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Electron spin noise under the conditions of nuclei-induced frequency focusing
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We study theoretically the electron spin noise in quantum dots under nonequilibrium conditions caused by
the pumping by a train of circularly polarized optical pulses. In such a situation, the nuclear spins are known to
adjust in such a way that the electron spin precession frequencies become multiples of the pump pulse repetition
frequency. This so-called phase synchronization effect was uncovered in A. Greilich et al. [Science 317, 1896
(2007)] and termed nuclei-induced frequency focusing of electron spin coherence. Using the classical approach
to the central spin model, we evaluate the nuclear spin distribution function and the electron spin noise spectrum.
We show that the electron spin noise spectrum consists of sharp peaks corresponding to the phase synchronization
conditions and directly reveal the distribution of the nuclear spins. We discuss the effects of nuclear spin relaxation
after the pumping is over and analyze the corresponding evolution of nuclear spin distributions and electron spin
noise spectra.
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I. INTRODUCTION

During the last two decades, a new area of solid state
physics, spintronics, was formed. It focuses on studying the
effects of spin injection, detection, and nonmagnetic manipu-
lation aiming at a deeper understanding the dynamics of charge
carriers and nuclear spins with the long-term vision to provide a
new generation of information processing devices. Particularly,
the possibilities to use electron or nuclear spins as a building
blocks for information processing are envisaged [1–4]. Both
interesting fundamental physics and possible applications have
made the effects of optical electron spin control in semicon-
ductor quantum dots highly topical nowadays [5,6].

The primary focus lies in the nonmagnetic initialization,
manipulation, and control of single spins [7–9]. Due to rather
weak interaction of a single spin with light, the realization of
such a single-spin device is rather challenging. In this regard,
the control of the spin dynamics in quantum dot ensembles
appears to be the much more favorable route [10,11]. However,
the inevitable inhomogeneity in the quantum dot ensembles
results in an efficient decoherence of the electron spins due to
the nuclear fluctuations and the spread of the electron Landé
factors.

It turns out that the role of the inhomogeneity can be
effectively reduced by the nuclei-induced electron spin pre-
cession frequency focusing effect [12]. Under the excitation
of the quantum dot ensemble by a periodic train of circularly
polarized pulses with the repetition period TR, the nuclear spins
adjust in such a way that the electron spin precession frequency
in each dot becomes a multiple of the repetition frequency
π/TR.

The origin of the focusing is the hyperfine coupling of
electron and nuclear spins [10–13] accounted for by the
central spin model (CSM) [14]. Several quantum-mechanical
[15–17] or semiclassical [12,13,15,18–20] approaches have
been proposed in order to describe this frequency focusing
effect.

In the steady state of the periodically driven system, the
Overhauser field distribution approaches a nonequilibrium
function that significantly differs from its Gaussian shape in
equilibrium [15–17,20]. This distribution function, which is
crucial for testing the theoretical predictions and obtaining
further control over the electron spin dynamics, is difficult to
access directly in experiments.

Measurements of the electron spin dynamics [12,20] have
been performed only on the periodically driven system where
the pumping affects the nuclear spin states. Here, we suggest
an alternative route to access the nuclear spin distribution
by studying the electron spin fluctuations using the electron
spin noise spectroscopy technique. Spin fluctuations can be
measured by an off-resonant optical beam which does not
significantly perturb the system [21–24] (see Refs. [25–27])
for reviews. We calculate the spectrum of the electron spin fluc-
tuations under the conditions of the nuclei-induced frequency
focusing effect. We demonstrate that the electron spin noise
directly reveals the distribution of the nuclear spins. We show
that by monitoring the electron spin fluctuations after the train
of pump pulses has stopped the slow nuclear spin relaxation
towards the equilibrium state can be accessed.

After a short introduction of the model in Sec. II, Sec. III
demonstrates the relation between the electron spin dynamics
and the shape of the Overhauser field distribution. We also
present the evaluation of the electron spin noise and compare it
with the Overhauser field distribution. The effect of the nuclear
spin relaxation and its influence on the electron spin noise
spectra are discussed on the last part of the Sec. III. A brief
summary of the results is given in Sec. IV.

