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Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour
a quantum critical point at half-filling, with critical behavior in the Gross-Neveu (chiral Ising) universality
class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate
charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice
beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities
using the functional renormalization group method with a basic Fermi surface patching scheme, which allows
us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling
and the Van Hove filling, the free Fermi surface is holelike and we again find a charge-density wave instability
to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the
Van Hove filling, the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower
filling, the free Fermi surface becomes electronlike and a superconducting instability with f -wave symmetry is
found to emerge from the interplay of intra-unit-cell repulsion and collective fluctuations in the proximity to the
charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order
parameters from the effective low-energy Hamiltonians.
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I. INTRODUCTION

Recent experiments on twisted graphene bilayers report
evidence for strongly correlated insulating behavior near
half-filling with respect to the superlattice unit cell [1] and
unconventional superconductivity for doping slightly away
from it [2]. While this is undoubtedly a major experimental
breakthrough, the physics of correlated electrons in graphene-
based systems remains a formidable challenge for theoretical
methods, which is often approached in terms of simplified
models. A fundamental model to study the behavior of itinerant
fermions with interactions in graphenelike systems is the ex-
tended Hubbard model for spinless fermions on the honeycomb
lattice [3–5].

In the particle-hole symmetric, half-filled case (correspond-
ing to a vanishing chemical potential μ = 0), the quantum
many-body phase diagram of this model with nearest- and next-
to-nearest neighbor interactions has been studied intensely,
employing various theoretical approaches ranging from mean-
field approximations [6–9] over functional renormalization
group (fRG) studies [10] to various numerical approaches
[11–15]. A large variety of competing phases was found, see
Ref. [16] for a review. Most of these theoretical approaches
agree on the presence of a stable semimetallic state for small
interactions and a competition of different charge-ordered
phases and a Kekulé phase beyond critical values for the
nearest- and next-to-nearest neighbor interaction terms. At
the same time, the presence of a topological Chern insulating
phase, which was suggested by early mean-field studies [6],
was not generally confirmed.

Varying only the nearest-neighbor repulsion V at vanishing
next-to-nearest neighbor interaction, consensually leads to a

continuous quantum phase transition toward a commensurate
charge density wave (CDW) state at a critical interaction
strength of Vc ≈ 1.36t , see Refs. [17–20]. Here, t denotes
the nearest-neighbor tight-binding hopping amplitude. The
quantum critical behavior of the semimetal-to-CDW transition
of the spinless fermions is suggested to belong to the three-
dimensional Gross-Neveu universality class with an Ising
order parameter [4,21], see Refs. [22–26] for recent estimates
from different theoretical methods. Beyond half-filling (i.e.,
at finite chemical potential μ �= 0) the physics of spinless
fermions on the honeycomb lattice is far less explored; see,
for example, the mean-field studies in Refs. [8,9] and the
numerical approaches of Refs. [27,28]. In fact, a thorough
study of the system away from half-filling is hampered by the
presence of a sign-problem for lattice quantum Monte Carlo
simulations at finite chemical potential and the high numerical
costs related with some otherwise promising methods such as,
e.g., exact diagonalization.

Another theoretical approach, which has proven itself to
be promising for an unbiased identification of the leading
quantum many-body instabilities of correlated lattice fermion
systems is the fermionic fRG [29,30]. In the context of spinless
fermions on the honeycomb lattice with nearest- and next-
to-nearest neighbor interactions it has provided support for
the suppression of a topological Chern insulating phase and
a competition among various charge-modulated phases [10].
Therefore, and despite differences at larger couplings, the fRG
is qualitatively in line with numerically exact approaches and
allows for the inclusion of correlations beyond mean-field
theory. Moreover, the fRG can straightforwardly be extended
to finite chemical potentials, which has already been explored
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FIG. 1. Tentative phase diagram of spinless fermions on the
honeycomb lattice with nearest-neighbor repulsion V and chemical
potential μ, given in units of the nearest-neighbor hopping amplitude
t . At μ = 0, the transition from the semimetallic to the commensurate
CDW phase in mean-field theory is given by V MF

c ≈ 0.75t (blue dot)
and from quantum Monte Carlo simulations by V QMC

c ≈ 1.36t (red
dot). For this phase diagram, we have evaluated the flow equations
with the patching schemes from Fig. 4, resolving instabilities down
to scale of �/t = 10−7, and we have chosen a wave vector resolution
of N = 120 patches in the Brillouin zone. The initial parameters of
the flow are indicated by the grey dots.

in the case of spin-1/2 fermions on the honeycomb lattice,
both at small doping [31,32] as well as near the Van Hove
filling, to reveal the possibility of unconventional supercon-
ductivity [33–35]. A corresponding study for the simpler case
of the paradigmatic spinless fermion model, however, is still
lacking. Here, we take the recent experiments [1,2] on graphene
superlattices as a further motivation to fill this gap. We note that
in combination with complementary theoretical approaches,
the study of this minimal model at finite doping can be expected
to constitute one of the most fundamental building blocks,
when it comes to the understanding of correlated phases and
unconventional superconductivity in graphene.

In the following, we will present results from a thorough
fRG study for the quantum many-body instabilities of spinless
fermions on the honeycomb lattice with nearest-neighbor
repulsion at finite chemical potential. As our main result, we
present the tentative phase diagram as a function of interaction
strength and chemical potential in Fig. 1. In addition to the

instability toward the commensurate CDW state (which is
already well established at μ = 0), we identify an instability
toward a bond-ordered (BO) regime corresponding to the
Van Hove singularity point. In the low-density regime, we
furthermore find a charge-fluctuation driven instability in the
Cooper channel, leading to an f -wave superconducting (SC)
state. The details of this phase diagram will be discussed in the
following sections.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the model Hamiltonian for spinless
fermions on the honeycomb lattice with repulsive interaction at
finite chemical potential. In Sec. III, we review the fRG method
utilized to carry out the instability analysis, and discuss the
truncation scheme and approximations employed. In Sec. IV,
we then present an instability analysis within the various
regimes in the parameter space of the model Hamiltonian.
The results of this analysis are then combined in the tentative
phase diagram, cf. Fig. 1, as a function of the nearest-neighbor
repulsion strength and the chemical potential. We conclude in
Sec. V, along with a further discussion of our findings.

