎛
⎜⎜⎜⎜⎝

Re[S (1)
a (G)] − Im[S (1)

a (G)] Re[S (1)
c (G)] − Im[S (1)

c (G)]

Im[S (1)
a (G)] Re[S (1)

a (G)] Im[S (1)
c (G)] Re[S (1)

c (G)]

Re[S (2)
a (G)] − Im[S (2)

a (G)] Re[S (2)
c (G)] − Im[S (2)

c (G)]

Im[S (2)
a (G)] Re[S (2)

a (G)] Im[S (2)
c (G)] Re[S (2)

c (G)]

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Re[vpas,a (G)]

Im[vpas,a (G)]

Re[vpas,c(G)]

Im[vpas,c(G)]

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Re[γ (1)(G)]

Im[γ (1)(G)]

Re[γ (2)(G)]

Im[γ (2)(G)]

⎞
⎟⎟⎟⎟⎠ . (12)

In deriving the last set of equations, special care has to be
taken with the imaginary component of the passivants, since
they are antisymmetric. They suffer a reflection depending on
whether they are on the right or left surface of the slab [20],
consequently minus signs appear in some terms during the
derivation.

The real and imaginary components of the passivant pseu-
dopotentials can finally be extracted by numerically solving
Eq. (12). The matrix term depends only on the structure factors
and, hence, depends solely on the atom positions. The vector
at the left-hand side contains the wanted quantities. The vector
at the right-hand side can be computed using Eq. (11) from
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the atomic bulk pseudopotentials and the V (j ) from the DFT
calculations. It is worth mentioning that Eq. (12) has to be
solved for each G vector, justifying that the sample slabs
must be contained in supercells of the same size, so that the
corresponding reciprocal space G-point grids match for the
representation of the V (j ).

Even though the derivation of Eq. (12) is exact, the
spherical approximation is still present in the bulk EPM
pseudopotentials, and this introduces some scatterers on the
extracted passivant pseudopotential, which has to be removed
during the process as will be shown later. These scatterers
have a well-defined periodicity since they originate from the
difference between the real atomic potential and the spherically
symmetric approximated EPM pseudopotentials in Eq. (11)
and, hence, have the atom position periodicity.

B. Implementation of the passivant nonspherical
pseudopotentials in the EPM

Before continuing with the application of the method to
derive CPSPs, here, we will outline how the nonspherical
pseudopotentials can be implemented into the EPM and com-
ment on the election of the [111] orientation of the slabs as a
reference system to extract the potentials.

The real and imaginary components of the passivants need
to be implemented in the total single-particle Hamiltonian
separately. In the case of the real parts, they can simply be added
up like normal bulk potentials because they have the same
symmetry. The imaginary components need, however, to be
set depending on the surface orientation to properly reproduce
the dipole moments formation.

The (111) surface offers the possibility of having the passi-
vated bond along the [111] directions, it means perpendicular
to the surface plane. In such a condition and for symmetry
reasons, we can expect that the passivant potential gets its
maximum absolute value along the direction of the bulk-
passivant bond in reciprocal space and, since the potential is
antisymmetric, it should become zero for a G vector on the
(111) plane.

Based on the previous analysis, we can establish a route
to implement the complex components of the passivant pseu-
dopotentials into the EPM. First, we extract the passivant using
the (111) surface and the bulk-passivant bond perpendicular
to it, in order to guarantee that the pseudopotential extracted
corresponds to its maximum absolute value; this explains
the election of this slab in particular as mentioned in the
introduction. Second, we project the potentials in reciprocal
space for the required G vectors, in such a way that it becomes
zero on the surface and reflected across it.

With these considerations, the total potential of a given
passivated system can be now written as

V (G) =
Nbulk∑

α

vbulk,α (|G|)
Nα∑
n

e−iG·Rα,n

+
Npas∑
α

Re[vpas,α (|G|)]
Nα∑
n

e−iG·Rα,n

+
Npas∑
α

Im[vpas,α (|G|)]
Nα∑
n

e−iG·Rα,n cos(θα,n), (13)

where θα,n is the angle between the directional vector pα,n

perpendicular to the system surface, at the position of each
passivant, and the G vector, so that

cos(θα,n) = pα,n · G

| pα,n||G| . (14)

When writing Eq. (13), we imply that the vectors pα,n have
to be set for each passivant depending on its position on the
sample surface and according to the sense in which the CPSPs
are generated. More clearly, they have to be perpendicular to
the nanostructure surface so that the imaginary component of
the CPSP is properly reflected across the surface, but if they
are pointing outwards or inwards, the nanostructures have to
be correlated with the CPSP generation; if it is performed
going outwards or inwards the structure in reciprocal space,
respectively [20].

