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We study the momentum and temperature dependencies of magnetic susceptibilities and magnetic exchange in
paramagnetic fcc iron by a combination of density functional theory and supercell dynamical mean-field theory

(DFT+DMFT). We find that in agreement with experimental results the antiferromagnetic correlations with the
wave vector close to (0, 0, 277 ) dominate at low temperatures (as was also obtained previously theoretically), while
the antiferromagnetic and ferromagnetic correlations closely compete at the temperatures 7 ~ 1000 K, where
y-iron exists in nature. Inverse staggered susceptibility has linear temperature dependence at low temperatures,

with negative Weiss temperature 6y,,, ~ —340 K; the inverse local susceptibility is also linear at not too low
temperatures, showing well formed local moments. Analysis of magnetic exchange shows that the dominant
contribution comes from first two coordination spheres. In agreement with the analysis of the susceptibility, the
nearest-neighbor exchange is found to be antiferromagnetic at low temperatures, while at temperature of the -y
structural phase transition its absolute value becomes small, and the system appears on the boundary between the
regimes with strongest antiferro- and ferromagnetic correlations.
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I. INTRODUCTION

Gamma- (face centered cubic) iron exists in nature in a rela-
tively narrow temperature interval from 1185 to 1660 K. In this
temperature interval it is known to show Curie-Weiss behavior
of uniform magnetic susceptibility with large negative Weiss
temperature [1-3]. In Cu precipitates y-iron can be stabilized
till very low temperatures, which allows studying its low-
temperature magnetic properties. Early experimental studies
have shown that this substance is a weak itinerant antiferromag-
net with Néel temperature of the order of 100 K [4-6]. Later
it was found [7-9] that the corresponding incommensurate
wave vector Q ~ 2 (1,0.13,0) in units of inverse lattice
parameter a is close to the so called AFM-I magnetic structure.
Therefore, in contrast to «-iron, which possesses short-range
ferromagnetic correlations above Curie temperature, y -iron is
expected to have short-range antiferromagnetic order above
Néel temperature.

The stability of various ground states in y-iron was ana-
lyzed theoretically within the density functional theory (DFT)
approaches [10-23], which allowed one to reproduce the
experimental wave vector [14-16] at the lattice parameter,
corresponding to low temperatures (or precipitates), while at
sufficiently large lattice parameter the ferromagnetic phase was
shown to be stable [17-21]. These first-principle approaches
allowed one also to obtain the lattice constant dependence
of magnetic moment of y-iron [17-19,21] and corresponding
magnetic exchange interactions [22,23].

The ab initio DFT approaches do not allow, however,
treating correlation, as well as temperature effects, which
are often crucially important in strongly correlated materials,
such as iron. These effects may be especially pronounced
in the presence of local magnetic moments, which appear
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in particular due to Hund’s exchange interaction (in the so
called Hund’s metals [24-27]). Recent dynamical mean-field
theory (DMFT) studies [28] have shown partly formed local
moments in y -iron at not very low temperatures, allowing us to
consider it as a Hund’s metal in some temperature range (see
also Ref. [27]). In particular, the inverse local susceptibility
is approximately linear in temperature above 7* ~ 500 K,
corresponding to a crossover temperature scale from the local
moment to itinerant behavior. At temperatures below 7* the
local moments in y-iron are screened by itinerant electrons.
Indeed, fitting the inverse local susceptibility of Ref. [28]
at temperatures 7 > T* by the dependence x,;c‘ x T+ 2Tk,
determining the single-site Kondo temperature 7k, below
which the local moments are screened [29], yields Tx ~ T*.
At the same time, the local moments do not strongly decay
at not very low temperatures, which is confirmed by the
calculated temperature dependence of dynamic local magnetic
susceptibility [28].

On the other hand, due to thermal expansion, at high tem-
peratures y-iron is expected to exhibit stronger ferromagnetic
than antiferromagnetic correlations, as indicated by the DFT
approaches [17-21] and experimental data [30]. According
to the comparison of the energies of antiferromagnetic and
ferromagnetic phases in ab initio studies (see, e.g., Refs. [17—
20]), the transition between these phases occurs at the value
of the lattice constant, corresponding to the temperature 7' ~
1000 K, which is close to the -y transition.