II. MODEL

We consider spinless fermions on a honeycomb lattice with
nearest-neighbor interactions, also known as the t − V model,
and include a chemical potential term to control the filling.
The full Hamiltonian thus consists of two parts H = H0 +
Hint. The tight-binding part of the Hamiltonian, H0, can be
further decomposed into nearest-neighbor hopping terms and
the onsite chemical potential term,

H0 = −t
∑
〈i, j〉

(c†i c j + c
†
jci ) − μ

∑
i

c
†
i ci , (1)

where the operators c
†
i and ci create and destroy, respectively,

a spinless fermion at the lattice site i , t is the nearest-neighbor
hopping amplitude and μ the chemical potential. The sum
〈i, j〉 is restricted to nearest neighbors on the honeycomb
lattice. We can express H0 in the orbital basis by performing a
Fourier transform, defined by

ck,A = 1√
N

∑
i∈A

eik·ici , ck,B = 1√
N

∑
i∈B

eik·ici , (2)

with N the number of two-atom unit cells and the correspond-
ing transformations for c

†
k,A/B such that

H0 =
∑

k

(c†k,A c
†
k,B

)ĥ(k)

(
ck,A

ck,B

)
, (3)

with the Bloch Hamiltonian

ĥ(k) = −
(

μ tdk
td∗

k μ

)
, (4)

where dk = ∑
i eik·δi and δi , i = 1, 2, 3 are the three nearest-

neighbor vectors pointing from the A to the B sublattice as
shown in Fig. 2. The operators ck,o, c

†
k,o correspond to single-

particle basis-states with Bloch momentum k and orbital (i.e.,
sublattice) index o ∈ {A,B}. In the following, we also employ
the notation ō = B,A to denote the other sublattice for o =
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FIG. 2. Left panel: honeycomb lattice with the two sublattices A
and B indicated by white and black circles, respectively. Next-nearest
neighbors are connected by the three vectors δi , i = 1, 2, 3. Right
panel: Brillouin zone, with the nonequivalent high-symmetry points
�, K , and K ′, as well as M1, M2, and M3 indicated as labeled.

A,B, respectively. Diagonalization of the free Hamiltonian by
a unitary transformation ck,o = ∑

b uo,b(k)ck,b leads to

H0 =
∑

k

∑
b

(εb(k) − μ)c†k,bck,b , (5)

where εb(k) is the tight-binding energy dispersion of free
fermions on the honeycomb lattice, which features two energy
bands b ∈ {+,−} with the two inequivalent characteristic
Dirac points at the K and K ′ points in the first Brillouin zone
(BZ), respectively. In the following, we will use this band basis
to set up the fRG.

The interacting part of the Hamiltonian, Hint, contains
density-density interactions between all sites along the nearest-
neighbor bonds,

Hint = V
∑
〈i, j〉

(
c
†
i ci − 1

2

)(
c
†
jc j − 1

2

)
. (6)

At half-filling, it is well-established that Hint drives a con-
tinuous quantum phase transition toward a commensurate
CDW phase when the interaction strength V exceeds the
critical value [17–20] Vc/t ≈ 1.36(1). In the following, we are
interested in exploring the phase diagram beyond the half-filled
case. Due to the particle-hole symmetry of the Hamiltonian
H about half-filling, we can constrain the fRG analysis to
the regime with a negative chemical potential, μ < 0, which
corresponds to fermion densities below half-filling. The case
of larger fillings for positive μ > 0 can be obtained by a
particle-hole transformation. It also follows directly from the
analysis of the single particle (hole) problem, that the lattice is
empty (full) for μ < −3/2V − 3t (μ > 3/2V + 3t).

For the following fRG analysis, Fourier transformation of
creation and annihilation operators and subsequently applying
the unitary transformation uo,b(k) allows to represent the
interacting part Hint in terms of the basis of single-particle
eigenstates of H0. While the Fourier-transform yields a mo-
mentum dependent interaction due to the nearest-neighbor
repulsion, the matrix elements uo,b(k) imprint an additional
wave-vector dependence (often called “orbital make-up”) on
the interaction, as the band-basis states are obtained by a
k-dependent hybridization from the A and B sublattice Bloch
states. In fact, while |uA,±(
k)| = |uB,±(
k)| = 1/

√
2, the A and

B components for a given band differ by a 
k-dependent phase.

We can then compactly express the interaction Hamiltonian in
the band basis as

Hint = 1

4

∑
{bi }

∑
{ki }

Vb1,b2,b3,b4 (k1, k2, k3, k4) ×

× c
†
k1,b1

c
†
k2,b2

ck3,b3ck4,b4 , (7)

where Vb1,b2,b3,b4 includes antisymmetric combinations of the
k-dependent interaction and we have absorbed single-particle
terms in Eq. (6) into a chemical potential term. We note that a
momentum-conserving δ-function is implicit in Eq. (7).

III. METHOD

In this paper, we investigate the instabilities of the model de-
fined by the Hamiltonian H = H0 + Hint. Such instabilities in-
dicate ordering tendencies of the quantum many-body ground
state. To that end, we employ the fRG approach [29,30,36]
for the one-particle irreducible vertex function with an energy
cutoff. In this scheme, the bare propagator is modified by an
infrared regulator at an energy scale �. The renormalization-
group flow is generated by successively integrating out
fermionic degrees of freedom from an initial scale �0 ∼ 3t

down toward� → 0. The fRG approach allows for an unbiased
identification of the leading instability, as generated during
the flow in the presence of competing fluctuations in other
channels. In the following, we briefly review the basic fRG
formulation and discuss the usual approximations used in
practical calculations.

