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Exciton-phonon coupling and band-gap renormalization in monolayer WSe2
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Using a fully ab initio methodology, we demonstrate how the lattice vibrations couple with neutral excitons
in monolayer WSe2 and contribute to the nonradiative excitonic lifetime. We show that only by treating the
electron-electron and electron-phonon interactions at the same time is it possible to obtain an unprecedented
agreement of the zero- and finite-temperature optical gaps and absorption spectra with the experimental results.
The bare energies were calculated by solving the Kohn-Sham equations, whereas G0W0 many-body perturbation
theory was used to extract the excited-state energies. A coupled electron-hole Bethe-Salpeter equation was solved
incorporating the polaronic energies to show that it is the in-plane torsional acoustic phonon branch that contributes
mostly to the A and B exciton buildup. We find that the three A, B, and C excitonic peaks exhibit different behavior
with temperature, displaying different nonradiative linewidths. There is no considerable transition in the strength
of the excitons with temperature, but the A exciton remains dark in comparison with the C exciton. Further,
all the excitonic peaks redshift as temperature rises. Renormalization of the bare electronic energies by phonon
interactions and anharmonic lattice thermal expansion causes a decreasing band gap with increasing temperature.
The zero-point energy renormalization (31 meV) is found to be entirely due to the polaronic interaction with a
negligible contribution from lattice anharmonicities. These results may have a profound impact on electronic and
optoelectronic device technologies based on these monolayers.
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I. INTRODUCTION

The transition-metal dichalcogenide (TMDC) family and
their monolayer (ML) films have distinguished themselves as
a perfect platform to understand various finite-temperature
quantum many-body phenomena [1–4]. Among them, the
optical-absorption spectrum contains information about the
fundamental band-gap and band-edge energies. When a photon
with energy larger than this gap is incident, an electron changes
its state from a valence band to a conduction band, thereby
leaving a hole in the former. If the external screening between
them is weak, then this particle hole pairs for a sufficiently
long time via Coulombic attraction. In ML films, this pairing
is equivalent to a two-dimensional hydrogen-like atom with
quantized energy states. Fingerprints of such quasiparticles
(QPs) or excitons can be obtained from peaks in the optical-
absorption spectra determined by nonlinear two-photon photo-
luminescence (2PPL) and angle-resolved photoemission spec-
troscopy (ARPES) [5–10] measurements. The photon energies
corresponding to these peaks are of central importance as they
determine the condition of maximum photocarrier generation.
However, the exciton energies as well as the widths of the peaks
in the absorption spectra are strongly affected by the presence
of lattice vibrations. Determination of the exciton lifetime
at nonzero temperatures, therefore, stands as a bottleneck to
understand the exciton-phonon dynamics in optical devices
based on these materials.
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Intrinsic exfoliated ML WSe2, when illuminated by such
photons, displays the sharpest and brightest neutral excitonic
ground-state peaks A and B at 1.65 and 2.05 eV, respectively,
with a giant binding energy of 0.37 eV at 300 K [8,11]. These,
along with other excited excitonic states, can be well captured
from 2PPL measurements, done along �-K and �-K′ of the
Brillouin zone (BZ), confirming that ML WSe2 possesses a
direct optical band gap. Conclusive evidence about the giant
valence spin-orbit splitting (SOS) of 513 ± 10 meV at K and
K′ arising due to the lack of crystal inversion symmetry can
also be obtained from the ARPES measurements [12]. As it is
difficult to capture the conduction band or its splitting profile
directly from ARPES, one may looks for the presence of a
dark exciton. In these MLs, a dark exciton is formed when an
electron pairs to a hole with antiparallel spin (intravalley) and
parallel spin (intervalley). Fortunately, due to the presence of
time-reversal (TR) symmetry [E(K ↑) = E(K′ ↓)], the spin
and momenta at these two valleys are coupled [2,13,14]. This
means that at K the top two valence bands separately are
spin-up and -down, while the two lowest conduction bands sep-
arately are spin-down and -up, respectively. A complementary
scenario is then obtained at K′ by exploiting the TR symmetry.
Therefore, a dark exciton can only form when a hole at the
top valence band at K pairs with an electron at the lowest
conduction band of K (intravalley) and K′ (intervalley) [15,16].
Conversely, since a bright exciton is formed only when an
electron pairs to a hole with a parallel spin (intravalley) and an
antiparallel spin (intervalley), the difference in the bright-dark
excitonic energies provides the split energy difference between
the conduction bands. This is found to be 30 ± 5 meV for ML
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WSe2 [17]. In MoX2 (X = Se, Te, and S) MLs, this energy is
found to be negative, suggesting that the dark excitons house
themselves in higher energies, beyond the first ground-state
bright exciton.

Many-body perturbation theory (MBPT) has been quite
successful in explaining the absorption spectra and excitonic
energies, and it has shown convincing results done on Si
and other hexagonal family members [18–23]. However a
quantitative understanding about the exciton-phonon coupling
in ML WSe2 still needs to be addressed. In particular, it is the
excitonic nonradiative widths that are most difficult to capture
through experiments, and therefore we use the MBPT as a tool
to calculate it. Here we demonstrate the integrated effect of
the electron-electron and electron-phonon interactions on the
electronic and optical properties of intrinsic ML WSe2. We
show that under such a scenario, there is an unprecedented
agreement of the zero- and finite-temperature optical gaps and
absorption spectra with the experimental results. We start with
an evaluation of bare electronic energies by first solving the
Kohn-Sham set of equations using density-functional theory
(DFT). MBPT is then used to compute the QP energies on
the top of this by switching on the dynamic electron-electron
correlation. This eventually fixes the energy gap, which is
otherwise grossly underestimated using only DFT. To get
the renormalized excitonic energies, absorption spectra, and
lifetimes, we solve a coupled electron-hole Bethe-Salpeter
equation (BSE) that includes the polaronic energies extracted
from density-functional perturbation theory (DFPT) calcula-
tions giving an excellent description of the phonon frequencies
and coupling strengths. The methodology adopted here is
therefore fully ab initio and demands no external parameters.