Therefore, one can expect strong change of magnetic
properties of y-iron from itinerant antiferromagnet to local
moment substance with dominating antiferromagnetic or fer-
romagnetic correlations with changing temperature. Although
the dependence of the magnetic properties (in particular,
exchange parameters) at zero temperature on lattice constant
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was studied previously within DFT calculations, it seems
important to investigate the effect of temperature and electronic
correlations on magnetic properties of this substance. In the
present paper we apply DFT+DMFT approach [31,32] to
study magnetic properties of y-iron in a broad temperature
range. In contrast to the previous study [28] we vary lattice
constant with changing temperature, and, more importantly,
use the supercell DMFT approach, considered previously for
a-iron [32], to extract momentum dependence of magnetic
susceptibility and exchange interaction, including local vertex
corrections. We find that indeed the character of magnetic
fluctuations changes from dominating antiferromagnetic ones
at low temperatures to ferromagnetic at the temperatures
closer to the a-y structural transition. We also obtain the
corresponding magnetic exchange parameters.

The plan of the paper is the following. In Sec. II we discuss
the method, in Sec. III present the results, and finally in Sec. [V
we present conclusions.

II. METHOD AND COMPUTATIONAL DETAILS
A. Supercell calculation of susceptibilities in DFT+DMFT

First, we have performed DFT calculations using the full-
potential linearized augmented-plane wave method imple-
mented in the ELK code supplemented by the Wannier function
projection procedure (Exciting-plus code). The Perdew-Burke-
Ernzerhof form of GGA was considered. The calculations were
carried out with the experimental temperature dependence
of the lattice constant in the temperature range, where y-
iron exists in nature, a(T) = ay + a; T where ay = 3.5519 10%,
a; = 8.1593 x 107> A/K [33]; in the following we extrapo-
late this dependence to lower and higher temperatures. The
convergence threshold for total energy was set to 107 Ry.
The integration in the reciprocal space was performed using
18 x 18 x 18 k-point mesh for unit cell, while 15 x 15 x 15,
and 12 x 12 x 12 meshes were used for supercells with two
and four atoms, respectively. From converged DFT results
we have constructed effective Hamiltonians in the basis of
Wannier functions, which were built as a projection of the
original Kohn-Sham states to site-centered localized func-
tions as described in Ref. [34], considering 3d, 4s, and 4p
states.

In DMFT calculations we use the Hubbard
parameter U = F®=4 eV and Hund’s rule coupling
I =(F?>4+ F*%/14=0.9 eV, where F°, F2, and F* are
the Slater integrals as obtained in Ref. [35] by the constrained
DFT in the basis of spd Wannier functions. The on-site
Coulomb interaction was considered in the density-density
form. The corresponding matrix of Hund’s exchange can
be expressed via the Coulomb interaction matrix U(’,"(’f as
1 = U — U™ )(1 = 8ym), m and o are orbital and
spin indexes. The double-counting correction was taken
in the fully localized limit. The impurity problem was
solved by the hybridization expansion continuous-time
quantum Monte Carlo method [36]. In our calculations we
neglect the redistribution of charge density on the DFT
level caused by the self-energy from DMFT, since iron is a
moderately correlated metal, in which the 3d states are only
weakly hybridized with 4s and 4p states; previous charge

self-consistent studies of iron (e.g., Refs. [37,38]) did not
result in any significant discrepancies with other DFT+DMFT
studies.

The nonuniform static spin susceptibility

.1 [P .
Xq = Nfo ar ,X,.:“f'm(O)Sfm/(f)ﬂ”“n’"l‘”’ )]

wheres;,, = clmaam Cimo’ /2 are electronic spin operators and
Cimo (cmm) are electron destruction (creation) operators (i is
the site index), can be obtained by calculating a response to
a small staggered external field introduced in the DMFT part
in a suitable supercell. Namely, for the orbital resolved mag-
netic susceptibility we have X" = = 4u? 5 X’”’” = 8M6”[/ /dHg,,
where Hg is the magnetic ﬁeld apphed to orbital m and

correspondmg to the wave vector Q;, Mg ' is the magnetization
of orbital m’. In the real space, the applled field takes a form
H;’{/_’ = Hj cos(Q;R;), where R; is the position vector of site
j, Hp is a constant small field. In practice, we have used
the magnetic field corresponding to splitting of the single-
electron energies by 0.02 eV. This field was checked to provide
a linear response and was considered to be small enough
to neglect the redistribution of charge density on the DFT
level.