The fRG flow equations are most conveniently derived by
switching from the Hamiltonian formulation to an action-based
formulation of the quantum many-body system. The starting
point is therefore the fermionic imaginary-time action,

S[�, �̄] = −(
�̄,G−1

0 �
) + V[�, �̄], (8)

where �(ξ ), �̄(ξ ) are Grassmann fields, G0(ξ, ξ ′) is the prop-
agator of the noninteracting system, and we defined the multi-
index ξ = (ωn, k, b) for compact notation. The quadratic part
reads (

�̄,G−1
0 �

) =
∑
ξ,ξ ′

�̄(ξ )[G−1
0 ](ξ, ξ ′)�(ξ ). (9)

In the band basis, the propagator is diagonal with respect to ξ

and can be expressed as

G0(ξ, ξ ′) = G0(ωn, k, b)δξ,ξ ′ , (10)

with

G0(ωn, k, b) = 1

iωn − εb(k) + μ
. (11)

Further, V is a quartic interaction functional,

V[�, �̄] = 1

4

∑
{ξi }

V (ξ1, ξ2, ξ3, ξ4)�̄(ξ1)�̄(ξ2)�(ξ3)�(ξ4),

and the bare interaction vertex in the band picture
V (ξ1, ξ2, ξ3, ξ4) is obtained from Eq. (7) by multiplying by
a δ-function for Matsubara frequencies due to the static nature
of the microscopic interaction Hamiltonian. The generating
functional for connected correlation functions is then obtained
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by performing the functional integral over Grassmann fields in
the presence of Grassmann-valued source fields η̄, η,

G[η, η̄] = − ln
∫
D[�̄,�]e−S[�,�̄]+(η̄,�)+(�̄,η). (12)

Taking the Legendre transform with respect to the source
fields, we obtain the generating functional � for one-particle
irreducible (1-PI) vertices,

�[φ, φ̄] = (η̄, φ) + (φ̄, η) + G[η, η̄], (13)

where φ = − δ
δη̄

G[η, η̄], φ̄ = δ
δη

G[η, η̄] and we have for sim-
plicity suppressed indices in the notation of the field variables.
The 1-PI vertices �(2n) appear as the coefficients of an expan-
sion of �[φ, φ̄] in the fields φ, φ̄. This is the typical point of
departure to derive a set of equations of motion governing the
behavior of the vertex functions, which then have to be solved
in an appropriate approximation. Within the fRG, however, the
governing equations are obtained by recasting the fermionic
functional integral in a scale-dependent way.

An energy cutoff in the propagator is introduced such that
the bare propagator becomes

G0(ωn, k, b) → G�
0 (ωn, k, b) = �ε (εb(k) − μ)

iωn − εb(k) + μ
, (14)

where �ε is taken as a smoothed Fermi function that cuts
off modes with energies |εb(k) − μ| � �. The regularized
propagator can be used to obtain the �-dependent functional
integral for the effective action ��[φ, φ̄], which now generates
the scale-dependent 1-PI vertex functions �(2n),�. The vertex
functions �(2n),� are the central objects that are monitored
in the course of the renormalization-group flow upon the
successive integration of fermionic modes. Taking the variation
with respect to � generates a hierarchy of coupled flow
equations for �(2n),�, which continuously connect the bare
vertices �(2n),�0 to the full effective effective vertices that
emerge as � → 0.

In practice, one has to truncate the full hierarchy of flow
equations to make a numerical integration feasible. Here, we
follow the approach from Ref. [38], focusing on the flow of
the four-point vertex function �(4),�, neglecting the feedback
of the flowing self-energy �� = �(2),� as well as higher
order vertex functions �(2n),� with n � 3. During the flow,
we monitor for divergences of the vertex function, which
indicate divergent physical susceptibilities and therefore signal
phase transitions through a flow to strong coupling. The flow
is terminated near the critical energy scale �c > 0, and one
then examines the divergent vertex structure, which encodes
information about the emerging symmetry-broken state of the
many-body system. This truncation scheme has been shown
to allow for the competition of different fluctuation channels
that drive phase transitions, and has been used successfully
to study instabilities in various two-dimensional fermion sys-
tems [29,30].

Within this truncation scheme, the resulting flow equation
for the four-point vertex function V � ≡ �(4),� is given by

d

d�
V � = ��

pp + ��
ph,d + ��

ph,cr, (15)

where the contributions to the right hand side are given by
the particle-particle bubble �pp as well as the direct and

V Λ = − 1
2 V Λ L V Λ

+

V Λ

V Λ

L

−

V Λ

V Λ

L

FIG. 3. Pictorial representation of the fRG flow equation for
the four-point vertex function V � using Feynman diagrams. The
boxes represent V � and the loop kernel L, while the black dot on
the left hand side indicates the scale-derivative d/d�V �. Internal
variables are contracted according to the connected lines, see Eq. (16)
for the algebraic expression. The first diagram on the right hand
side represents the particle-particle channel, the other two show the
direct and the crossed particle-hole channel, respectively. A detailed
derivation of the diagrammatic rules can be found in Ref. [37].

crossed particle-hole bubbles �ph, d and �ph, cr—see Fig. 3 for
a diagrammatic representation of the flow equation in Eq. (15).
More explicitly, the loop contributions for the particle-particle
and the direct particle-hole channel are given by

�pp(ξ1, ξ2, ξ3, ξ4) = −1

2

4∏
ν=1

∫
dην L(η2, η1, η3, η4)

×V �(ξ2, ξ1, η2, η3)V �(η4, η1, ξ3, ξ4),

(16)

�ph,d(ξ1, ξ2, ξ3, ξ4)=
4∏

ν=1

∫
dην L(η1, η2, η3, η4)