II. THEORY

In intrinsic crystals, there are three types of coupling that
mostly controls the temperature-dependent absorption spectra.
The first one is the coupling between electronic and atomic
degrees of freedom. MBPT provides useful information about
the zero-point renormalization (ZPR) of the widths not present
in the bare-particle states |n, k〉. The electron-phonon (EP)
matrix elements [24]

g
qλ

n′nk =
∑
αs

〈n, k|∇αsφscf|n′, k + q〉

×
∑
qλ

(
1

2Msωqλ

) 1
2

e−iqτs ε∗
(

qλ

s

)
(1)

describe the electron-scattering probability amplitudes from k
to k+q due to the emission or absorption of a phonon with trans-
ferred momenta q in branch λ. Here, the self-consistent poten-
tial φscf is first obtained by calculating the charge densities from
DFT. DFPT is then used to calculate the first-order derivative of
φscf with respect to atomic displacements α and consequently
the dynamical matrices. For this, the entire BZ is sampled by a
number of random q points. Instead of assigning a regular
q-grid sampling, this method gives additional flexibility of
employing new weight 1

Nq
implicitly in the electron-phonon

self-energy integral and is therefore mainly used [25–27]. τs

is the location of mass M of the sth atomic species in the unit

cell, and ε∗( qλ

s
) are the polarization vectors. The states |k + q〉

are finally obtained via a non-self-consistent calculation done
on the same regular grid (see the Appendix for computational
details). Using the Matsubara Green’s function, one can write
the polaronic self-energies after an analytic continuation on
the real axis as [24]

Fan∑
nk

(ω) =
∑
n′qλ

∣∣gqλ
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ω − εn′k−q + ωqλ − i0+

]
. (2)

Here N and f are the phonon and electron distribution
functions, respectively, and 0+ is used to make the contour
integral vanish over the half-circle of the upper half-plane. The
second-order EP matrix elements stem from the renormalized
screening due to the atomic motion and are calculated by
invoking translational invariance symmetry. The frequency-
independent self-energies can then be written as [28]
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〈nk + q + q′ |∇αs∇βsφscf|nk〉

are the corresponding second-order couplings.
Equations (2) and (3) are the Fan and Debye-Waller (DW)

self-energies used to compute the electronic Green’s function

GEP
nk (ω) = [ω − εnk − ∑Fan

nk (ω) − ∑DW
nk (ω)]

−1
. The real part

of this pole is the renormalized QP energies while the imagi-
nary part corresponds to the polaronic lifetime. Assuming that
the bare energies εnk are far from the poles of the real or imag-
inary Fan self-energies, one does a Taylor’s expansion about
εnk, and a renormalization weight factor ZEP

nk (0 < ZEP
nk < 1)

is therefore assigned to each |n, k〉 state resulting in

�EEP
nk − εnk ≈ ZEP

nk Re

[
Fan∑
nk

(ω) +
DW∑
nk

(ω)

]
(4)

with ZEP
nk = [1 − ∂

∂ω
Re

∑Fan
nk (ω)|

ω=εnk
]
−1

. Equation (4) is the
dynamical HAC (Heine, Allen, and Cardona) [29] theory and
represents a finite zero-point energy even when T → 0 K. This
way the uncertainty principle is also satisfied, with the added
advantage that the exciton absorption spectra do not demand
any fitting-broadening parameter. When εnk are very far from
the poles of real and imaginary Fan self-energies such that
∂

∂ω
Re

∑Fan
nk (ω) = ∂

∂ω
Im

∑Fan
nk (ω) = 0, only virtual electronic

scatterings are allowed, and Taylor’s expansion is computed
up to zeroth order [28]. This is known as the static limit or the
on-the-mass-shell approach (Znk → 1). The imaginary part
of GEP

nk (ω) also reflects the spectral function (SF) AEP
nk (ω) =

1
π
|ImGEP

nk (ω)|. Weak coupling results in a sharp SF centered
at �EEP

nk . As the coupling gets stronger, the Lorentzian SF
peak starts becoming more asymmetric and dwarf. Physically,
ZEP

nk signifies the fraction of the positive charge that a bare
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electron takes away from the QP cloud and forms satellite
peaks. Comparing the energy difference between the main and
the satellite peak with the Debye energy, the validity of the
QP assumption can be verified. Equation (4) can also be used
to understand which phonon mode actually contributed to the
nonradiative excitonic linewidth. This can be calculated from
the Eliashberg function for each state |n, k〉 [30],

g2
nkF (ω) =

∑
qλ

∂EEP
nk

∂N (ωqλ)
δ(ω − ωqλ), (5)

and mapping it to the corresponding phonon dispersion.
In addition to EP coupling, lattice thermal expansion (LTE)

also modifies the bare-particle energies and can be of the same
order compared to the former [31]. The energy renormalization
within a variable volume quasiharmonic approximation (QHA)
can be obtained by minimizing the Helmholtz free energy [32]

F ({aj }, T ) − ε({aj }) =
∑
q,λ

h̄ωq,λ({aj })

2

+ kBT
∑
q,λ

ln

[
1 − exp

(
− h̄ωq,λ({aj })

kBT

)]
. (6)

The first-term on the right is the vibrational zero-point energy,
while the second term on the left is the DFT bare energy per-
formed with respect to the geometrical degrees of freedom aj

and the sums extending the BZ. Equation (4) when combined
with Eq. (6) gives the net ZPR due to LTE and EP coupling.