For high-symmetry wave vectors the corresponding su-
percells are compact, and therefore can be studied by real-
space extension of DMFT (see, e.g., Refs. [39,40]). In this
extension, the self-energy is still local but assumed to be
site dependent. As a result, several single-impurity prob-
lems have to be solved at each self-consistency loop. Note
that neglect of the nonlocal components of the self-energies
may yield an underestimate of the nonlocal components
of the susceptibility. We expect, however, that because of
strong on-site electronic correlations, nonlocal components
of the self-energy do not change substantially the obtained
results.

To calculate the nonuniform susceptibilities we have con-
structed supercells containing up to four atoms and cor-
responding to seven high-symmetry points. In particular,
for wave vector Qx, = (0,0, 2w )/a we considered super-
cells containing two nearest-neighbor atoms at (0,0,0) and
(0,a/2,a/2) in Cartesian coordinates with lattice vectors
{0, a, 0}, {0, 0, a}, and {a/2,a/2,0}. The same atoms were
used to construct a supercell for Q. = (r, 7, 7)/a with lattice
vectors {a,a, 0}, {a/2,—a/2,0}, and {0, —a/2,a/2}. For
Qw, = (r, 27, 0)/a, we built a supercell with four atoms by
including two extra atoms at (a, 0, 0) and (—a/2, a/2, 0). The
lattice vectors for this supercell are {a, a/2, a/2}, {2a, 0, 0},
and {0, a,0}. For Qx, = (27, 0,0)/a, Qx, = (0, 27, 0)/a,
Qw, = 2n, m,0)/a, and Qw, = (27, 0, w)/a the supercells
have been constructed in a similar manner by permutation of
corresponding components. The orbital-resolved results for the
wave vectors Qyx, and Qy, with different i are not equivalent
because of the orientation of d orbitals in certain directions
in real space. Their rotation by point group operations than
yields the off-diagonal (in the orbital space) components
of the spin operators 8" = ¢/ 6 ,0/Cimo'/2, yielding non-
Heisenberg components of the exchange interaction, which
are not considered here.
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B. Formulas for magnetic exchange

The orbital-resolved exchange interaction ._71’1”’" can be
represented in the RKKY-like form, its Fourier transform
reads [32]

ol ymm o m” -

Jq" =2 (Xq )irrI ’ @
where the summation (i.e., matrix product) over repeated
indexes is assumed and the (transverse) irreducible parts of

nonuniform electronic susceptibilities ( Xq " Jire are related to

the magnetic susceptibilities X(’;"”/ by the Hund’s exchange
interaction,

(™ e = [@ag™) "+ 1m] 3)
[---]" denotes the matrix inverse with respect to the orbital
indexes, the factor of 2 accounts for the difference between the
transverse and longitudinal susceptibilities.

While the components of the exchange interaction Jq, can
be determined from the obtained irreducible susceptibilities,
to interpolate between different points Q; we consider an
expansion

T =m0+ 74", )

—mm'’

T = gmm W cos(ag, /2) cos(agy /2)
+ 7 cos(ag, /2) cos(ag. /2)
+ 71D cos(aqy/2) cos(ag. /2)
+ T cos(aqy) + jymm,’(Z) cos(aqy)

+ T cos(ag,) + T™™ P cos(agy) cos(agy)
+ cos(agy) cos(aq;) + cos(aq;) cos(aqy )], &)

such that 7" are determined by jé’f’” To determine eight

matrices J™m+(0.3), Z'Z”’/’(l), and J"™"®) we consider irre-
ducible susceptibilities for eight wave vectors Qr = (0, 0, 0),
Qr, Qx,, and Qw, Because of neglect of the off-diagonal spin
operators sf””’/, the present treatment is only approximate; as
we will see in the following, however, the crystal symmetry
breaking in final results for the exchange interaction is suf-
ficiently small, and can be neglected. To extract the physical
exchange from the obtained matrices jarzml‘(l), we calculate it
as

i) mm', (i) 2 2
Jab = Z ‘7ab lu‘mm’/ Z Mo’ s (6)
mm’ mm’

where u2 . = 3[d(1/x"™)/dT];" is the matrix of squares
of local moments, x”" are orbital-dependent local suscepti-
bilities, and index a indicates that the lattice constant is kept
constant when evaluating the derivative.