×V �(η4, ξ2, ξ3, η1)V �(ξ1, η2, η3, ξ4),

(17)

and the crossed particle-hole contribution is given through

�ph,cr (ξ1, ξ2, ξ3, ξ4) = −�ph,d(ξ1, ξ2, ξ4, ξ3) , (18)

where the loop kernel L = S�G�
0 + G�

0 S� is composed out
of the bare scale-dependent propagator G�

0 and the single-
scale propagator S� = −d/d�G�

0 , cf. Ref. [38]. Further-
more, we introduced the shorthand notation

∫
dη for the

integration/summation over the various loop variables. For
simplicity, we focus on the static part of the vertex function
V �(ξ1, ξ2, ξ3, ξ4)|{ωi=0}, which is expected to provide the most
singular contribution at the critical scale [38].
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FIG. 4. Momentum discretization schemes of the BZ for different
values of the chemical potential, μ/t = −0.8 (a), μ/t = −1 (b, c),
μ/t = −1.2 (d). For better visualization, the discretization scheme
is plotted here only for N = 36 patch points, while the actual
calculations were performed with up to N = 120 patch points. The
free Fermi surface is indicated by the orange line, and the blue points
represent the projected momentum patch points. They are enumerated
by the index function π (k) in the order denoted by the blue numbers.
The dashed line indicates the directions along which the numerical
integration of the loop kernels are performed. In panels (a) and (b),
these originate from the K and K ′ points and in panels (c) and (d)
from the � point.

We solve Eq. (15) by numerical integration, for which we
discretize the wave-vector dependence of the vertex function
V �(ξ1, ξ2, ξ3, ξ4). The discretization of the momentum de-
pendence is given in terms of a complete patching scheme
of the BZ, which projects the momenta k1, k2, and k3 onto
points along the Fermi surface. In this way, we can associate
to each momentum k from the BZ an integer index π (k)
that extends from 0 to N − 1, where N denotes the number
of patches, cf. Fig. 4. The fourth momentum k4 is given
by momentum conservation and is projected onto the closest
momentum patch π (k4). The topology of the Fermi surface
depends on the chemical potential μ and changes at the
Van Hove singularity point (|μ| = t) from being K-point
centered to �-point centered. We therefore also change the
evaluation of the loop kernels from being K-point centered
for |μ| < t to �-point centered for |μ| > t . Right at the Van
Hove singularity point, both discretization schemes can be
used and provide consistent results. A pictorial representa-
tion of the patching scheme for different μ is provided in
Fig. 4. For the actual calculations, we used up to N = 120
patches.

The integration of the flow equation is most conveniently
performed in the band basis. However, for the physical interpre-
tation of the final vertex structure it can be beneficial to revert
to the original orbital basis denoted by the sublattice indices
o = A,B by applying the inverse of the unitary transformation
uo,b(k). Suppressing δ-functions in the notation, we thereby

obtain

V �
o1o2o3o4

(k1, k2, k3, k4) =
∑

{bi },{ki }
V �(ξ1, ξ2, ξ3, ξ4)|{ωi=0}

× uo1,b1 (k1)uo2,b2 (k2)u∗
o3,b3

(k3)u∗
o4,b4

(k4)

as the central element of our analysis. We therefore perform a
transformation back to the orbital basis after the termination
of the flow.

Finally, it should be noted that our approach corresponds to
a treatment in the grand canonical ensemble, which is appro-
priate in systems for which phase separation may emerge at
strong interactions. As we will discuss below, this is likely the
case here. Furthermore, since in the truncated flow equations
self-energy feedback is absent, the chemical potential μ does
not get adjusted to a constant filling, and instead it defines the
filling in terms of the initial bare system.

IV. INSTABILITY ANALYSIS

To evaluate the flow according to Eq. (15), we use an
initial condition V �0 at the ultraviolet scale �0, which is
determined from the bare interaction term, Eq. (7). The flow
equations are then integrated numerically by successively
lowering the energy cutoff scale �. When the initial interaction
V �0 is sufficiently large, some components of the interaction
vertex V � may increase strongly during the course of the
flow and develop a singularity at a critical scale �c > 0.
This is indicative of a quantum many-body instability and
suggests a transition toward a symmetry-broken ground state.
In practice, the flow thus has to be stopped before it reaches
�c > 0, i.e., at a scale �∗ > �c. Close to this critical scale, the
effective interaction vertex develops a pronounced momentum
structure, which can be used to extract an effective low-energy
Hamiltonian and identify the leading order parameter. In the
following, we present the results of the instability analysis
separately for three different regimes, according to the value
of the chemical potential.

A. Charge-density-wave instability

We start the instability analysis for the case in which
the chemical potential lies within the interval −1 < μ/t <

0. For the noninteracting system, this corresponds to the
density regime between half-filling (μ = 0) and the Van Hove
singularity point (μ/t = −1), cf. Figs. 4(a)–4(c). Here, we
identify an instability of the metallic phase beyond a critical
value for the nearest-neighbor repulsion Vc(μ), which depends
on the value of μ. In the following, we concentrate on the real
part of the vertex function, and note that the imaginary part
develops either subleading instabilities or vanishes completely.
The diverging wave-vector structure on the patch points is
shown in Fig. 5 for the case of μ/t = −0.6. The relevant
features extracted from the vertex structure are (i) a vanishing
momentum transfer and (ii) a momentum-independent struc-
ture factor, which corresponds to a CDW instability, cf. also
Ref. [10]. Note that the feature for π (k1) ≈ 60 and π (k2) ≈ 60
does not correspond to any further finite momentum transfer.
From this analysis, we thus extract the effective interaction

045142-5



HESSELMANN, SCHERER, SCHERER, AND WESSEL PHYSICAL REVIEW B 98, 045142 (2018)

0.0 0.5 1.0 1.5 2.0

Λ

0

100

200

V
m

ax

Vmax

fit

0 20 40 60 80 100 120

π(k1)

0

20

40

60

80

100

120

π
(k

2
)

VAAAA

−150

−100

−50

0

50

100

150

0 20 40 60 80 100 120

π(k1)

0

20

40

60

80

100

120

π
(k

2
)

VABAB

−150

−100

−50

0

50

100

150

0 20 40 60 80 100 120

π(k1)

0

20

40

60

80

100

120
π
(k

2
)

VABBA

−150

−100

−50

0

50

100

150

FIG. 5. Upper left panel: Largest vertex component Vmax as a
function of the RG scale � for μ/t = −0.6 and V/t = 1.8. We
identify the critical scale at �c/t ≈ 0.424. Upper right panel and
bottom panels: Vertex structure for the divergent CDW correlations for
the sublattice combinations V

�c
AAAA, V

�c

ABAB , and V
�c

ABBA, respectively.
Here, we have chosen N = 120 patch points following the scheme
indicated in Fig. 4(a) and π (k3) is fixed to the first patch point.
The divergent wave-vector structure can be translated to the effective
Hamiltonian in Eq. (19).