II. CENTRAL SPIN MODEL FOR NUCLEI-INDUCED
ELECTRON SPIN PRECESSION FREQUENCY FOCUSING

In this section we formulate the semiclassical model of the
electron and nuclear spin dynamics in a quantum dot under
periodic optical excitation.
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In a pump-probe experiment, a negatively charged semi-
conductor quantum dot is subjected to periodic laser pulses.
We consider the Voigt geometry, i.e., the external magnetic
field Bext ‖ x is orthogonal to the light propagation direction
z which is also the growth axis of the quantum dot. The
electron spin dephasing between two pulses is governed by the
hyperfine interaction with the nuclear spin bath, which acts
as an effective magnetic field. The circularly polarized pump
pulse excites a X− trion state consisting of two electrons in a
spin singlet and a hole. Depending on the helicity of light, the
resident electron becomes polarized (see Refs. [10,20,28–30]
for details).

The classical equations of motion for the spin dynamics of
the central spin model subject to an instantaneous laser pulse
were derived in Ref. [20] (see also [18,30]) and are given by

dS
dt

=
(

bext +
N∑

k=1

ak Ik

)
× S + γPT e−2γ t ez, (1a)

d I k

dt
= (ζ bext + ak S) × Ik. (1b)

These equations are valid between two consecutive laser
pulses for the time t ∈ [0, TR), where TR is the pump pulse
repetition period. The absorption of each pulse gives rise to
an angular momentum transfer between photon and electron
[28,29,31]. The full problem consisting of the photon absorp-
tion during pulse and emission during the trion decay can be
simplified via the Lindblad formalism [16]. In the classical
approach [11,20,29,32], the term γPT e−2γ t represents the
increase of the electron spin vector in z direction due to the trion
decay into the electron state. The quantity PT is the efficiency
of the trion photogeneration, and γ is the trion decay rate.

We treat the electron spin S and the spins of the nuclei
I k as classical vectors. The subscript k enumerates the N

nuclei interacting with the electron spin. The applicability of
the classical approach is justified in Refs. [20,33].

The coupled differential equations (1) are written in dimen-
sionless units using the characteristic timescale T ∗ [34]

1

(T ∗)2
=

N∑
k=1

A2
k

〈
I 2
k

〉
, (2)

where we use 〈I 2
k 〉 = 1 in the classical simulation. This

timescale is determined by the fluctuations of the Overhauser
field where Ak is the hyperfine coupling constant of the kth
nuclear spin Ik to the central electronic spin S. In Eqs. (1), the
quantitiesak = AkT

∗ are the dimensionless coupling constants
and the dimensionless magnetic field acting on the electron
spin is bext = geμB BextT

∗, with μB being the Bohr magneton
and ge being the electron g factor. The parameter ζ denotes
the ratio of the nuclear and electron magnetic moments. The
electron spin dynamics within central spin model and its
various extensions has been addressed within the semiclassical
approach in a number of references [34–37].

Equation (1a) describes the electron spin precession in the
total field comprising the external magnetic field and the field
of the nuclei as well as the electron spin generation by the
pump pulses: The efficiency of the trion photogeneration PT is
obtained from the electron spin z component before the pump

pulse arrival Sbp,z as

PT = Sbp,z + 1
2 , (3)

for the ideal π pulses considered in this paper. The electron
spin after the pulse can by calculated via

Sap = 1
2

(
Sbp,z − 1

2

)
ez. (4)

The in-plane electron spin components are erased by the π

pulse [29].
The dynamics of the nuclear spin Ik is influenced by the

nuclear Zeeman effect and the Knight field ak S [see Eq. (1b)].
The pump pulses do not produce any direct coupling to the
nuclear spins so that the nuclear spin directions before and
after the pump pulse arrival remain unchanged.

For a sufficiently long train of pump pulses, a steady-state
situation is reached: the change of the nuclear spin vectors
averaged over TR vanishes and the electron spin dynamics
becomes periodic. In this limit, the dimensionless Overhauser
field in Eq. (1a),

bN =
N∑

k=1

ak Ik, (5)

is replaced by a constant vector. The analysis of Eq. (1) in this
frozen Overhauser field approximation demonstrates that the
electron spin steady-state condition requires that one of two
following conditions is satisfied [20]:

ω = ωe,n ≡ 2πn

TR
, (6a)

ω = ωo,n ≡ 1

TR

[
2πn + 2 arctan

(
ω

2γ

)]
, n ∈ Z (6b)

where ω is the electron spin precession frequency between the
pulses,

ω = |bext + bN |. (7)

Note that even in the steady state the Overhauser field varies
slightly due to the nuclear spin precession, particularly in a
strong magnetic field. The rate, however, is much slower than
ω justifying the frozen Overhauser field approximation.