III. RESULTS AND DISCUSSION

In Fig. 1 we present the resulting momentum dependencies
of the irreducible susceptibilities, summed over all and part
of the orbitals; the interpolation between symmetric points is
performed by calculating the exchange interactions in Egs. (4)
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FIG. 1. Momentum dependence of the irreducible susceptibil-
ity, summed over all orbitals (blue solid line), ,, orbitals (green
short-dashed line), e, orbitals (red long-dashed line), and f,-¢,
contributions (purple dotted line) for 8 = 30eV~! (a = 3.583 A, top)
and B = 10 eV~ (a = 3.647 A, bottom).

and (5) and inverting then Eq. (2). Although the obtained
dependencies are qualitatively similar to those obtained ear-
lier from the bare bubble in DMFT [28], the numerical
values of susceptibilities are approximately two times larger
(similarly to previous study of «-iron [32]) because of the
vertex corrections. At low temperatures (8 = 30 eV~!) the
maximum of the obtained susceptibility is at the X point,
which shows dominant antiferromagnetic correlations. The
susceptibility is, however, weakly momentum dependent, such
that these correlations compete with fluctuations with other
wave vectors, in particular I' (i.e., ferromagnetism), W, and
K. As can be seen from partial contributions, the weak
momentum dependence appears as a result of compensation
of e, and mixed ,,-¢, contributions, while the ,, contribution
is almost momentum independent itself. For 8 = 10 eV~!
the momentum dependence of total irreducible susceptibility
becomes even weaker; the susceptibility at I point becomes
close to that at the X point, which shows that ferromagnetic
correlations are as strong, as the antiferromagnetic ones at this
temperature. Note that weak momentum dependence of the
magnetic susceptibility and close competition of ferro- and
antiferromagnetic correlations at temperatures 7 ~ 1200 K,
at which y-iron exists in nature, agrees with the experimental
results [30]. Such a momentum dependence of the susceptibil-
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FIG. 2. Temperature dependencies of the inverse magnetic uni-
form and staggered susceptibilities (top panel), obtained within the
(supercell) DFT+DMFT approach together with the experimental
data for the uniform susceptibility. The inverse local magnetic
susceptibility is shown in the middle panel. The instantaneous average
(m?) and local magnetic moments from local susceptibility are shown
in the bottom panel.

ity at not too low temperatures, which is qualitatively different
from the low-temperature behavior, is obtained entirely due
to using supercell DMFT approach, accounting for the vertex
corrections for the magnetic susceptibility, and it was not found
in the calculation of momentum dependence of bubble of Green
functions in DMFT approach of Ref. [28].

The temperature dependence of the uniform and staggered
susceptibilities Xq = ), 73””, corresponding to Q =0
and Q = Qy, respectively, is shown in Fig. 2(a) (as mentioned
above, the susceptibilities, corresponding to different Q = Qy;,
are slightly different; the difference is however small). In
agreement with previous calculations [28] the inverse uniform
susceptibility decreases with increasing temperature at low
temperatures 7. The value of the inverse uniform susceptibility,
obtained in the present study, is approximately twice smaller
than found previously [28], mainly due to larger (and more

realistic) choice of the Coulomb interaction and agrees well
with the experimental data. The slope of the temperature
dependence of the inverse uniform susceptibility near the
experimental temperature of «-y structural transition is not
obtained correctly, but one should take into account that
the Curie and structural transition temperatures are overes-
timated in the considered theory, treating Ising symmetry
of Hund’s exchange [41]. The obtained slope of the inverse
susceptibility at the expected theoretical temperature of -y
transition 1.2TCLEA+DMFT ~ 2600 K (the Curie temperature

of a-iron TéjBA*DMF T obtained within LDA+DMFT analysis,
was taken from Refs. [32,42]), yields better agreement with
the experimental data for the slope.

On the other hand, the staggered susceptibility increases
with decreasing temperature, and approximately fulfills the
Curie-Weiss law. The corresponding Weiss temperature
Ostage ~ —340 K is, however, negative, such that no long-range
magnetic order is obtained at low temperatures (at least from
the extrapolation of the obtained inverse susceptibility). The
long-range order in copper precipitates may occur due to tem-
perature dependence of the lattice constant, somewhat different
from the considered one, the surface/volume anisotropy effects
of y-iron nanoparticles, as well as the anisotropic dipole-dipole
interaction. It is important to note that despite the negative
Weiss temperature, both ferro- and antiferromagnetic corre-
lations at T ~ 1000 K are sufficiently strong. In particular,
the corresponding values of the inverse staggered and uniform
susceptibilities are comparable to the uniform susceptibility
of a-phase at the -y transition temperature, as follows from
previous theoretical results of uniform susceptibility of a-iron
[32] at T = 1.2TEOAPMET,