The second coupling is the dynamic long range electron-
electron (EE) correlation and is responsible for opening the
QP electronic energy gap or simply the G0W0 gap. Within
the linear-response theory, the diagonal matrix element of the
dynamic correlational part of the self-energy in the plane-wave
basis set can be written as [30]

〈nk|
∑

(ω)|nk〉 = i
∑
m

∫
BZ

dq

(2π )3

∑
GG′

4π

|q + G|2 ρnm

× (k, q, G)ρ∗
nm(k, q, G)

∫
dω′G0

mk−q(ω − ω′)ε−1
GG′ (q, ω′)

(7)

in which m spans all the occupied to unoccupied bands, and
G are the G vectors of the plane waves in the Fourier trans-
formed plane. G0 is the single-particle Green’s propagator,
and ε−1

GG′ is the microscopic frequency-dependent dielectric
function, which can be efficiently calculated using the Godby-
Needs plasmon-pole approximation model [33] to solve the
dynamic screening W at the random-phase approximation
(RPA) level. By including the static exchange part of the
self-energy, the QP energies can be obtained as �EEE

nk =
εnk + ZEE

nk 〈ψnk|
∑

(εnk ) − Vxc|ψnk〉, in which Vxc is obtained
by solving the Kohn-Sham equations. It is then clear that the
corrections to the band gap due to the EE correlation are orders
of magnitude higher than the EP interactions. Similar to the EP
case, the SF here is again the imaginary Green’s propagator that
can be captured well by ARPES measurements.

The third is the dynamic long-range electron-hole (e-h)
coupling describing the two-particle Green’s propagator. The
corresponding equation of motion is the BSE [34]. Under the

frozen-atom (FA) approximation (i.e., no atomic vibrations),
the Bethe-Salpeter (BS) Hamiltonian is a Hermitian matrix
in the e-h pair basis with eigenstates |ϕFA(T )〉. The excitonic
eigenenergies can then be obtained by formulating the corre-
sponding Hamiltonian in the form [18]

H FA
ee′,hh′ = (Ee − Eh)δeh,e′h′ + (fe − fh)Kee′,hh′ , (8)

in which Kee′,hh′ is a BS kernel and is the sum of a repulsive
(positive) bare Coulomb exchange term and an attractive (neg-
ative) direct e-h screened interaction term. The former stems
from the variation of the Hartree potential and is responsible
for spin-singlet/triplet splitting, while the latter is long-range
and responsible for the formation of excitonic bound states.
(E/f )e/h are the corresponding quasi-e/h energies and Fermi
occupation numbers. When lattice vibrations and LTE effects
are present, Ee and Eh broaden to �Ee and �Eh, respectively,
and they make the BS Hamiltonian a non-Hermitian operator.
However, in most semiconductors the QP corrections due
to LTE are much less compared to �EEP

nk , except in some
special cases resulting in an anomalous band-gap dependency
on temperature [31]. This is still not reported in monolayer
TMDCs. Relaxing only LTE contributions, therefore, the
excitonic energy eigenvalues can be written in the form [18]

Eϕ (T ) = 〈ϕ(T )|H FA|ϕ(T )〉 +
∑
e,h

∣∣Aϕ

e,h(T )
∣∣2

× [�Ee(T ) − �Eh(T )]. (9)

It is then straightforward to extract the real and imaginary parts
from Eq. (9) as

Re[�Eϕ (T )] = 〈ϕ(T )|H FA|ϕ(T )〉 − 〈ϕFA|H FA|ϕFA〉

+
∫

dω Re[g2Fϕ (T )]

[
N (ω, T ) + 1

2

]
(10)

and

Im[Eϕ (T )] =
∫

dω Im[g2Fϕ (T )]

[
N (ω, T ) + 1

2

]
. (11)

The difference g2Fϕ (T ) = ∑
e,h |Aϕ

eh(T )|2[g2Fe(ω)
−g2Fh(ω)] represents the exciton-phonon coupling function
and �Eϕ (T ) = Eϕ (T ) − EFA

ϕ . The temperature-dependent
macroscopic dielectric function in the long-wavelength limit
is therefore

εM (ω, T ) = −8π

�

∑
ϕ

|Oϕ (T )|2Im[ω − Eϕ (T )]−1. (12)

ImεM (ω, T ) defines the complete absorption spec-
tra with the exciton oscillator strength Oϕ (T ) =
〈nk|exp(iκ · r){[|ϕ(T )〉 − |ϕFA(T )〉]} in which κ is the
electric polarization vector direction and � is the volume.
A more elaborate theoretical treatment on Hedin’s GW

formalism and BSE can be found elsewhere [34–36].

III. RESULTS AND DISCUSSIONS

A. Bare and G0W0 energies

WSe2 belong to the space group P 63/mmc. To replicate a
full all-electron potential within the atoms, a norm-conserving
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FIG. 1. (a,b) Bare electronic energy dispersions in ML WSe2 along the BZ. Spin is resolved and projected onto each state with (l = 2) and
exhibiting ms = + 1

2 occupancy in (a) and − 1
2 occupancy in (b). These occupancies are shown by darker areas. The partial density of states is

shown in (c) for 5d and 4p orbitals of W and Se, respectively, mostly influencing the total angular momenta. The antiparallel spins are clearly
visible near the bottom of the conduction band and the top of the valence band. Excited-state G0W0 dispersions are shown in (d) with a direct
band gap of 2.19 eV. C and V represent electronic transitions during optical excitations.

and fully relativistic pseudopotential was first generated [37].
The 5s, 5p, and 4f semicore orbitals were included for W
along with 5d and 6s valence electrons. The PBE exchange-
functional was selected because of two reasons: (a) after
testing with a variety of other functionals (see the Appendix
for computational details), the convergence of the lattice
constant here is found to be in good agreement compared
with the experimental data (with a slight overestimation of
0.04 Å), and (b) an exchange-functional like the LDA tends to
underestimate the electron-phonon interactions by 30% [38].