Hamiltonian close to the CDW instability as

H
�c
eff = − 1

N
∑
o,o′

Vo,o′εoεo′No
0 No′

0 , (19)

where Vo,o′ > 0, N is the number of unit cells and εA = +1,
εB = −1 parametrize the sublattice modulation, as previously
described in Ref. [10]. This approximate effective Hamiltonian
factorizes into a sum of products of two density operators
with zero momentum transfer, i.e., No

q = ∑
k c

†
k+q,ock,o at

q = 0 and thus corresponds to a long-ranged density-density
interaction, favoring enhanced occupancy on one sublattice
and suppressed occupancy on the other. We thus observe that
the system is eventually driven toward the commensurate CDW
instability that also emerges in the large-V regime at half-
filling. This behavior is in fact expected form the observation
that in the large-V limit (at t = 0) the spinless fermion model
H maps onto an antiferromagnetic Ising model,

HI = J
∑
〈i, j〉

σiσ j − h
∑

i

σi , (20)

with full (empty) sites represented by σi = +1 (σi = −1).
Under this mapping, J = V/4 > 0, and the chemical potential
term results in the magnetic field h = μ/2. As a function of
h, this Ising model has an antiferromagnetic ground state for
|h| < 3J , whereas it is fully polarized up (down) for h > 3J

(h < −3J ). For the spinless fermion model H , this implies
that in the large-V limit, the lattice is either empty or full, or it
is locked into the commensurate CDW phase that is stabilized
also at half-filling. As discussed in the following sections, we
indeed observe the commensurate CDW to eventually prevail
for large values of V throughout the full range of the chemical
potential. We finally note that, consistent with this argument,
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FIG. 6. Upper left panel: Largest vertex component Vmax as
a function of the RG scale � for μ/t = −1.0 and V/t = 0.4.
We identify the critical scale at �c/t ≈ 0.0008. Upper right panel
and bottom panels: Vertex structure for the divergent bond-order
correlations for sublattice combinations V

�c
AABB , V

�c
ABAB , and V

�c
ABBA,

respectively. Here, we have chosen N = 120 patch points following
the scheme indicated in Fig. 4(c) and π (k3) is fixed to the first patch
point. The divergent wave-vector structure can be translated to the
effective Hamiltonian in Eq. (21).

the predominance of the commensurate CDW phase at large
interactions was also found in studies of hard-core bosons with
nearest-neighbor repulsions on the honeycomb lattice [39,40].

B. Bond-order instability

At μ/t = −1, the Fermi surface of the tight-binding Hamil-
tonian is perfectly nested, cf. Figs. 4(b) and 4(c), and the density
of states (DOS) is enhanced due to a Van Hove singularity.
Therefore it can be expected that particle-hole fluctuations
play a leading role for the possible many-body instabilities. We
indeed find an immediate instability of the metallic phase of the
free system for arbitrarily small values of the interaction. The
divergent vertex structure is depicted in Fig. 6 and it exhibits
finite momentum transfers of q = M i , which correspond to the
three in-equivalent M points in the BZ, see also Fig. 2. Namely,
the transfer momentum between two of the three inequivalent
M points from the BZ is equivalent to the third M point up to
a reciprocal lattice vector. For example, M1 − M2 ≡ M3. The
effective interaction Hamiltonian, capturing a BO instability,
can thus be expressed in terms of interorbital contributions as

H
�c
eff = − 1

N

3∑
i=1

Vi χ
†
M i

χM i
(21)

with

χM i
=

∑
k

∑
o

fM i
(k)c†k,ock−M i ,ō, (22)

and where Vi > 0, and fM i
(k) is a form factor that we examine

next. Namely, to provide a more physical interpretation of
Eq. (21) and the corresponding instability, we perform a
projection of the form factor onto its most relevant components.

045142-6



BOND-ORDERED STATES AND f -WAVE PAIRING OF … PHYSICAL REVIEW B 98, 045142 (2018)

40 50 60

π(k)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

100 110 120

π(k)

1st mode
2nd mode
sin(δ1 · k)
sin(δ2 · k)
sin(δ3 · k)
cos(δ1 · k)
cos(δ2 · k)
cos(δ3 · k)

FIG. 7. Comparison of the two dominant eigenmodes of
VABBA(
k, 
k′) with the harmonic BO form factors. The functions are
evaluated over points of the Fermi surface connected by the same
nesting vector q = M3, and the prefactor of the form factor was scaled
to match the eigenmodes at the central momenta.

To this end, we parametrize the divergent vertex components
into matrix form, such that

VABAB (
k, 
k′) =V
�c

ABAB (
k, 
k′, 
k′ − 
q, 
k + 
q ), (23)

VABBA(
k, 
k′) =V
�c

ABBA(
k, 
k′, 
k + 
q, 
k′ − 
q ), (24)

where q is one of the nesting vectors M i , and we restrict
k and k′ to patches that are connect by q. In addition, the
component VAABB contains contributions from both these
parametrizations, as seen explicitly also in Fig. 6. We next
perform a numerical eigenmode analysis of the above matrices
using a singular value decomposition.

We then find that both matrices VABAB (
k, 
k′) and
VABBA(
k, 
k′) contain two dominant eigenmodes, while the
modulus of other eigenvalues are several orders of magni-
tude smaller. In particular, the relevant eigenmodes of both
VABAB (
k, 
k′) and VABBA(
k, 
k′) differ mainly by a sign, related
to the exchange of two fermionic operators. As an example, we
plot in Fig. 7 the resulting eigenmodes for VABBA(
k, 
k′) over
the connected momentum patches for q = M3, and compare to
harmonic form factors proportional to sin(δ · 
k), and cos(δ · 
k),
respectively, where the vector δ = δi , i = 1, 2, 3, connects
nearest-neighbor bonds as illustrated in Fig. 2. We observe
a good overall agreement between the extracted eigenmodes
and these form factors, which are characteristic of BO insta-
bilities [34].