The condition in Eq. (6a) depends only on the external
magnetic field and the value of the pulse repetition rate TR,
which corresponds to the so-called even resonances, i.e., even
multiples of π/TR, while the condition in Eq. (6b) also includes
the influence of the trion decay. For large external magnetic
fields bext/γ � 1, Eq. (6b) leads to resonance conditions with
odd integer numbers ωo,nTR = (2n + 1)π .

For the even resonance condition the central spin is fully
aligned in the negative or positive z direction after the pulse,
whereas the odd resonance conditions give a spin alignment of
Sap = ∓ez/6 depending on the helicity of light [16,18]. The
detailed study of the electron and nuclear spin dynamics in the
presence of periodic pumping is given in Ref. [20].

Starting from an unpolarized system where all spins are
randomly oriented, the electron spin becomes polarized due
to the pumping. The periodic pumping strongly amplifies
the electron spin polarization in the quantum dots where the
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FIG. 1. Distributions of Cartesian components of the Overhauser
field for the steady state of a periodically pulsed system. The initial
distributions after the sequence of pump pulses has finished are shown
in red. The Overhauser field distributions after approximately 10 000
T ∗ are shown in blue. The Gaussian envelopes are depicted in black.

conditions (6) are fulfilled. An electron spin revival can be
observed [10,29,38]. Then, for a sufficiently long train of pump
pulses, the hyperfine interaction leads to a rotation of nuclear
spins and an eventual nuclear polarization in the direction of
the external magnetic field in accordance with the resonance
conditions (6) (see [20] for details). This is the nuclei-induced
electron spin precession frequency focusing effect [10,12,18].
As a result, the distribution functions of the nuclear spins
and, thus, the distribution of the Overhauser field is no longer
Gaussian, but becomes peaked at certain particular values
of bN where the conditions (6) hold. The Overhauser field
distribution functions pi (bN,i ), where i = x, y, or z is the
Cartesian component after the pumping stage, are shown by
red solid lines in Fig. 1.

III. SPIN DYNAMICS AND FLUCTUATIONS

In this section we present the results of calculations of
the electron spin noise after the excitation by a train of
pump pulses. We also demonstrate the relation between the
electron spin fluctuations and the distribution of the Overhauser
field.

The numerical simulations of the electron spin noise under
the conditions of the nuclei-induced frequency focusing are
carried out in the following way: We consider N = 100
nuclear spins and simulate NC = 100 000 classical initial

configurations for Ik (t = 0) such that the distribution func-
tions of the Overhauser field components are given by

py (bN,i ) = pz(bN,i ) = F (bN,i ), (8a)

px (bN,x ) =
∑

n

F (bN,x )[δ(bN,x − be,n) + δ(bN,x − bo,n)],

(8b)

where

F (bN,i ) = 1√
2πσ 2

exp

(
−b2

N,i

2σ 2

)
for i = x, y, z (9)

is the Gaussian distribution with a variance σ = 1/3 providing
the electron spin decoherence, δ(b) is the Dirac δ function,
and be,n (bo,n) is the nuclear field which satisfies the condition
Figs. (6a) [(6b)]. The shape of the Overhauser field distribution
is a conjecture based on a scaling argument presented in
Ref. [20].

We assume that the coupling constants are distributed
according to

pA(A) = − 3

2r3
0

1

A

√
ln

(
Amax

A

)
, (10)

with the dimensionless cutoff radius r0 = 1.5 and Amax = 1
[39]. A set {Ak} is drawn from the distribution pA(A) and
normalized via ak = AkT

∗ using the definition (2). Further,
we chose TR = 13.5 T ∗ for the repetition time of the pulses
to make contact to the experiment and bext = 2πK/TRex with
K = 200 for the external field corresponding to a physical
value of approximately 2 T for typical quantum dot parameters.
The relative strength of the nuclear Zeeman is given by ζ =
0.00125, and the trion decay rate is set to γ = 10/T ∗.