The temperature dependence of the inverse local suscepti-
bility is shown in Fig. 2(b). In agreement with previous results
[28] in the considered temperature range it is approximately
linear for both fixed and temperature-dependent lattice con-
stant. The temperature dependencies of the instantaneous and
static local moments, extracted from the average (m?) (which
is almost site independent due to site-diagonal form of the
self-energy), where m, =2ug ), s%, and the derivative of
the inverse susceptibility ,ulzoc = 3[d(1/x10c)/d T];1 obtained
from Xioe = Y, x| respectively, are shown in Fig. 2(c).
One can see that at fixed lattice constant the average (mg)
is weakly temperature dependent; the local moment ui .
shows somewhat stronger temperature dependence, especially
at low temperatures, reflecting a tendency of destroying static
local moments at lower temperatures [28]. The suppression
of the local moments is not pronounced in the considered
temperature range, and, therefore, they are well formed above
the lowest considered temperature 7 = 1/30 eV. The same
characteristics of local moments, calculated with temperature
dependent lattice constant, show stronger temperature depen-
dencies, reflecting effect of changing lattice constant. At not
too high temperatures 7 < 1500 K we find weak effect of
the lattice constant change on uf . The obtained value of
magnetic moment p, ~ 3.8up at T = 1200 K agrees with
previous DMFT study [28], but somewhat larger than that
obtained in DFT approach in both low-spin (antiferromagnetic)
and high-spin (ferromagnetic) phases [17-19]. On the other
hand, for the saturated magnetic moment gy, defined by
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FIG. 3. Temperature dependence of the magnetic exchange inte-
grals J@ in first three coordination spheres; the upper axis shows
respective lattice constants and unit cell volumes for the considered
temperatures. The error bars show only uncertainty, related to the
Heisenberg form of magnetic interaction, see text.

/1«120C = Wsat(Msat +2up), we find the value pg =~ 2.9up,
which is closer to the high-spin state DFT result.

Let us consider the results for the magnetic exchange. The
temperature dependence of the orbital-averaged exchange pa-
rameters J ), obtained according to Eq. (6), is shown in Fig. 3
(we average the results also with respect to the space indexes
a, b, and show the corresponding spread of the obtained values
for different a, b by error bars, which correspond physically
to assuming Heisenberg form of the exchange interaction as
discussed above; the on-site contribution J @ ~ 0.96 eV is ob-
tained rather weakly temperature dependent). One can see that
the exchange J remains small in the considered temperature
range and the dominant contribution comes from first two coor-
dination spheres. In this situation (provided J® > 0) the type
of the ground state magnetic configuration (and dominant mag-
netic correlations at finite temperature) is determined by the
sign of J(: it is ferromagnetic for /" > 0 and antiferromag-
netic with the wave vector (0, 0, 27r)/a for J(' < 0. One can
see that the nearest-neighbor exchange is antiferromagnetic
at low temperatures and favors the (0, 0, 27 )/a short-range
order, in agreement with the analysis of susceptibilities (weak
deviations from the wave vector Qx cannot be treated in the
considering supercell approach). Approaching the temperature
B = 10 eV~', which is closer to the a-y structural transition,
we obtain, however, almost vanishing nearest-neighbor ex-
change, such that the system appears on the boundary between
the regimes with strong ferro- and antiferromagnetic correla-
tions, also in agreement with the analysis of the susceptibility
above. We note that DFT calculations yield change of sign of
nearest-neighbor exchange at the unit cell volumes 11.8 [22] or
11.4 A3 [23], which are substantially smaller than the unit cell
volume V) = 12.1 A3 at B =10 eV~!. Therefore, present the-
ory allows one to obtain better agreement with the experimental
data of Ref. [30]. Although longer range than third neighbors
magnetic exchanges are not considered in the present approach
(and third neighbor exchange is small), also in DFT calcula-
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FIG. 4. Momentum dependence of the magnetic exchange inte-
gral for 8 = 30eV~! (top), 8 = 20eV~! (middle),and 8 = 10eV~!
(bottom).

tions [22,23] the third- and longer-range magnetic exchanges
almost compensate each other in the vicinity of the unit cell
volume V.