If one performs the Fourier transform of the form factors
back to real space, one finds a renormalization of the hopping
amplitude with a doubled unit cell [34], as shown in Fig. 8.
More specifically, these BO states belong to two distinct
classes, depending on whether q = M i is parallel to δ or not.
If q = M i is parallel to δ, the resulting BO pattern exhibits
equal amplitudes on parallel dimers across the hexagons, such
as shown in Fig. 8(a). There are three such states, related to
each other by rotations. For q = M i not parallel to δ, a patten

(a) (b)

FIG. 8. Schematic real-space hopping renormalization due to a
finite bond-order parameter 〈χ 
Mi

〉. The white and black disks denote
the lattice sites of the A and B sublattice, respectively. The bonds
shown in red (blue) correspond to an increase (decrease) of the
nearest-neighbor hopping amplitude along a given bond (pointing
from the A to the B sublattice). If q = M i is parallel to δ, the resulting
BO pattern corresponds to the one shown in panel (a). There are three
such states, related by rotations. For q = M i not parallel to δ, a patten
such as the one shown in panel (b) results instead. There are a total
of six such states, related by rotations or reflections.

such as the one shown in the Fig. 8(b) results, with zig-zag
lines of equal amplitude bonds. There are a total of six such
states, related to each other by rotations or reflections. Within
our calculations, we cannot discern which of these two BO
classes will be preferably form eventually. In any case, the
order parameter for a such a BO state can be interpreted as a
translation-symmetry breaking dimerization of the fermionic
states on the A and B sublattices.

C. Superconducting f -wave instability

For values of the chemical potential beyond the Van Hove
singularity, i.e., μ/t < −1, we observe an instability in the
particle-particle channel, cf. Fig. 9. This SC instability leads
to a characteristic diagonal structure of the vertex, which
indicates pairing of fermions with momentum k and −k and
thus signals the formation of Cooper pairs. We therefore deduce
the form of the effective Hamiltonian as

H
�c

eff = − 1

N
∑
o,o′

Voo′�†
o�o′ , (25)

with

�o =
∑

k

f (k) c−k,ock,o, (26)

and where the symmetry of the SC order-parameter is encoded
in the form factor f (k). We illustrate the momentum depen-
dence along the diagonal of f (k) in the top panel of Fig. 10.
The intersublattice components of the vertex show no divergent
structures, compatible with the suppression of intra-unit-cell
pairing correlations due to the nearest-neighbor repulsion. By
the fermionic exchange symmetry, an intrasublattice solution
has to be odd with respect to 
k → −
k. The sign of the form
factor in the intrasublattice channel changes six times at mo-
menta where the � − K lines cross the Fermi surface, which is
compatible with f -wave superconductivity, with a form factor
fB1u

(k) ∼ sin(3ky ) − 2 sin( 3
2ky ) cos( 3

√
3

2 kx ) corresponding to
the B1u irreducible representation of the D6h symmetry [41].
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FIG. 9. Upper left panel: Largest vertex component Vmax as a
function of the RG scale � for μ/t = −1.4 and V/t = 1.0. We
identify the critical scale at �c/t ≈ 0.0011. Upper right panel and
bottom panels: Vertex structure for the divergent f -wave correlations
for sublattice combinations V

�c
AAAA, V

�c
AABB , and V

�c
ABBA, respectively.

Here, we have chosen N = 120 patch points following the scheme
indicated in Fig. 4(d) and π (k3) is fixed to the first patch point.
The divergent wave-vector structure can be translated to the effective
Hamiltonian in Eq. (25).

We note, that on the level of our instability analysis, the
relative phase between the SC order-parameters on the A and
B sublattices is not fixed.

In real space, such a B1u form factor results in a sign-
alternating pairing state on the second-nearest intrasublattice
neighbor bonds, as illustrated by the phase factors shown
in the bottom panel of Fig. 10. To rationalize the apparent
emergence of such a f -wave pairing state in the t − V model
on the honeycomb lattice, we remark that (i) a nearest-neighbor
pairing dominated p-wave state is suppressed by the repul-
sive nature of the bare repulsive interactions V > 0 in this
model and (ii) nearest intrasublattice neighbor dominated B2u

(f -wave) pairing may be more prone to a direct pair-breaking
transition into the CDW instability than the above B1u pairing
state, which features a more spatially extended pair wave
function.

We further note that the pairing instability appears at much
smaller critical scales than the particle-hole instabilities (CDW,
BO) and is in this respect reminiscent of the fRG studies of
the d-wave SC instability on the doped Hubbard model on
the square lattice with spin-1/2 electrons [29,42], driven by
antiferromagnetic spin-fluctuations. In distinction to the square
lattice, however, the honeycomb system has a two-atom unit
cell that renders the CDW an instability in the particle-hole
channel with vanishing momentum transfer. Correspondingly,
in the spinless fermion system on the honeycomb lattice, we
can expect the charge fluctuations close to vanishing momen-
tum transfer to mediate an attractive interaction between the
fermions. For spin-1/2 fermions, SC f -wave triplet solutions
have been reported on several types of lattice geometries. There
exist suggestions in favor of f -wave instabilities generated
by on-site repulsion for triangular and/or honeycomb [43,44]
lattices. In accordance with the mechanism studied here for

0 20 40 60 80 100 120
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200

−f
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)f
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fB1u

+1+1
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FIG. 10. Top panel: Diagonal V
�c
AAAA vertex structure along the

Fermi surface. We fix the third momentum to π (k3) = 1 and perform
a fit to the B1u lattice harmonic function fB1u

(k) ∼ sin(3ky ) −
2 sin( 3

2 ky ) cos( 3
√

3
2 kx ). Bottom panel: Real-space pairing form factor

corresponding to the lattice harmonic function B1u on the honeycomb
lattice, with the two sublattices A and B indicated by blue and green
circles, respectively. The numbers ±1 along the (red) lines to the
second-nearest equal-sublattice neighbors of the central site denote
phase factors of the corresponding B1u pairing state.

the spinless case, proximity to a CDW instability on the
triangular [45–47], honeycomb [31], and also the square [48]
lattice supports f -wave solutions. More recently, spin-orbit
coupling [49,50] has been suggested to favor SC solutions with
f -wave symmetry.