Our algorithm for the generation of a given Overhauser
field distribution increases the precision with each additional
nuclear spin (see Appendix). However, the restriction for
the generation of the initial Overhauser field is an accepted
deviation of

|�bN,x | =
∣∣∣∣∣
(∑

k

ak Ik,x

)
− bo/e,n

∣∣∣∣∣ < 10−3, (11)

from the peak positions bo/e,n in each configuration which leads
to a small but finite peak width instead of an ideal δ-function
peak.

We investigated the evolution of the nuclear steady state in
darkness, i.e., after stopping the pump pulses. At t = 0, the
steady-state distribution defined in Eq. (8) is assumed, and the
last pump pulse arrives. The peak width at this time is due to
restrictions of the generation method, described in Eq. (11).
This finite peak width mimics experiments in which a perfect
frequency focusing cannot be achieved due to different nuclear
spin relaxation mechanism or fluctuations in the pumping laser.
In Fig. 1, we present the comparison between the initial steady-
state Overhauser field distribution and its evolution after t =
1000TR ≈ 10 000T ∗. Only marginal changes are observable,
and the peak structure is essentially preserved on this timescale.

This phenomenon will be analyzed more deeply in the
following sections, with the additional focus on the electron
spin dynamics.
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FIG. 2. Central spin dynamics starting from the steady state of a
pulsed system. The red line gives the envelope of the electron spin
revival decay. The inset shows spin dynamics on the shorter timescale.

A. Electron spin dynamics after the pumping

Figure 2 shows the electron spin dynamics 〈Sz(t )〉 after
the last pump pulse using the Overhauser field distribution
introduced in the previous section. The electron spin precession
in the total magnetic field bext + bN is very fast so that field-
induced spin beats are not resolvable in the figure. On a long
timescale, the electron spin envelope function decays with time
due to a finite width of peaks in px (bN,x ), while the generated
Overhauser field peak has a rectangular shape for N = 100.
The “edges” of this distribution decay fast due to nuclear
spin precession and generate a nearly Lorentzian-shaped peak.
Indeed, if the Overhauser field peaks are approximated by
a Lorentzian function, the long-time decay of the electron
spin polarization envelope is described by the exponential
law 〈Sz(t )〉 ∼ exp (−t/TD) with TD being the decay time
inversely proportional to the Lorentzian width. The shape of
the envelope of the electron spin decay was derived via Fourier
transformation of a single peak shape. We added an exponential
function with TD = 500T ∗ (red solid line) as a guide to the
eye into Fig. 2, demonstrating a reasonable agreement with
the envelope function of our simulation. Naturally, different
peak shapes provide different time envelopes of electron spin
beats. In our simulations, the value of TD ∼ 103T ∗ is limited
by the accuracy of the randomly generated Overhauser field
distribution (11).

On a timescale of a few TR, the revivals of the electron
spin polarization are depicted in the inset to Fig. 2 resolving
the electron spin dynamics on a much shorter timescale up
to t = 4TR. These revivals at integer multiples of TR are a
clear signature of the nuclei-induced spin precession frequency
focusing: The most probable spin precession frequencies are, in
agreement with Eqs. (6), the multiples of π/TR. The alternating
revival strengths shown in the inset result from the interplay
of the even and odd resonance frequencies. For the larger
revival amplitudes, the spin configurations with even and odd
resonance frequencies align: Seven = ∓ez/2 and Sodd = ∓ez/6
(for σ+/σ− pumping), whereas for every second TR distance
the contributions due to even and odd resonances point in the
opposite directions: Seven = ∓ez/2 and Sodd = ±ez/6.

While the central spin shows a clearly recognizable relax-
ation, the Overhauser field distribution is almost conserved as

discussed in the previous section. This implies that the electron
spin will interact with an already prepared nuclear spin system
once the pulse sequence is switched on again. Therefore, it can
be seen as an indicator for the reemerging instant revival after
several minutes in darkness as it was observed in experiments
reported in Ref. [12].