In Figs. 1(a) and 1(b), V1 and V2 at K are the split valence
bands (Zeeman-like) due to the spin-orbit coupling (SoC) in
which both of them are mainly populated with 5d orbital
electrons from the W atom. The spin occupancy due to the
L-S (L denotes the orbital angular momentum and S denotes
the spin angular momentum) coupling results in an orbital
angular momentum (l = 2) and spin quantum number ms =
+ 1

2 for V1 and − 1
2 for V2, respectively. The giant spin-orbit

splitting between these two is found to be |�ESoC
v | = 466

meV, while the energy difference of V1 between the K-Γ
direction is −492 meV. Further, the SoC results in a splitting
of conduction bands C1 and C2 at K with |�ESoC

C | = 37 meV.
The lowest valley conduction band in the K-Γ direction is
almost degenerate with C1 at K and is located above 44 meV
[for a magnified diagram, see Fig. S2(b) in the Supplemental
Material [39]]. These band edges, therefore, result in a direct
bare energy gap (Eg) of almost 1.26 eV. The partial density
of states contributed by different atomic orbitals and spins is
shown in Fig. 1(c), in which the conduction bands C1 and
C2 are mainly found to build up by 5dj= 3

2
(spin-down) and

5dj= 5
2

(spin-up) of the W atom, respectively. The scenario is
the opposite in the top two valence bands, where V1 and V2
are mainly found to build up by 5dj= 5

2
(spin-up) and 5dj= 3

2

(spin-down) of the W atom, respectively. This antiparallel spin
occupancy in both split valence and conduction bands is due
to the broken inversion symmetry. Interestingly, in the case
of ML MoX2 (X = S and Se), parallel spin polarizations in
V1, C1 and V2, C2 are found [16,40].
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FIG. 2. Phonon (a) dispersion and (b) density of states in ML WSe2 along the BZ. The real part of the difference between the conduction-
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buildup), (d) (V2, C1) (responsible for B-exciton buildup), and (e) (V3, C3), (V4, C4), and (V5, C5) (responsible for C-exciton buildup). All the
differences are negative suggesting a band-gap shrinkage as temperature rises.

To capture the excitation results, the excited-state cor-
rection G0W0 method was employed (see the Appendix for
computational details). The inclusion of the dynamic EE
correlation [Eq. (7)] then opens up Eg to 2.19 eV, which is
in excellent agreement with the reported range of 2.02-2.35 ±
0.2 eV for exfoliated WSe2 MLs [8,10]. Comparing both
the G0W0 and DFT results, it is evident that the difference
ZEE

nk 〈ψnk|
∑

(εnk ) − Vxc|ψnk〉 essentially provides a rigid en-
ergy shift only (with ReZEE = 77% and 76% for V1 and C1,
respectively), showing that these dynamic EE-correlated QP
corrections are rather weakly dependent on k-vector directions.
It is also evident that the change in the energies of the unoccu-
pied states after G0W0 corrections is considerably larger when
compared to the occupied ones, and it is mainly due to the
change in the binding energies, which results in an increase
in the valence-band width. In the case of unoccupied states,
the low-lying conduction bands formed now have larger QP
corrections as they are highly localized in nature, supporting
the fact that self-interaction errors in the DFT are severe
for localized states, therefore producing an infinite lifetime.
Further, the two low-lying nondegenerate conduction bands at
K after G0W0 corrections acquire a 40 meV separation. This
is in excellent agreement with the experimentally evaluated
splitting of the conduction bands (30 ± 5 eV) found by probing
the dark excitonic states [17]. The almost degenerate satellite
bands obtained in Kohn-Sham calculations are now lifted
up to 393.8 meV while the valence-band splitting opens
up to |�ESoC,G0W0

v | = 572 meV. Interestingly, there are also
recent reports about the indirect band gap found in chemical
vapor deposition (CVD) -grown ML WSe2 [41,42]. By using
scanning tunneling spectroscopy, Zhang et al. [41] reported an
indirect QP gap of 2.12 ± 0.06 eV in the �-K direction. They
also reported a direct QP gap at the K-K transition of 2.20 ±

0.10 eV, nearly degenerate with the indirect gap. However,
Zhang et al. [41] also suspected that this indirect band gap
might have occurred because their WSe2 was grown on
graphite with a Moiré pattern that imposed additional period-
icity, thereby modifying the QP band structure. Hsu et al. [42]
investigated the spatially resolved PL from a ML WSe2-MoS2

lateral heterojunction (HJ) with inherent nonuniform strain
distribution. They first demonstrated PL from strained MoS2

in WSe2-MoS2 lateral HJs as a model system to extract the
energy differences between the direct and indirect gaps in
ML MoS2. Then they demonstrated the study of MoSe2-WSe2

lateral HJs and showed that unstrained ML WSe2 is actually an
indirect gap material. It is therefore interesting to observe from
the above references that ML WSe2 prepared by mechanical
exfoliation demonstrates a direct band gap, while ML WSe2

prepared by the CVD technique results in an indirect band gap.
In any case, we find that our ab initio energies and absorption
spectra are in excellent agreement with the case of exfoliated
ML WSe2.

B. DFPT and electron-phonon self-energies

DFPT is now used to understand the lattice vibrations
and EP self-energies. Bulk WSe2 belongs to the D4h(62m)
symmorphic group. In the case of ML film, the group symmetry
reduces to D3h(62m), where the nine modes at � decompose
into four irreducible representations A′′

2, E′, E′′, and A′
1. The

dispersion and the density of states have been exhibited in
Figs. 2(a) and 2(b). Modes E′, E′′, and A′

1 are equivalent
to E2g , E1g , and A1g in the bulk case, respectively. Both the
in-plane longitudinal acoustic (LA) mode and the out-of plane
optical (ZO) mode A′′

2 are IR (infrared) -active. The ZA and
TA motions E′ are both degenerate, IR-, and Raman-active.
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FIG. 3. (a,b) Spectral functions at the top valence band and lowest conduction band at different temperatures, respectively. The vertical
line marks the bare energy values. The Lorentzian shape broadens as temperature rises with respective blue- and redshifting of the valence
and conduction band. (c) Zero-point energy as a function of temperature due to the electron-phonon renormalization (red curve) and lattice
anharmonicity (blue curve) representing a band-gap reduction with temperature. (d) Band-resolved polaronic linewidth as a function of
temperature. Only the valence-band maxima and conduction-band minima linewidth at the K point is shown.