For the present case, we show the evolution of the vertex
function in the parameter regime of the f -wave instability
in Fig. 11. As the cutoff scale is decreased, we observe that
the vertex function first develops features which resemble
a CDW, which can be described by a Hamiltonian as in
Eq. (19) by admitting a finite momentum transfer 
q. These
CDW features create an attractive component in the pairing
channel which subsequently grows upon further lowering of
the cutoff. Eventually, the pairing channel becomes the leading
structure of the vertex function and develops an instability.
Furthermore, the phase structure of the pairing state is pinned
to the effective intermediate vertex structure, which matches
the k-dependence of the B1u form factor. We note, that while
the proximity of the system to a CDW instability and the
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FIG. 11. Evolution of the VAAAA vertex component, shown at
various values of the scale � during the flow. The model parameters
are the same as in Fig. 9.

concomitant charge fluctuations are crucial to obtain a Cooper
instability at the observed critical scales, the feedback of the
particle-particle channel onto the particle-hole channel are
actually essential in suppressing the CDW ordering tendencies
to give way to a SC instability. This effect can be demonstrated
by excluding the particle-particle bubble �pp from the flow
Eq. (15) and comparing the resulting phase diagram and its
critical scales to the one obtained from the flow with the
particle-particle bubble included. For the region where we
observe a SC f -wave instability, we find the critical scale for
the CDW instability with the particle-particle bubble excluded
to always be above the critical scale for the SC instability. For
chemical potentials with |μ| < t , the suppression of the CDW
ordering tendencies is not strong enough to allow for the SC
correlations to become leading. Finally, let us note that in the
semimetallic region of the phase diagram, we can exclude a
Kohn-Luttinger instability down to critical scales �/t = 10−7,
where we stopped the integration of an otherwise regular flow.

V. CONCLUSIONS

We have studied the many-body instabilities of spinless
fermions on the honeycomb lattice beyond half-filling, em-
ploying the fRG in the Fermi-surface patching scheme. Our
work extends on previous studies of the half-filled case, which
has been intensely explored with many different many-body
methods [6–15], including the fRG [10]. For half-filling and
with large enough nearest-neighbor repulsion, the different
approaches consensually find a CDW ordering transition and
convergence in the critical interaction as well as the critical
behavior is currently being established. Beyond half-filling,
on the other hand, only a few results are available thus far. In
particular, the mean-field approach in Refs. [8,9] left out the
possibility of SC order. The approximate numerical approaches
from Refs. [27,28] exclusively focus on one-third filling,
where only indirect indications for a quantum phase transition
were reported. Our functional RG approach supplements these
previous studies by a systematic investigation of the system’s
many-body instabilities over a broad range of filling and

coupling strength, taking into account the different competing
channels on equal footing.

We have summarized our results in the tentative phase
diagram in the V –μ–plane; see Fig. 1. Between half-filling and
the Van Hove singularity points, which correspond to fillings
of 3/8 and 5/8 in the noninteracting model, a conventional
CDW is found to be the leading instability, once a filling-
dependent critical interaction strength is exceeded, sharing its
characteristics with the one of the half-filled case. At the Van
Hove singularity point, where the free Fermi surface is per-
fectly nested and the DOS is strongly enhanced, particle-hole
fluctuations induce a dimerized bond-order instability, which
appears even for arbitrarily small values of the interaction.
For larger interactions, the BO instability is superseded by
the CDW instability. Finally, for chemical potentials beyond
the Van Hove point, i.e., |μ| > t , an f -wave SC instability
emerges. This pairing instability results from a particle-hole
fluctuation-induced attractive component in the intrasublattice
pairing channel. After the attractive interaction has been
created, it eventually becomes the leading instability upon
integrating out the renormalization group flow. Due to this
two-step process, the associated critical scales of the pairing
instability are considerably smaller than the ones from the
plain particle-hole instabilities, i.e., the CDW and the bond
ordering. Upon further increasing V , the system again enters
the commensurate CDW state. This result is in accord with the
large-V (Ising model) limit of this model. While we cannot
discern the nature of the quantum phase transition between
the pairing phase and the CDW regime, it is expected to be
discontinuous, based on the distinct symmetries that are broken
within these two phases. Correspondingly, in such a scenario,
the large-V regime is characterized by phase separation in the
canonical ensemble within the corresponding density regime,
similarly to the related hard-core boson model [39,40]. In
conclusion, our tentative phase diagram of the spinless fermion
t − V model on the honeycomb lattice, which we obtained
from the Fermi-surface patching weak-coupling functional RG
approach, connects well to exactly known or well-established
results in several limiting cases, including the strong coupling
limit.