B. Electron spin noise

The spin noise is characterized by the second-order spin cor-
relator 〈Sz(t + t ′)Sz(t ′)〉 in the time domain. In the frequency
domain, the electron spin noise spectrum is obtain by its Fourier
transformation:(

S2
z

)
ω

(t ′) =
∫ ∞

−∞
e−iωt 〈Sz(t + t ′)Sz(t ′)〉dt . (12)

We stress that the spin noise spectrum is dependent on the
absolute time t ′ due to the nonequilibrium and nonstationary
situation: at t ′ = 0 the nuclear spin system is described by
the distribution functions (8), which is strongly different from
the equilibrium Gaussian, and where an average electron spin
polarization is found (see Fig. 2).

However, electron and nuclear spin dynamics are character-
ized by timescales which differ by several orders of magnitude.
The electron spin dephasing takes place on a timescale of TD

related with incomplete focusing (see Sec. III A). In contrast,
the nuclear spin relaxation characterized by the time constant
T1,N is extremely slow and can last for tens of minutes.
Hereafter, we assume that

T1,N � t ′ � TD, (13)

which allows us to consider the system in quasisteady state:
the spin correlation function 〈Sz(t + t ′)Sz(t ′)〉 and the spin
noise spectrum (S2

z )ω becomes independent on the time t ′.
In agreement with the general theory of nonequilibrium spin
fluctuations [40,41], the correlation functions of the fluctua-
tions obey the same set of equations as the average values.
Thus, Eq. (1a) (with PT = 0) can be considered as the equation
for the electron spin correlators 〈Sα (t + t ′)Sz(t ′)〉 as functions
of time t . Also, it has to be taken into account that the
nuclear spin dynamics in Eq. (1b) is driven by the electron
spin fluctuations. The initial nuclear spin distribution is given
by (8), while the equal time electron correlation functions
are given by 〈Sz(t )Sz(t )〉 = 1

4 , and the cross correlators van-
ish: 〈Sy (t )Sz(t )〉 = 〈Sx (t )Sz(t )〉 = 0, which follows from the
quantum-mechanical definition of the electron spin. Note that
due to condition (13) the initial correlation of the electron
spin orientation and Overhauser field can be disregarded. The
electron spin correlators and spin noise spectra can weakly
depend on t ′ due to the nuclear spin dynamics.

In order to fulfill the requirement TD � t ′, we used as
initial condition the Overhauser field distribution obtained by
a full simulation of the equations of motion for t ′ = 1000TR ≈
10 000T ∗ after the pump pulses have stopped (see Fig. 1).

Figure 3(a) shows the spin noise spectrum (S2
z )ω(t ′) cal-

culated by the full numerical solution of the set of Eqs. (1)
and the nonequilibrium Overhauser field distribution. The
spin noise spectrum consists of a series of peaks at the
electron spin precession frequencies ω satisfying the resonance
conditions (6). The calculations demonstrate that the electron
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FIG. 3. (a) Spin noise spectrum of the full numerical simulation.
(b) The initial Overhauser field distribution taken from Fig. 1 at t ′ =
1000TR ≈ 10 000T ∗.

spin correlation function and, correspondingly, the spin noise
spectrum is almost independent of t ′, implying a very slow
nuclear spin relaxation.

The fact that the nuclear fields are almost static allows for
the evaluation of the spin noise spectrum semiclassically: the
model developed in Ref. [42] assumes that the nuclear fields
are frozen. A similar model has been employed in Refs. [43,44]
to address the electron spin fluctuations in the presence of
dynamical nuclear polarization. In this model, the electron spin
noise spectrum directly reflects the distribution of the effective
magnetic field acting on the electron spin. It is given, up to a
common factor, by(

S2
z

)
ω

(t ′) ∝ px (ω − bext,x ). (14)

In order to show the connection between the full numerical
simulation and the analytical prediction, the corresponding
initial distribution of the nuclear fields is added as Fig. 3(b)
being in a good agreement with the full calculation presented
in Fig. 3(a). Slight discrepancies are related to neglecting the
nuclear spin dynamics in Eq. (14) and to the contributions
to the electron spin precession frequency of the nuclear field
components transversal to the external magnetic field. This
analysis confirms that the information about the nuclear spin
polarization can be accessed by the spin noise spectrum
(S2

z )ω(t ′). The electron spin fluctuations can be measured via
the detection of fluctuations of the polarization plane of the
light beam transmitted through or reflected from the sample.
Indeed, a fluctuation of spin polarization (i.e., magnetization)
gives rise to a stochastic Faraday rotation of the polarization
plane of light, which can be readily detected in optical experi-
ments. This nonperturbative way to measure the electron spin
noise optically was first suggested and realized by Alexandrov
and Zapasskii [21] and later adapted by various experimental
groups [23,24,45] (see Refs. [25,26] for review).