The two midfrequency modes E′′ are in-plane, degenerate, and
only Raman-active. Further, the two modes E′ in the lower
optical regions are degenerate with both IR- and Raman-active
modes, while the out-of phase ZO modes A′

1 (Se-Se) and
A′′

2 (Se-W-Se) are IR- and Raman-active, respectively. The
first- and second-order E-P matrix elements [Eqs. (2) and
(3)] were then calculated by sampling the entire BZ into 113
random transferred-momenta grids and 288 random k points,
respectively. We did not impose electron-phonon-mediated
spin mixing in any bands as it is found to be insignificant
in similar structures [27]. We reserve our discussions on the
Eliashberg functions shown in Figs. 2(c)–2(e) in conjunction
with the exciton formations in subsequent paragraphs. The
SFs of valence and conduction bands at K are shown in
Figs. 3(a) and 3(b). Since SFs are proportional to the full
width at half-maximum of the polaronic linewidths, a sharper
SF would then mean a more stable electronic state, i.e.,
a finite yet longer lifetime. As the temperature increases,
the SF broadens in energy, thereby interacting a great deal
with phonons and leading to a faster transition to another
excitonic state of similar energy. The SF broadening of the

electronic states at 0 K can now be calculated from Eq. (4),
in which the peak corresponds to the zero-point energy. One
can then see a generic trend of redshifting (conduction) and
blueshifting (valence) of the peaks with temperature. Such a
trend leads to the well-known band-gap shrinkage and is shown
in Fig. 3(c). A careful analysis on the polaronic corrections
to the width is shown in Fig. 3(d). The width varies slowly at
lower temperature but increases linearly at higher temperature.
This behavior is due to the renormalization of the electronic
energies by acoustic phonons, which is also exhibited by the
Eliashberg functions shown in Fig. 2(c), where the contribution
from optical phonons is much less for the above-mentioned
bands. The residual width is the zero-point correction and is
found to be smaller for the top valence band but an order of
magnitude larger for the bottom conduction band at K. This
is in accordance with the uncertainty principle, as a smaller
width results in a longer lifetime. We find that by using a
fully dynamic self-energy computation, the conduction and
valence bands shrink by 2% and 0.1%, respectively, leading
to a correction of 31 meV below the bare gap of 1.26 eV. The
zero-temperature QP weights for the conduction and valence
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FIG. 4. The mode-dependent Grüneisen parameter along the
�-M BZ zone. The lowest three acoustic modes are shown in (a)
while the optical modes are shown in (b). A negative γλ(q) is obtained
in the ZA mode at � resulting in a lattice thermal contraction. The
inset shows the variation of the bulk modulus with respect to the
temperature.

bands are found to be 95% and 98%, respectively, leading to
the conclusion of the good QP state. The SF peaks of the latter
are much larger in magnitude than those of the former due to
the larger widths. Increasing the temperature to 1000 K reduces
the QP weights to 73% and 91%, respectively, which calls into
question the validity of the QP assumptions for the conduction
band. However, even at this temperature we did not find any
appreciable emergence of secondary peaks as in the case of
trans-polyacetylene [43].

C. Lattice anharmonicities and the ZPR

To understand the band-gap reduction due to LTE [Eq. (6)],
a variable volume QHA computation was also carried out. The
lattice anharmonicities are captured by altering only the in-
plane lattice constants to two geometries centered about the
relaxed one with a strain of ±0.01 Å. Once the Helmholtz
free energy is minimized, the corresponding zero-point energy
is extracted by fitting into the second-order Birch-Murnaghan
equation of state [32].

To understand the anharmonicities that might contribute
to the ZPR at a nonzero temperature, we have additionally
computed the Grüneisen parameter γλ(q) = − ∂ ln ωqλ

∂ ln V
for each

of the phonon modes along the �-M direction of the BZ. The
lowest three acoustic modes are shown in Fig. 4(a) whereas
the rest of the optical modes are displayed in Fig. 4(b).
Immediately by looking at the center � of the BZ, we find
that the out-of-plane ZA mode appears to be the dominant
mode that dips to a much more negative value, resulting in a
lattice thermal contraction at lower temperature. The optical
modes that are not yet excited are clear signatures of positive

TABLE I. ZPR of ML TMDCs and other materials.

Structure ZPR (meV)

ML WSe2 31 (this work)
Black phosphorus [31] 20
trans-polyacetylene [43] 40
ML MoS2 [27] 75
Si [48] 123
SiC [48] 223
Polyethylene [43] 280
Diamond [49] 622

γλ(q). As the temperature rises, the dormant optical modes
wake up and lattice expansion occurs. The lattice contraction
in this case, however, is indeed small and was captured by
Çakır et al. [44]. Since there is no stacking layer involved in
ML WSe2, a positive strain then increases the ZA frequency of
vibrations, resulting in the well-known membrane effect [45].
This was observed earlier in graphene [32] and recently in sil-
icene, germanene, and blue phosphorene [46]. Interestingly, we
obtained a γA1g

(�) = 0.69 that is close to the experimentally
evaluated value of 0.55 [47]. The computation of ZPR uses
the bulk modulus BT , and therefore in the inset of Fig. 4(b)
the variation of the same with temperature is shown. We find
a monotonically increasing behavior with a room temperature
BT = 65.2 GPa, which is a little less than its corresponding
bulk value of 72 GPa [47]. The influence of LTE on band-gap
reduction was shown in Fig. 3(c). The anharmonic contribution
is small, as expected due to the larger atomic masses, but it does
not show any decreasing (anomalous) behavior. We thus find
that the gap shrinkage is mainly due to the electron-phonon
interactions. Table I summarizes the ZPR obtained in this work
with other ML TMDCs and bulk members. Comparing with the
ML counterpart, we see that the ZPR decreases as the weight of
the formula units increases, which is consistent since heavier
atoms vibrate less.