The resulting momentum dependence of the magnetic
exchange Jg, calculated analogously to 7q in Eq. (5) with the
obtained exchange integrals J®, substituted instead of 7") ,
is shown in Fig. 4. In agreement with the above discussed
results, we obtain Jo, > Jy at low temperatures and Jo, ~ Jy
at B =10 eV~!. The magnetic exchange Jy = 0.032 eV at
B = 10eV~! (which in our approach is provided mainly by the
next-nearest-neighbor interaction), multiplied by the square
of effective spin 3/2 (corresponding to our magnetic moment
wi. &~ 15 p%) is comparable (but somewhat larger) than the
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exchange Jy = 0.05 eV between unit spin vectors, obtained in
recent DFT approach [23].

IV. CONCLUSION

We have studied magnetic properties and magnetic ex-
change interactions in paramagnetic fcc iron by a combination
of density functional theory and dynamical mean-field theory
(DFT+DMFT). By using supercell approach and interpolating
the values of magnetic susceptibility between the symmetric
points of the Brillouin zone with the expansion of the mag-
netic exchange in coordination spheres up to third nearest
neighbors, we have obtained weak momentum dependence
of the magnetic susceptibility. In agreement with previous
theoretical results and the experimental data we find that
the antiferromagnetic correlations with the wave vector close
to (0,0, 2m)/a dominate at low temperatures. At the same
time, antiferromagnetic and ferromagnetic correlations closely
compete at the temperatures 7 ~ 1000 K, where y-iron exists
in nature. Although this latter result is also in agreement
with the experimental data [30], to our knowledge it has
not been reproduced theoretically previously. The analysis
of the inverse uniform susceptibility shows improvement of
the agreement with the experimental data in comparison with
previous theoretical study due to more realistic Coulomb
interaction; the obtained inverse staggered susceptibility shows
linear temperature dependence at low temperatures, with
negative Weiss temperature 6, ~ —340 K. The inverse
local susceptibility is found to be also linear at not too low
temperatures, showing well formed local moments. Analysis
of magnetic exchange between these local moments shows that
the dominant contribution to the magnetic exchange comes
from first two coordination spheres; the nearest-neighbor
exchange is found to be antiferromagnetic at low temperatures,
while at temperature of the «-y structural phase transition its

absolute value becomes small, and the system appears on the
boundary between the regimes with strongest antiferro- and
ferromagnetic correlations. Athigher temperatures the nearest-
and next-nearest exchanges are ferromagnetic. We note that in
our study the crossover between the regimes with strongest
ferro- and antiferromagnetic correlations is due to change of
preferred orientation of local moments with weakly varying
size [L1oc, Which is in contrast to the transition from low- to
high-spin itinerant state in DFT. In our calculations we have
used the density-density form of Hund’s exchange, which
was shown to significantly overestimate the «-y structural
phase transition temperature [41,43]. However, our results
are expected to remain qualitatively unchanged for the SU(2)
symmetric form, since at high temperatures the ferromagnetic
correlations are found to be strongly pronounced.

The obtained results extend and deepen previous under-
standing of the magnetic properties of y-iron and stress
important role of ferromagnetic correlations in this substance
at not too low temperatures. Although the ferromagnetic
instability at large lattice parameter was studied previously
within band structure calculations [17-21], using dynamical
mean-field theory allows us to consider the evolution of
magnetic properties with raising temperature and describe their
change from y-iron in Cu precipitates at low temperatures
to the y-iron, existing in nature. The obtained close compe-
tition of ferro- and antiferromagnetic correlations (including
possible phase separation on the short-range ordered ferro-
and antiferromagnetic regions) may also help to explain the
anti-Invar behavior of y -iron, beyond high- and low-spin states
mechanism, proposed previously [44].

ACKNOWLEDGMENT

The work was supported by the Russian Science Foundation
(Project No. 14-22-00004).