C. Inclusion of a phenomenological relaxation of the
Overhauser field

As we have seen in Fig. 1 the Overhauser field distribution is
almost conserved for long times after the pulse sequence. The
distribution of the coupling constants ak can induce some decay

FIG. 4. The distribution of the total nuclear spin in x direction Mx

corresponding to the Overhauser field shown in Fig. 1 is conserved.

of the Overhauser field similarly to the processes described in
Refs. [33,34,46,47], however, this decay is quite minor. This
can be ascribed to the fact that the component of the total spin

F = S +
∑

k

Ik (15)

of the interacting electron-nuclear system parallel to the ex-
ternal field is conserved. Since the nuclear spin bath size is
large, the total nuclear spin M = ∑

k Ik ∝ √
N constitutes the

dominating contribution to F:

〈Fx〉 ≈ 〈Mx〉 = const. (16)

Hence, a variation of the electron spin x component can be
neglected in comparison to the constant contribution 〈Mx〉 ∝√

N . It is noteworthy to distinguish the approximatively
conserved total nuclear spin polarization 〈Mx〉 in an external
field applied in x direction from the slowly varying Overhauser
field for a finite spread of the coupling constants ak . Only in the
case of the box model with ak = a ∀ k the difference between
Overhauser field and total nuclear spin reduces to the constant
a and, therefore, the Overhauser field distribution is also static.
To illustrate the difference, we present the the total nuclear spin
distribution in x direction, pMx

(Mx ), in Fig. 4 for the system
parameters used in Fig. 1. While a close inspection of Figs. 1
and 3(b) reveals the slow time evolution of px (bN,x ), pMx

(Mx )
remains constant for the simulation times t < 10 000T ∗.

In a real system, however, several different processes such
as the dipole-dipole interaction between the nuclear spins
[48], fluctuating quadrupolar splittings of nuclei [49], due
to the recharging processes and the photoexcitation [12,50]
contribute to the nuclear spin relaxation that occurs on a much
larger timescale as considered up to now. In order to analyze
this effect, we employ the phenomenological approach where
we (i) use the box model for simplicity, (ii) calculate the
electron spin noise spectrum via the semiclassical equation
(14), and (iii) introduce the nuclear spin relaxation by means
of a kinetic equation for the distribution function pMx

.
The longitudinal nuclear spin relaxation time T1,N is much

larger than any timescale related to the electron spin dynamics.
As a result, we can regard the Overhauser field as static in a time
interval while we investigate the electron spin dynamics of the
correlation function 〈Sz(t ′ + t )Sz(t ′)〉. As we can gather from
Fig. 2 the electron spin has vanished after a relatively short
amount of time. Therefore, we will assume an unpolarized
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central spin at the beginning of each time interval starting at t ′
with a static Overhauser field distribution at the time t ′.

To achieve a decay of the distribution of the total nuclear
spin component Mx , spin flips decreasing or increasing Mx

have to be taken into account. The general time evolution of
the distribution function pMx

(Mx ; t ′) is given by the following
rate equation:

dpMx
(Mx ; t ′)
dt ′

= W↓(Mx + 1)pMx
(Mx + 1; t ′)

+ W↑(Mx − 1)pMx
(Mx − 1; t ′)

− [W↓(Mx ) + W↑(Mx )]pMx
(Mx ; t ′). (17)

W↑/↓ are the nuclear spin-flip probabilities, where ↑ denotes
the process of increasing Mx by 1 and ↓ denotes the process
of decreasing Mx by 1. Note that dipole-dipole interaction
between the nuclei and the quadrupole splittings can result
in the change of Mx by 2, however, the inclusion of such
additional processes does not qualitatively affect the results.