C. Generation of CPSP for Si

Notice that here we have dealt with the total LDA potential,
for this reason, the CPSPs are generated using a silicon effec-
tive atomic pseudopotential previously derived [19], because
of the binding to DFT. For the fine tuning of the CPSP
and all the postgeneration calculations, the EPM accepted Si
pseudopotential reported in Ref. [18] is used. In this way, we
not only avoid proposing a new Si empirical pseudopotential,
but we also ensure that the bulk properties (band structure,
effective masses, and work function) are already corrected to
the experimental values. The Si potential was renormalized to
the unit cell volume rather than to the number of atoms, in order
to allow for the proper inclusion of the vacuum space when
treating the passivated systems and to have the CPSP and bulk
PSP normalized on the same basis. After these considerations,
the Si empirical pseudopotential (measured in hartree × bohr3)
used was

VSi(G) = a1(G2 − a2)

a3 exp(a4G2) − 1
, (15)

where a1 = 36.317, a2 = 2.19, a3 = 2.06, and a4 = 0.487.
Since for pure Si there is only one type of bulk atom to

passivate, the process could be performed with only one total
potential in Eq. (12). However, in order to keep a general
formalism, the derivation here is done with the total potential
of two different slabs: Si8H4 and Si12H4, both in a 40

√
3aLDA

long supercell, using a relaxed LDA lattice constant of aLDA =
5.478 Å, and the relaxed H-Si bond length of 1.433 Å to
guarantee that the calculations are performed in the structural
equilibrium state.

The real and imaginary parts of the silicon passivant
pseudopotential are shown in Fig. 1 as extracted with Eq. (12)
from the DFT results. It is clear that the imaginary component
is not negligible in comparison to the real part, indicating that
it must play an important role in calculations and should not
be disregarded. Besides, the imaginary component becomes
more and more important, exceeding the real component by
one order of magnitude, as G approaches zero. This strongly
supports the importance of the imaginary part of the CPSPs
in calculations, since the small G region is related to the
long-range interaction and, hence, it is responsible for the
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FIG. 1. Real and imaginary components of the passivant pseu-
dopotential (vH ) for silicon as a function of the magnitude of the G
vector. The inset shows a discontinuity on the raw data (as extracted
from DFT) and how the interpolation passes through it.

band offset in heterostructures and strongly influences the
distribution of energy eigenvalues [19].

The inset in Fig. 1 shows a segment of the imaginary
component where the continuous potential is traced by a spline
interpolating through the discontinuity in the original DFT data
(raw data), disregarding the points that are clearly out of the
tendency as was mentioned in Introduction. We can also notice
that the imaginary component shows some wiggles that make
it impractical to fit the curve to a superposition of Gaussian
functions as customary done, since the number of Gaussians
required becomes too high. Nevertheless, work is in progress
pointing in this direction, and the fitted CPSP will be reported
in a future report. To the contrary, the real component is rather
smooth showing a typical shape for these kind of potentials.

The fine tuning of the CPSP is performed in such a
manner that the energy band gap of long slabs converges to
the experimentally accepted value of 1.178 eV for the bulk
system. This process is the only empirical modification on the
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for better comparison.
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sizes: for each supercell, the G point grid is different. Notice that the
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√
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[110], and [111] directions, respectively. (c) Influence of the Si-H
bond length on the energy gap using the equilibrium bond length as
a reference. In each panel, the length of the slabs corresponds to six
unit cells according to the respective direction.

pseudopotentials and happens to be a small shift over only a
small region along the first G points as shown in Fig. 2. In
this stage and for all the subsequent calculations and results,
the Si empirical pseudopotential of Eq. (15), the hydrogen
CPSP extracted here, the experimental Si lattice constant of
ao = 5.431 Å, and the accepted value of the Si-H bond-length
of 1.42 Å are used.

To track the convergence of the energy gap to the bulk value,
a minimization procedure [33,34] was performed simultane-
ously with slabs of different size and elongated along the [100],
[110], and [111] crystallographic directions. In this way, the
CPSP is tuned to fit different kind of surfaces all together,
guaranteeing a high level of transferability and, therefore, the
capability of using the same passivant pseudopotential to study
systems of any shape with accurate results.