D. Absorption spectra and excitonic states

The absorption spectra at different temperatures have been
computed using a coupled BSE and are shown in Fig. 5. Both
the resonant and antiresonant electron-hole pairs were included
in the BS kernel since the omission of the latter, known
as the Tamm-Dancoff approximation [50], underestimates
the collective density oscillations, which consist also of the
electron-hole pairs. The absorption spectra at 300 K have been
exhibited in Fig. 5(a), which contains the polaronic widths and
quasienergies at each state |n, k〉 as well as the dynamic long-
range electron-electron gap correction. To include this G0W0

correction, we use a scissor operator of 0.928 eV and a linearly
fitted conduction- and valence-band stretching of 1.134 and
1.069 eV, respectively (see Fig. S3 in the Supplemental Ma-
terial [39]). The vertical arrows represent the bare energy gap
1.26 eV and the G0W0 gap 2.19 eV. A static screening was then
computed to build up the BS kernel. The inset in Fig. 5(a) shows
an enlarged view for comparison of our work with the reported
experimental results [8]. The A and B excitons are found to
be located at 1.61 and 2.06 eV compared with the experi-
mental values of 1.65 and 2.08 eV. The ground-state exciton
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FIG. 5. BSE is used to extract the temperature-dependent absorption spectra as a function of photon energy at (a) 300 K. The peaks A,
B, and C correspond to the neutral excitons. Both excitons A and B are within the bare energy and continuum, marked by arrows. The black
curve is the experimental data [8], also shown as an enlarged manner in the inset. The frozen-atom approximated spectrum is shown in purple,
while the spectrum corresponding to the independent-particle approximation under the RPA and local fields is shown by a green line. (b) The
absorption spectra at different temperatures exhibiting a relative blueshifting of the peaks.

A is formed as a result of interband transitions from the V1
valence energy band to the two lowest conduction bands C1
and C2 at K (K′) points in the BZ [Fig. 1(d)]. Similarly, exciton
B is built due to the electronic transition from V2 to C1. The
difference between these two excitonic peaks is exactly equal to
the bare SoC valence bandwidth. Apart from these two peaks,
the C exciton is located at 2.77 eV and is made from the deep-
lying conduction and valence bands that take part in interband
transitions resulting in a spectrally broad response, including
contributions near the � point. The Eliashberg function can
now be used to understand the coupling of the phonon modes
with the three excitons. We now return to Figs. 2(c)–2(e), in
which we computed the difference between the conduction
and valence Eliashberg functions, and it is calculated for those
bare states where the transition has taken place. For example,
V1 → C1, C2 means the transition has occurred between the
top valence band and the two lowest conduction bands (at K)
[Fig. 1(d)], as is the case with the A exciton. The difference
is then Re[g2FC1 (ω) − g2FV1 (ω)]. This quantity, being a
negative for semiconductors without any anomalous band-gap
shrinkage with temperature, is found to be dominated mainly
by the acoustic branches around 103 cm−1. Out of these three,
the LA branch is found to be the most significant, resulting in
an in-plane torsional mode at K. The other acoustic branches
contribute only to stretching of the lattice along the in-plane
and out-of plane directions. A small peak around 255 cm−1 is
due to the optical branch consisting of both in-plane (W atoms)
and out-of-plane (Se atoms) torsional modes, but effective
only by about 25% compared to the former. This is in stark
contrast with that found in MoS2 ML A-exciton buildup, where
the main contribution comes from the optical branch around
400 cm−1 [27,51]. The B exciton couples in a similar manner,
with a contribution of almost one-third from optical branches.
A small addition can be seen coming from the midfrequency
branch, and it is shown by a small peak around 194 cm−1.

Interestingly, the C exciton couples with both acoustic (around
116 cm−1) as well as lower and higher optical branches (around
210 and 244 cm−1) and is 70% more effective compared with
the in-plane contribution. The effect of varying temperature
on absorption spectra is shown in Fig. 5(b), where a higher
redshifting of the absorption peaks is obtained. Analyzing
carefully the intensity and broadening of excitons, we find that
the B peaks more than A in the frozen-atom approximation
(i.e., with only the G0W0 correction) and at 0 K. However, as
the temperature increases, both peaks start to become smaller
in magnitude. At all temperatures, the A peak is found to be
slightly narrower than the B peak, but the spectra magnitude
reduces more for the B exciton. Furthermore, both A and B

excitons remain unchanged in terms of intensity, but there
is a considerable broadening, especially for the B exciton.
These results are in excellent agreement with the experimental
results, where the PL intensity of the peaks contributing to
the lower bound excitons A and B decreases with increasing
temperature [52]. Here we could not capture the higher-lying
exciton as demonstrated by Godde et al. [52], which follows
an opposite trend with temperature after 110 K. This could
be due to its existence as a result of the intervalley transition,
which stands as a limitation in this current BSE execution. In
their experiment, they studied the nature of all excitons and
trions and found that only this higher-lying neutral exciton
shows such an anomalous behavior with temperature. Addi-
tionally, they demonstrated that due to the dominance of this
particular neutral exciton’s intensity at higher temperatures,
the integrated PL intensity (i.e., the sum of the contribution
of all excitons and trions formed when the sample is exposed
to light) shows an increasing trend with temperature, as also
shown elsewhere [17]. All the other effects shown in this
work, such as the redshift of the peaks in the absorption
spectra with increasing temperature and the width of the peaks
of the individual neutral excitons, follow the same trend as
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FIG. 6. (a) Exciton oscillator strengths at different temperatures. All the excitons are found to be bright at all temperatures. (b) A-excitonic
nonradiative linewidths as a function of temperature. The inset enlarges a low-temperature variation.

demonstrated elsewhere [17,52]. The C exciton with its peak
located at 2.77 eV is in good agreement with the reported ex-
perimental value spread about 2.5 eV [11]. A sight discrepancy
in our results might be due to the use of a scissor operator in
the BSE calculation that stretches the conduction and valence
bands and therefore underestimates the energy coordinate
of the higher-lying excitons. Nevertheless, we find that C

behaves differently with increasing temperature, having its
intensity reduced at a higher pace and its broadening increased
considerably. In addition to these, the absorption spectra in
the absence of a BS kernel (i.e., the independent-particle
approximation) but including the static screening within the
RPA have been plotted to compare the consequences on the
peak positions.