Now, we employ the box model: px (bN,x ) and pMx
(Mx ) dif-

fer only by a constant prefactor. At t ′ = 0, the time at the end of
the pumping, the analytic Overhauser field distribution stated
in Eq. (8) is used, and the distribution function pMx

(Mx ; t ′) is
normalized according to∑

Mx

pMx
(Mx ; t ′) = 1

at any time. Reminding that 1 � |Mx | � N holds in real
systems, we can convert the discrete rate equation (17) into
a partial differential equation

∂pMx
(Mx ; t ′)
∂t ′

= 1

T1,N

∂

∂Mx

[
MxpMx

(Mx ; t ′) + M2

3

∂

∂Mx

pMx
(Mx ; t ′)

]
,

(18)

in the continuum limit which is an analog of the Fokker-Planck
equation in kinetic theory [40]. We made use of the expressions

W↑(Mx ) = W1(N/2 − Mx ), (19)

W↓(Mx ) = W1(N/2 + Mx ), (20)

with W1 being the probability of a single spin flip, and the fac-
tors N/2 ± Mx describing the number of choices for a nuclear
spin to flip, which are valid in the high-temperature approxima-
tion [48]. In Eq. (18), T1,N denotes the longitudinal relaxation
time of the nuclear spin governing the exponential decay of the
average nuclear spin Mx (t ′) = ∫

dMxMxpMx
(Mx ; t ′):

∂Mx

∂t ′
= −Mx (t ′)

T1N

, (21)

and M2 = |I 2|N is the square of the total spin of the nuclei. The
steady-state solution of Eq. (18) corresponds to the unpolarized
bath with the Gaussian distribution function of the nuclear
spins,

pMx
(Mx ) = 1

2

√
6

πM2
exp

(
−3M2

x

2M2

)
, (22)

FIG. 5. Left side: normalized Overhauser field distribution. Right
side: normalized spin noise spectra for (a) t ′/T1,N = 0.001, (b) 0.01,
and (c) 0.1. The spin noise spectra are shifted by the frequency of the
external magnetic field for better comparability.

with the variance∫
pMx

(Mx )M2
x dMx = M2/3. (23)

For the investigation of the time dependency of the Overhauser
field distribution, we use Eq. (8) as the initial condition.
The broadening is determined by the variance σ 2

P = 10−4

introduced when replacing the δ functions in Eq. (8) by the
Gaussian as

δ(x) → 1√
2πσ 2

P

exp

(
− x2

2σ 2
P

)
.

As limω→∞ arctan[ω/(2γ )] = π/2 in Eq. (6b) holds for large
external magnetic fields of several Tesla used in the exper-
iments [12], we set the second set of peaks exactly at odd
multiples of π/TR.

The differential equation (18) can be analytically solved
by a Fourier transformation and by using a separation of
variables. Note that the solution of Eq. (18) depends only on
the ratio t ′/T1,N. The shape of the Overhauser field distribution
is calculated for the times t ′/T1,N = 10−3, 10−2, and 10−1 and
shown in Fig. 5, left column.

The Overhauser fields are randomly generated from these
distributions for each classical configuration. For these dif-
ferent times, the autocorrelation functions of the central spin
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〈Sz(t ′ + t )Sz(t ′)〉 are calculated by full numerical simulations
of (1) and their Fourier transformations give the corresponding
electron spin noise spectra. The results are shown in the right
column of Fig. 5.

The x component of the Overhauser field distribution shows
a clear decay of the peaked substructure inside its Gaussian
envelope driven by the nuclear spin relaxation processes
parametrized by T1,N. The electron spin noise spectrum traces
remarkably the time evolution of the Overhauser field distri-
bution and, therefore, gives direct access to the time constant
of the nuclear spin relaxation. Both distributions match very
well apart from normalization and the shift of the spin noise
spectra by the Larmor precession frequency which is given by
the external magnetic field |bext|. For longer times, the nuclear
spin bath relaxes to the Gaussian equilibrium state (9). Thus,
by monitoring the spin noise as a function of time t ′ after the
preparation of the nuclear spin system, one can obtain the time
evolution of the nuclear spin system and extract the parameter
T1,N, the nuclear spin-lattice relaxation time.