Comparing the shifts of the real and imaginary parts, we
notice that the correction is much stronger in the imaginary
component, but it occurs only over the extreme small |G|
values, going approximately up to G = 0.04 bohr−1, one order
of magnitude less in relation to the real component, where the
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correction reaches the G = 0.4 bohr−1 value approximately.
For higher G values, the CPSP is left as extracted from the
LDA-DFT calculations. The need to adjust the CPSP only in
the small G region is expected since the Si pseudopotential
of Eq. (15) is constructed empirically to reproduce bulk
properties, where only few G points are needed and none
smaller than the one corresponding to the bulk system [18,19].

Different aspects concerning convergence are compiled in
Fig. 3, in each case, slabs of length equivalent to six unit
cells according to the crystallographic directions are used,
this means: 6ao, 6

√
2ao, and 6

√
3ao for the [100], [110], and

[111] directions, respectively. First of all, the convergence of
the band gap is plotted as a function of the energy cutoff
used in the plane-wave expansion. The [111] and [110] slabs
show a faster convergence, both presenting little deviation
starting from around 4 Ha [Fig. 3(a)]. In the case of the [100]
slab, the convergence requires a higher energy cutoff of 8 Ha
approximately. This behavior is expected since the [111] slab
was the system used to extract the CPSP and it is reasonable
to expect the best behavior for this orientation.

The transferability of the CPSP in relation to the supercell
size is demonstrated in Fig. 3(b), where the size of the material
slabs has been kept constant while different vacuum spaces
were used. This combination of different supercell sizes for
the same atomic structure leads to calculations spanned by
different sets of G points that should converge to the same
eigenvalues. In particular, when the supercell gets bigger, the
G points grid gets denser. The results shown in Fig. 3(b) proves
the stability of the CPSP since the band gap values for each
slab deviate very little as the supercell becomes bigger.

The energy band gap of the same slabs but for a different
Si-passivant bond length is shown in Fig. 3(c). This is an
important study in order to know the attention that needs to
be paid to the passivant position over the structure. Besides, it
has been pointed out that the electronic structure of hydrogen
passivated Si quantum systems can be highly affected by
the surface structure [28,30]. Examining the results shown in
Fig. 3(c), we can conclude that the passivant position affects
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FIG. 4. Energy band gap for Si slabs along the [100], [110], and
[111] directions as a function of the slab length. The Eg values
converge to the experimental value of 1.178 eV. The insets show the
local potential of nearly 2-nm-long slabs along each direction.
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FIG. 5. Band gap energy for a Si quantum dot and a Si quantum
wire ranging in both cases from 1 to 5 nm. The diagram illustrates
the cross section of a quantum wire with the passivant vector P H

distribution over the surface.

more strongly the electronic structure when the bond length
exceeds the corresponding equilibrium position than in the
case where the Si-passivant bond is shorter. Besides, the (100)
face shows a stronger influence on the electronic structure,
which can be explained by the fact that when the Si-H bond
length is enlarged on the (100) surface, the H-H distance
becomes shorter, enhancing the dipole moments at the surface
and, therefore, influencing the total confining potential of the
nanostructure more strongly.

III. PASSIVATED SILICON NANOSTRUCTURES

The slab calculations done to tune the DFT-LDA extracted
complex potential are shown in Fig. 4, together with the profile
of the local potential averaged over the in-plane direction.

TABLE I. Number of Si and H atoms of the QD and QW
nanostructures in Fig. 5.

Structure No. of Si No. of H

1.0-nm QD 29 36
1.5-nm QD 87 76
2.0-nm QD 175 116
2.5-nm QD 389 196
3.0-nm QD 705 300
3.5-nm QD 1087 412
4.0-nm QD 1683 580
4.5-nm QD 2329 684
5.0-nm QD 3205 801
1.0-nm QW 21 20
1.5 nm QW 45 28
2.0-nm QW 89 44
2.5-nm QW 137 52
3.0-nm QW 193 60
3.5 nm QW 261 76
4.0-nm QW 341 84
4.5-nm QW 437 92
5.0-nm QW 525 100
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First of all, we can notice how the band gap values converge
smoothly to the bulk band gap simultaneously in all cases. It
is worth keeping in mind that the same CPSP has been used in
all calculations. The faster and more monotonous convergence
of the [100] sample is due to its more uniform crystal potential
(see the inset of Fig. 4) that would resemble more closely,
when taking the mean value, the squared potential well of the
effective mass models. The slower and less regular conver-
gence of the [110] and [111] samples may be explained by
the different shape of the local potential right at the barriers:
the [110] slab has an asymmetric local potential due to the
different distribution of passivant at both sides of the sample,
and the [111] slab has very dip and narrow potential tips at the
barriers, as can be noticed in the insets of Fig. 4.