The oscillator strengths of the three excitons over a range
of temperatures are shown in Fig. 6(a). Excitons A and B are
found to remain bright at all temperatures, whereas there is only
a slight variation of the strength in the case of the C exciton in
the range 250–1000 K. This can be understood from the first
and second terms in Eq. (10). In the case when |ϕ(T )〉 ∼ |ϕFA〉,
the second term dominates and as a consequence there is
an individual interaction that occurs between the phonons
with electrons and holes. This is therefore the incoherent
contribution and is the case with ML WSe2. A bright to dark
transition or vice versa would result in a nonzero but large
value of the first term, and hence it is the coherent contribution.
Such transitions occur due to the transfer of oscillator energies
when a bundle of excitonic states get close, and they are found
to dominate in h-BN [18]. As can be seen from Fig. 6(a),
there are no excitonic states close in energy for A, B, or C

excitons, hence there is no bright to dark transition or vice
versa for any of the excitons. The A-excitonic nonradiative
linewidth as a function of temperature is shown in Fig. 6(b).
The residual linewidth at 0 K is found to be 2.85 meV. The
linear section can be explained by fitting to the phonon-induced
variation ϒ (T ) = ϒ0(0) + ϒ ′T , where ϒ ′ denotes the linear
increase due to the acoustic phonons. An exponential variation
would result in an exciton–optical-phonon interaction, which

was recently found to be present in ML MoS2 [53]. When
extrapolated to 0 K, we find ϒ0(0) = 2.25 meV. This is
close to the value 1.6 ± 0.3 meV in the case of CVD-grown
ML WSe2 where the exciton-phonon interaction is mainly
found to stem from acoustic modes [54]. Furthermore, we
obtained the exciton–acoustic-phonon coupling strength ϒ ′ =
15.6 μeV K−1. This is almost four times smaller than the CVD
samples. The reason for these limitations in our results might
be due to the ruling out of any defects in the lattice, exciton-
exciton/trion interactions (i.e., the incorporation of higher-
order Feynman diagrams and the formulation of a three-body
time-dependent DFT Hamiltonian) as such. Interestingly, in
Figs. 7(a) and 7(b) we have plotted the A and C excitonic wave
functions at 300 K over the in-plane coordinates, respectively.
The two-dimensional projection of the probability density of
the excitonic states in both cases was calculated by fixing the
hole position above the W atom at a distance of 1.05 Å. We
took this distance since we found the electron density to be
higher near the Se atoms, and it is also shown in the electron
density plot (see Fig. S4 in the Supplemental Material [39]).
Here the summation over all the states has been taken into
account [19,55,56]. The spreading of the wave function of the
A exciton is over a diameter of 31.60 Å and therefore envelops
many unit cells. They are thus Wannier excitons. Moreover, the
wave function appears to be spherically symmetric, suggesting
that a 1s ground state, similar to that of the ground-state wave
function of a hydrogen atom, is properly exhibited. The wave
function of the B exciton is found to be of a similar nature and
hence is not shown here. A rather more localized spreading
with high binding energy of the C exciton is shown in Fig. 7(b),
which spreads over a diameter of 26.56 Å. This spreading of
the excitons is smaller than that of the ML MoS2 obtained
by ab initio results [27], confirming higher excitonic binding
energies at room temperature in ML WSe2. We understand that
the inclusion of intervalley transitions explaining the intriguing
spin as well as momentum-forbidden low-lying dark states
together with thermal-expansion effects would have been much
more accurate in describing the quenching of the PL spectra
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FIG. 7. Excitonic wave function plot at 300 K over the xy plane of the ML WSe2. The hole is fixed in space and is placed on the top of the
W atom at a distance of 1.05 Å. The wave function spreads to about (a) 31.60 Å over the entire plane in the case of the A exciton. For the C

exciton (b), the spreading is brighter with a large oscillator strength and spreads only up to 26.56 Å.

at low temperatures. Such a computation would require a
solution of the time-dependent BSE, and it is beyond the
scope of this work. However, in this work we have presented
an extensive quantitative analysis in order to understand the
essential phonon couplings between the A, B, and C excitons.
The role of lattice anharmonicities toward zero-point energies
is also investigated.

IV. CONCLUSIONS

The lack of inversion symmetry and reduced screening
in ML TMDCs plays a central role in building up a strong
spin-orbit interaction hosting bound excitons with large bind-
ing energies. In this work, we demonstrate a contemporary
and combined electron-electron, electron-hole, and electron-
phonon study to reveal a thorough underlying mechanism of
exciton-phonon couplings and energy renormalization in ML
WSe2. We use a complete ab initio formalism (starting from
the bare energies) to explain the origin of neutral exciton-
phonon couplings and the respective excitonic linewidths. The
absorption and excitonic energies were obtained by solving the
coupled electron-hole BSE that included the polaronic energies
extracted from the DFPT calculations and are found to be
in excellent agreement with the reported experimental data
over a wide range of temperatures. Within this approach, we
were able to capture features such as the oscillator strength
of the excitonic peaks and their broadening, which directly
related to the temperatures and to the nonradiative exciton
relaxation time. Eliashberg functions were computed from
these results and were analyzed against the phonon spectrum
to understand the mode coupling of the electronic transitions
between different energy bands about the optical gap. We
found that the A and B excitons mainly couple with the LA
phonons. The C exciton couples both with LA as well as
optical modes near 225 cm−1. Apparently, we also found that
the electron-phonon interaction strongly renormalizes the bare
electronic energies. To quantify the contributions from lattice
anharmonicities, we executed a variable volume quasihar-
monic analysis of the mode-dependent Grüneisen parameter
along the BZ zone. This demonstrated that the out-of-plane
mode contributes mostly to the lattice thermal contraction at
lower temperature. In spite of this, we find that the effect of the
lattice anharmonicities imparts many fewer energy corrections
to the optical band gap compared with the electron-phonon
interactions. We believe that this work would be a very useful
reference to study the behavior of ML WSe2-based excitonic

solar cells at finite temperatures where the exciton physics
governs the photoconversion.
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APPENDIX: COMPUTATIONAL DETAILS

A unit cell of WSe2 consisting of three atoms was first
generated. The structure was truncated in the out-of-plane
direction using a vacuum-slab-vacuum profile of 25 Å on
each side to avoid the Coulombic interaction between repeated
images. The PWSCF code [58] was then used to solve the
Kohn-Sham equations. After testing the variety of kinetic
cutoff energies, convergence was found to be achieved at 90 Ry
for both atomic species [see Figs. S1(a) and S1(b) in the
Supplemental Material [39]]. A �-centered Monkhorst-Pack
scheme is then implemented for sampling the BZ with a
dense grid of 18 × 18 × 1. The structure was then allowed
to relax within the variable cell configuration. The cell sizes
as well as atomic coordinates were continuously updated
along the minimum slope direction specified by the locally
optimized coordinates calculated from the Hellmann-Feynman
theorem. This minimizes the total energy of the unit cell
with forces less than 10−4 eV Å−1. A number of fully rela-
tivistic, norm-conserving pseudopotentials but with different
exchange-correlation functionals were generated to realize the
experimentally evaluated in-plane lattice constant, as shown in
Table II. The same semicore-corrected orbitals were included

TABLE II. In-plane lattice parameter and band gap with various
exchange functionals. Experimental lattice constant: 3.28 (Å) [57].