[1] W. Sucksmith and R. R. Pearce, Proc. R. Soc. London Sect. A
167, 189 (1938).
[2] M. Fallot, J. Phys. Radium 5, 153 (1944).
[3] S. Arajs and D. S. Miller, J. Appl. Phys. 31, 986 (1960).
[4] U. Gonser, C. J. Meechan, A. H. Muir, and H. Wiedersich, J.
Appl. Phys. 34, 2373 (1963).
[5] G.J. Johanson, M. B. McGirr, and D. A. Wheeler, Phys. Rev. B
1, 3208 (1970).
[6] W. Keune, R. Halbauer, U. Gonser, J. Lauer, and D. L.
Williamson, J. Magn. Magn. Mater. 6, 192 (1977).
[7] Y. Tsunoda, J. Phys.: Condens. Matter 1, 10427 (1989).
[8] T. Naono and Y. Tsunoda, J. Phys.: Condens. Matter 16, 7723
(2004).
[9] Y. Tsunoda, N. Kunitomi, Y. Tsunoda, and N. Kunitomi, J. Phys.
F: Met. Phys. 18, 1405 (1988).
[10] O. N. Mryasov, A. L. Liechtenstein, L. M. Sandratskii, and V. A.
Gubanov, J. Phys.: Condens. Matter 3, 7683 (1991).
[11] M. Uhl, L. M. Sandratskii, and J. Kiibler, J. Magn. Magn. Mater.
103, 314 (1992).
[12] P. James, O. Eriksson, B. Johansson, and I. A. Abrikosov, Phys.
Rev. B 59, 419 (1999).

[13] V. P. Antropov, M. 1. Katsnelson, M. van Schilfgaarde, and B.
N. Harmon, Phys. Rev. Lett. 75, 729 (1995); V. P. Antropov,
M. L. Katsnelson, B. N. Harmon, M. van Schilfgaarde, and D.
Kusnezov, Phys. Rev. B 54, 1019 (1996).

[14] M. Korling and J. Ergon, Phys. Rev. B 54, R8293(R) (1996).

[15] K. Knopfle, L. M. Sandratskii, and J. Kiibler, Phys. Rev. B 62,
5564 (2000).

[16] E. Sjostedt and L. Nordstrom, Phys. Rev. B 66, 014447
(2002).

[17] C. S. Wang, B. M. Klein, and H. Krakauer, Phys. Rev. Lett. 54,
1852 (1985).

[18] F. J. Pinski, J. Staunton, B. L. Gyorfty, D. D. Johnson, and G.
M. Stocks, Phys. Rev. Lett. 56, 2096 (1986).

[19] H. C. Herper, E. Hoffmann, and P. Entel, Phys. Rev. B 60, 3839
(1999).

[20] I. A. Abrikosov, A. E. Kissavos, F. Liot, B. Alling, S. I. Simak,
O. Peil, and A. V. Ruban, Phys. Rev. B 76, 014434 (2007).

[21] H. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B 84,
140411(R) (2011).

[22] A. V. Ruban, M. I. Katsnelson, W. Olovsson, S. I. Simak, and I.
A. Abrikosov, Phys. Rev. B 71, 054402 (2005).