The energy band gap of quantum wires and quantum dots
as a function of the nanostructure diameter is shown in Fig. 5.
The figure also shows a diagram of the passivant vectors (P H )
distributed perpendicularly to the surface on each passivant site
for a cross section of a QW. The rather fast convergence to the
bulk energy gap is explained by the predominant [100] surface
type [30] (an Si-H2 phase), in comparison to Fig. 4. The QDs
calculations were done with a cutoff energy of 5 Ha, while the

FIG. 6. Local density of states of the (a) [111], (b) [110], and
(c) [100] slabs. H stands for the passivant surface layer, Si-H for the
plane at the middle point between the Si-H bond, and Si for the first
silicon layer. The summation of the LDOS over a unit cell from the
surface (

∑
n σn) as well as the (111) experimental UPS spectra are

also presented [31].

QW calculations were done at 6 Ha, and with the axes along
the [100] direction. The number of Si and H atoms for each
structure are listed in Table I.

Results of the surface local density of states, defined as

σ (E) =
∫

S

∑
i

|ψi (r )|2δ(E − Ei ) ds , (16)

for planes parallel to the surface of the [111], [110], and [100]
slabs calculated with the EPM are shown in Fig. 6, together
with the experimental results of the UPS spectra of the (111)
surface after Ref. [31]. The integral in Eq. (16) runs over
the whole surface perpendicular to the axes of the slab, and
has been calculated for three positions from the surface: the
passivant and the outermost silicon layers, and the plane cutting
the middle point between them (the H, Si, and H-Si label in
Fig. 6, respectively). Figure 6 also shows the averaged LDOS
over the firs unit cell in each case (

∑
n σn).

The comparison of the averaged theoretical LDOS to the
experimental results shows a good agreement in the number
and width of the peaks, suggesting that the photoemission of
the UPS spectra is highly affected by the Si internal layers.
The occurrence of a second peak arising from the Si-H bond
in the vicinity below −9 eV in the (111) surface is also in
agreement with other reports [31,35], where the little shift of
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FIG. 7. Comparison of the DFT-LDA and the EPM-CPSP wave
functions for a 2-nm-long slab. The squared wave functions are
averaged along the transverse plane of the structure and corresponds
to the first two conduction and first two valence states.
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the second peak towards higher energy may be explained by the
temperature conditions of the experiment [31] and the surface
reconstruction phenomena that take place in experiments but
were not considered in these calculations. The (111) and (110)
surfaces are both characterized by a Si-H phase, while the (100)
surface presents a Si-H2 phase. This deference is reflected in the
LDOS results, where the H curves in panels (a) and (b) of Fig. 6
are very similar and notably differ from the H curve in Fig. 6(c).

Finally, in Fig. 7, the EPM charge density is compared
to DFT for a 2-nm slab in the [111] direction, where the
first two conduction (Ci) and valence (Vi) wave functions
are plotted. It is known that LDA-DFT fails to accurately
predict energy band gap values [36], but that the wave-function
symmetries and all valence states are well reproduced [29]. In
these terms, a comparison to the LDA-DFT wave functions
is a good benchmark to determine the accuracy of the CPSP
in the scheme of the EPM. Figure 7 shows how the EPM
calculations reproduce well the charge density distribution of
the LDA-DFT, where the s- and p-type symmetries of the
envelope wave functions, as well as the fast oscillations related
to the atomic structure, are recognized.

IV. CONCLUSIONS

A method to generate passivant pseudopotentials with
nonspherical symmetry to be employed within the empirical

pseudopotential method was described. The method is based
on an analytic formulation of the total crystal potential and
is related to DFT in such a way that the derived CPSPs have
LDA quality. Also, the ensuing pseudopotentials have real and
imaginary components in reciprocal space, which allows for
a proper consideration of charge transfer processes occurring
at the surface of the nanostructures, which is an advantage
over the common passivation methods in terms of spherical
pseudopotentials.

The method was used to extract a hydrogen based CPSP for
silicon and its accuracy and transferability are demonstrated
with the calculation of different nanostructures: slabs, quantum
wires, and dots, where the energy band gap in all cases
converged to the bulk value for big samples. Besides, the
surface local density of states was calculated reproducing
experimental results. The final assessment of the CPSP is
the close reproduction of DFT wave functions, where the
localization and fast oscillations of the wave functions related
to the atomic structure are well recreated.

This work supports the idea that the dipole moments at
the surface of passivated nanostructures can be treated by the
inclusion of nonspherically symmetric pseudopotentials into
the EPM, and that it is of fundamental importance in order to
have accurate results, since the imaginary component of the
CPSP is not negligible in comparison to the real component,
which alone would correspond to the spherical approximation.
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