Exchange functionals a (Å) Eg (eV)

PZ 3.2468 1.387
PBE 3.3175 1.26
REVPBE 3.3365 1.217
BP 3.3333 1.2269
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in all of these pseudopotentials. Among all others, we found
the PBE exchange functional to correctly describe the relaxed
in-plane lattice constant. A further optimization was done
without varying the cell volume but within the same force
limits. A two-spinor wave function was finally expanded in
the plane-wave basis set along with a noncollinear and SoC
calculation to carry out self-consistently evaluated charged
densities. A non-self-consistently evaluated state calculation
along the regular grid was finally done to interpolate the bare
energy bands.

The excited-state computation was carried out by using
the YAMBO code [59], and it involved a careful calculation of
the QP energies with a dynamic dielectric screening function
evaluated with the general plasmon-pole model. One of the
two plasmon-pole frequencies was chosen to be 27.2 eV,
beyond which the dielectric function remained unchanged.
The exchange part in the static self-energy (Hartree-Fock)
was summed over 20 065 G-vectors. A total of 150 bands,
with the number of unoccupied bands 1.5 times the number of
occupied bands, were used for summation of the polarization
function [Eq. (7)]. The QP corrections were done in the lowest
five empty conduction bands and the highest six valence bands
along the BZ, and we were able to obtain a converged direct
band gap of 2.19 eV in the G0W0 calculation. The energy
cutoff for the response function was set to 5 Ry. An important
ingredient was to manage the divergence of the Coulomb
potential at small q appearing in the exchange as well as
dynamic self-energies, BSE, etc. for reduced geometries. To
fix this, a random integration method [59–61] was applied
that assumes a smooth momenta integrand function (only for
oscillators and occupation numbers) about q in each region of
the BZ without changing the potential itself. For example, the
diagonal matrix element of the exchange self-energy following
this assumption can be written as 〈nk|∑x (r1, r2)|nk〉 ≈∑

qi

∑
G F (qi, G)

∫
smallBZ(qi )

d3q 4π

|q+G|2 . This integral is
evaluated using a numerical Monte Carlo method that
resolves the q → 0 divergence, as the three-dimensional
q integration prevents this from happening. In a similar
way, the divergence associated with the electron-phonon
Fan self-energy [Eq. (2)] can be evaluated from

∑Fan
nk (ω) =∑

n′qλ

|gqλ

n′nk|2
Nq

[
N (ωqλ )+1−fn′k−q

ω−εn′k−q−ωqλ−i0+ + N (ωqλ )+fn′k−q

ω−εn′k−q+ωqλ−i0+ ]. Note that
here the number of q points is explicitly factored. To allow

for the divergence at q → 0 of the |gqλ

n′nk|
2

matrix elements
and to speed up the convergence, the BZ is again divided
into small regions (in the reciprocal lattice) centered around
each q point. One can thus rewrite the Fan self-energy as∑Fan

nk (ω) = ∑
qi

∑
n′λ (

∫
smallBZ(qi )

d3q
|gqλ

n′nk|2
�RL

)[
N (ωqiλ )+1−fn′k−qi
ω−εn′k−qi

−ωqλ−i0+

+ N (ωqi λ
)+fn′k−qi

ω−εn′k−qi
+ωqλ−i0+ ]. The integral d3q is evaluated as∫

smallBZ(qi )
d3q

|gqλ

n′nk|2
�RL

≈ |qi|2|gqiλ
n′nk|2

�RL
(
∫

smallBZ(qi )
d3q
q2 ) using the

Monte Carlo method. We see that in this case again the
integral

∫
smallBZ(qi )

q−2d3q does not blow up in the limit

q → 0. In addition, the prefactor |qi|2|gqiλ

n′nk|
2

is also regular
when qi → 0 [62]. 3 000 000 random points were incorporated
in our calculation in order to evaluate the Coulomb integrals
up to 100 G-vectors of the Coulomb potential in small BZ
regions. The Monte Carlo technique was then used to evaluate
this integral numerically defined within a box structure
extending 25 Å on either side of the ML WSe2. This truncated
the Coulombic potential between the repeated images, and a
faster convergence was achieved. A 12 × 12 × 1 k sampling of
the BZ was found to be sufficient for the evaluation of the Fan
and Debye-Waller self-energies with a rigid self-consistent
error threshold below 10−16 Ry and a single iteration mixing
factor of 0.8 Ry that continuously updated φscf. Additionally,
a phonon broadening of 1 meV is used in the analysis of the
Eliashberg function to capture the phonon mode contributions.
The polaronic and G0W0 corrections make the BS matrix
non-Hermitian. Therefore, a full-diagonalization method is
necessary to solve for the excitonic strengths and the lifetime,
which included the top six valence bands and the five lowest
conduction bands for the transitions. The value of the response
block size is kept the same as in the case of the G0W0

calculation, i.e., 5 Ry, while the electric polarization vector
direction was chosen to be normal to the plane of ML. The
excitonic wave functions were then unfolded on the real-space
lattice by using the XCRYSDEN code [63]. The variable
volume QHA computations were performed on the same DFT
charge-density results with the code developed by Dal Corso
[58] under the same PWSCF code subroutines. The above
configuration was found to be sufficient for optimizing the
computational resources to the bare minimum, yet producing
accurate results.
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