The availability of known results in various limits of the
t − V model facilitates the assessment of the validity of our
findings. This contrasts to systems with several flavors of
fermions, for which the case of spin-1/2 fermions on the
honeycomb lattice assuredly is the most prominent one in
view of, e.g., the physics of graphene. In the spinful case, the
possibility for many-body instabilities is significantly enriched
by the fluctuations in the spin degree of freedom and their
interplay with charge and pairing correlations. Moreover,
in a tight-binding description, a local on-site (Hubbard U )
repulsion is expected to be the dominant interaction term and
this affects the leading many-body instabilities. This is the case
already at half-filling, for which a commensurate spin density
wave (SDW), i.e., a two-sublattice antiferromagnetic insta-
bility, emerges for dominant onsite repulsion [3,4,51–54]. To
stabilize a commensurate CDW corresponding to the one that
we obtained for the spinless t − V model of spinless fermions,
one thus requires a suppression of the SDW instability,
e.g., by a sufficiently enhanced nearest-neighbor repulsion,
alike V in the spinless model [3,4,6,55,56]. Doping beyond
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half-filling, singlet SC instabilities, with a symmetric orbital
sector, can emerge in the spinful system, whereas pairing states
with a symmetric orbital structure are not possible for spinless
fermions. In various recent works on SC instabilities of spin-
1/2 fermions on the honeycomb lattice, a chiral d-wave pairing
state has been identified as the most dominant pairing channel
over different ranges of doping, see Ref. [41] for a review. Close
to the Van Hove singularity, further instabilities were found
to strongly compete with the d-wave pairing. Among these,
f -wave pairing and a chiral SDW state have been reported
near the Van Hove filling [33,35,57,58]. In addition, Ref. [34]
reports BO instabilities for a spin-1/2 Kitaev-Heisenberg
model doped to the Van Hove filling, resembling those that
we identified in the case of the spinless fermion model. Thus,
spin fluctuations provide a rather rich variety of additional and
competing many-body instabilities for spin-1/2 fermions on
the honeycomb lattice, while the reduced complexity of the
spinless fermion model that we considered here, allows us to
provide a consistent phase-diagram based on the functional RG
approach.

With regards to graphene, recent experiments on twisted
bilayer graphene which—depending on the filling level—
find strongly correlated insulating behavior [1] and super-

conductivity [2] have spurred ample excitement. Currently,
many theoretical models for twisted honeycomb bilayers with
electronic correlations are conceived, see, e.g., Refs. [59–63],
but given the juvenile experimental situation it is difficult to
judge the validity of any of these suggestions. Regardless, an
improved theoretical understanding of correlated fermions on
honeycomb lattice structures seems mandatory. Here, we have
taken the approach of studying the doped single-layer system
with spinless fermions as a basic building block which can
define a starting point for the investigation of more complex
honeycomb structures in the future.
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[14] T. Đurić, N. Chancellor, and I. F. Herbut, Interaction-induced
anomalous quantum Hall state on the honeycomb lattice, Phys.
Rev. B 89, 165123 (2014).

[15] J. Motruk, A. G. Grushin, F. de Juan, and F. Pollmann,
Interaction-driven phases in the half-filled honeycomb lattice:
An infinite density matrix renormalization group study, Phys.
Rev. B 92, 085147 (2015).

[16] S. Capponi, Phase diagram of interacting spinless fermions on
the honeycomb lattice, J. Phys.: Condens. Matter 29, 043002
(2017).

[17] L. Wang, Y.-H. Liu, and M. Troyer, Stochastic series expansion
simulation of the t−V model, Phys. Rev. B 93, 155117 (2016).

[18] S. Hesselmann and S. Wessel, Thermal Ising transitions in the
vicinity of two-dimensional quantum critical points, Phys. Rev.
B 93, 155157 (2016).

[19] Z.-X. Li, Y.-F. Jiang, and H. Yao, Fermion-sign-free Majarana-
quantum-Monte-Carlo studies of quantum critical phenomena
of Dirac fermions in two dimensions, New J. Phys. 17, 085003
(2015).

[20] L. Wang, P. Corboz, and M. Troyer, Fermionic quantum critical
point of spinless fermions on a honeycomb lattice, New J. Phys.
16, 103008 (2014).

045142-10

https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1021/j100201a055
https://doi.org/10.1021/j100201a055
https://doi.org/10.1021/j100201a055
https://doi.org/10.1021/j100201a055
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1103/PhysRevB.79.085116
https://doi.org/10.1103/PhysRevB.79.085116
https://doi.org/10.1103/PhysRevB.79.085116
https://doi.org/10.1103/PhysRevB.79.085116
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevLett.107.106402
https://doi.org/10.1103/PhysRevLett.107.106402
https://doi.org/10.1103/PhysRevLett.107.106402
https://doi.org/10.1103/PhysRevLett.107.106402
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevB.92.155137
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1103/PhysRevB.92.085146
https://doi.org/10.1103/PhysRevB.88.245123
https://doi.org/10.1103/PhysRevB.88.245123
https://doi.org/10.1103/PhysRevB.88.245123
https://doi.org/10.1103/PhysRevB.88.245123
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.165123
https://doi.org/10.1103/PhysRevB.89.165123
https://doi.org/10.1103/PhysRevB.89.165123
https://doi.org/10.1103/PhysRevB.89.165123
https://doi.org/10.1103/PhysRevB.92.085147
https://doi.org/10.1103/PhysRevB.92.085147
https://doi.org/10.1103/PhysRevB.92.085147
https://doi.org/10.1103/PhysRevB.92.085147
https://doi.org/10.1088/1361-648X/29/4/043002
https://doi.org/10.1088/1361-648X/29/4/043002
https://doi.org/10.1088/1361-648X/29/4/043002
https://doi.org/10.1088/1361-648X/29/4/043002
https://doi.org/10.1103/PhysRevB.93.155117
https://doi.org/10.1103/PhysRevB.93.155117
https://doi.org/10.1103/PhysRevB.93.155117
https://doi.org/10.1103/PhysRevB.93.155117
https://doi.org/10.1103/PhysRevB.93.155157
https://doi.org/10.1103/PhysRevB.93.155157
https://doi.org/10.1103/PhysRevB.93.155157
https://doi.org/10.1103/PhysRevB.93.155157
https://doi.org/10.1088/1367-2630/17/8/085003
https://doi.org/10.1088/1367-2630/17/8/085003
https://doi.org/10.1088/1367-2630/17/8/085003
https://doi.org/10.1088/1367-2630/17/8/085003
https://doi.org/10.1088/1367-2630/16/10/103008
https://doi.org/10.1088/1367-2630/16/10/103008
https://doi.org/10.1088/1367-2630/16/10/103008
https://doi.org/10.1088/1367-2630/16/10/103008


BOND-ORDERED STATES AND f -WAVE PAIRING OF … PHYSICAL REVIEW B 98, 045142 (2018)
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