Noteworthy, a similar protocol of electron spin noise mea-
surements can be applied in the course of the focusing process,
i.e., starting from the unpolarized nuclear state and interrupting
the pulse train to measure the electron spin noise. In such a
case, the formation of the peaked distribution of nuclear states
can be monitored and the focusing time can be estimated and
compared with model predictions [12,16–20].

IV. CONCLUSION

In this work we demonstrate that the distribution of the
nuclear spins can be readily determined from the electron
spin noise spectrum under the conditions of the nuclei-induced
electron spin precession frequency focusing effect.

Based on simulations of the nuclei-spin dynamics under
the effect of a pump pulse train [20], a steady-state distribution
of Overhauser fields acting on the electron is extrapolated.
The distribution of the longitudinal, i.e., parallel to an external
magnetic field, component of the Overhauser field features
sharp peaks at the resonant conditions (6). The numerical
simulations in Ref. [20] indicate that while the evolution
from a Gaussian to the steady-state Overhauser field distri-
bution of the pulsed system is dependent on the distribution
of hyperfine interaction coupling constants, the steady-state
function within the CS does not depend on this distribution.
The final distribution function is given by a set of δ peaks
at the resonance conditions whose widths are determined
by the numerical error in the simulation. In real systems,
additional interactions such as the nuclear electric quadrupolar
interaction as well as the nuclear dipole-dipole interactions
will modify the peak shape. The electron spin precession
frequency in the total field (being sum of external and Over-
hauser field), is commensurable with the pump pulse repetition
frequency.

In the numerical simulation, we used two different repre-
sentations of the δ peak located at the resonance conditions: a
box-shaped peak distribution with a very small width of 10−3

in dimensionless units and a very narrow Gaussian peak for
the evolution of the Fokker-Planck equations.

For the simulation of the equations of motion introduced
in Sec. II, we employed the rectangular-shaped peaks as rep-

resentation of the steady-state δ peaks of the Overhauser field
distribution. As a result the dynamics described by Eqs. (1)
the rectangular peaks get slightly broadened and acquire
a Lorentzian shape with a comparable width after a long
simulation time of 5000T ∗, illustrating the very slow change
of the distribution function with time. The electronic-nuclear
spin correlations that were induced by the laser pumping are
suppressed by the dephasing after that time.

It was shown that the Overhauser field distribution is stable
for a macroscopically long time after the end of pulsing due
to the angular momentum component conservation in the
electron-nuclear spin system. The calculated electron spin
noise spectrum closely follows the Overhauser distribution
function.

Since the numerical simulations are very costly, we resort to
a kinetic equation for the slow nuclear spin relaxation in order
to access the long-time limit. These equations can be easily
solved using a Gaussian representation of the initial narrow
steady-state δ peaks of the Overhauser field distribution. The
evolution of the electron spin noise spectrum is driven by
this slow nuclear spin relaxation, which is accounted for by
a simple kinetic equation. We demonstrate that the nuclear
relaxation toward the structureless Gaussian distribution is
also directly revealed in the electron spin fluctuations. The
phenomenologically introduced nuclear spin relaxation time
T1,N can be determined experimentally by tracking the spin
noise spectrum as function of time.
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APPENDIX: GENERATION OF THE NUCLEAR SPIN BATH

The classical configurations are assigned to the peaks
depending on the weight of the peak. The algorithm for each
Overhauser field peak bN,i is then as follows:

(1) I1 is randomly generated on the unit sphere. bN,1 =
a1I1;

(2) subsequent akIk with Ik randomly generated are added
if bN,k−1 − bN,i > bN,k − bN,i with bN,k = ∑k

j=1 aj Ij .
The computation time in the algorithm grows the smaller

the peak width gets. Therefore, a cutoff has to be set [Eq.
(11)]. This |�bN,x | determines the peak width and still leads
to acceptable computation times for the generation of the
distribution. Then, if the number of nuclear spins is great
enough to reach the precision of |�bN,x | before all nuclear
spins are generated the peak is a unitary transformation inside
the boundaries ±|�bN,x |. However, a note is in order: since
the number of configurations per peak vary, so does the noise.
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For the lesser weighted peaks, the influence of the noise to
the distribution in the peak can be substantial. Therefore, an

analytical representation of the Overhauser field distribution is
hard to obtain.
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