045138-6


https://doi.org/10.1098/rspa.1938.0126
https://doi.org/10.1098/rspa.1938.0126
https://doi.org/10.1098/rspa.1938.0126
https://doi.org/10.1098/rspa.1938.0126
https://doi.org/10.1051/jphysrad:0194400508015300
https://doi.org/10.1051/jphysrad:0194400508015300
https://doi.org/10.1051/jphysrad:0194400508015300
https://doi.org/10.1051/jphysrad:0194400508015300
https://doi.org/10.1063/1.1735788
https://doi.org/10.1063/1.1735788
https://doi.org/10.1063/1.1735788
https://doi.org/10.1063/1.1735788
https://doi.org/10.1063/1.1702749
https://doi.org/10.1063/1.1702749
https://doi.org/10.1063/1.1702749
https://doi.org/10.1063/1.1702749
https://doi.org/10.1103/PhysRevB.1.3208
https://doi.org/10.1103/PhysRevB.1.3208
https://doi.org/10.1103/PhysRevB.1.3208
https://doi.org/10.1103/PhysRevB.1.3208
https://doi.org/10.1016/0304-8853(77)90107-X
https://doi.org/10.1016/0304-8853(77)90107-X
https://doi.org/10.1016/0304-8853(77)90107-X
https://doi.org/10.1016/0304-8853(77)90107-X
https://doi.org/10.1088/0953-8984/1/51/015
https://doi.org/10.1088/0953-8984/1/51/015
https://doi.org/10.1088/0953-8984/1/51/015
https://doi.org/10.1088/0953-8984/1/51/015
https://doi.org/10.1088/0953-8984/16/43/012
https://doi.org/10.1088/0953-8984/16/43/012
https://doi.org/10.1088/0953-8984/16/43/012
https://doi.org/10.1088/0953-8984/16/43/012
https://doi.org/10.1088/0305-4608/18/7/010
https://doi.org/10.1088/0305-4608/18/7/010
https://doi.org/10.1088/0305-4608/18/7/010
https://doi.org/10.1088/0305-4608/18/7/010
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1016/0304-8853(92)90202-Y
https://doi.org/10.1016/0304-8853(92)90202-Y
https://doi.org/10.1016/0304-8853(92)90202-Y
https://doi.org/10.1016/0304-8853(92)90202-Y
https://doi.org/10.1103/PhysRevB.59.419
https://doi.org/10.1103/PhysRevB.59.419
https://doi.org/10.1103/PhysRevB.59.419
https://doi.org/10.1103/PhysRevB.59.419
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevLett.75.729
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevB.54.1019
https://doi.org/10.1103/PhysRevB.54.R8293
https://doi.org/10.1103/PhysRevB.54.R8293
https://doi.org/10.1103/PhysRevB.54.R8293
https://doi.org/10.1103/PhysRevB.54.R8293
https://doi.org/10.1103/PhysRevB.62.5564
https://doi.org/10.1103/PhysRevB.62.5564
https://doi.org/10.1103/PhysRevB.62.5564
https://doi.org/10.1103/PhysRevB.62.5564
https://doi.org/10.1103/PhysRevB.66.014447
https://doi.org/10.1103/PhysRevB.66.014447
https://doi.org/10.1103/PhysRevB.66.014447
https://doi.org/10.1103/PhysRevB.66.014447
https://doi.org/10.1103/PhysRevLett.54.1852
https://doi.org/10.1103/PhysRevLett.54.1852
https://doi.org/10.1103/PhysRevLett.54.1852
https://doi.org/10.1103/PhysRevLett.54.1852
https://doi.org/10.1103/PhysRevLett.56.2096
https://doi.org/10.1103/PhysRevLett.56.2096
https://doi.org/10.1103/PhysRevLett.56.2096
https://doi.org/10.1103/PhysRevLett.56.2096
https://doi.org/10.1103/PhysRevB.60.3839
https://doi.org/10.1103/PhysRevB.60.3839
https://doi.org/10.1103/PhysRevB.60.3839
https://doi.org/10.1103/PhysRevB.60.3839
https://doi.org/10.1103/PhysRevB.76.014434
https://doi.org/10.1103/PhysRevB.76.014434
https://doi.org/10.1103/PhysRevB.76.014434
https://doi.org/10.1103/PhysRevB.76.014434
https://doi.org/10.1103/PhysRevB.84.140411
https://doi.org/10.1103/PhysRevB.84.140411
https://doi.org/10.1103/PhysRevB.84.140411
https://doi.org/10.1103/PhysRevB.84.140411
https://doi.org/10.1103/PhysRevB.71.054402
https://doi.org/10.1103/PhysRevB.71.054402
https://doi.org/10.1103/PhysRevB.71.054402
https://doi.org/10.1103/PhysRevB.71.054402

MAGNETIC EXCHANGE AND SUSCEPTIBILITIES IN fcc ...

PHYSICAL REVIEW B 98, 045138 (2018)

[23] S. V. Okatov, Yu. N. Gornostyrev, A. L. Lichtenstein, and M. L.
Katsnelson, Phys. Rev. B 84, 214422 (2011).

[24] Z. P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011).

[25] L. de’ Medici, J. Mravlje, and A. Georges, Phys. Rev. Lett. 107,
256401 (2011); L. de’ Medici, Phys. Rev. B 83, 205112 (2011).

[26] P. Werner, E. Gull, M. Troyer, and A. J. Millis, Phys. Rev. Lett.
101, 166405 (2008).

[27] A. S. Belozerov, A. A. Katanin, and V. I. Anisimov, Phys. Rev.
B 97, 115141 (2018).

[28] P. A. Igoshev, A. V. Efremov, A. L. Poteryaev, A. A. Katanin,
and V. I. Anisimov, Phys. Rev. B 88, 155120 (2013).

[29] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

[30] P.J. Brown, H. Capellmann, J. Déportes, D. Givord, and K. R.
A. Ziebeck, J. Magn. Magn. Mater. 30, 335 (1983).

[31] V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin,
and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997); A. L.
Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998).

[32] A. S. Belozerov, A. A. Katanin, and V. I. Anisimov, Phys. Rev.
B 96, 075108 (2017).

[33] L. Seki and K. Nagata, ISIJ Int. 45, 1789 (2005).

[34] D. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, 1. Leonov, N.
Binggeli, V. I. Anisimov, and G. Trimarchi, Eur. Phys. J. B 65,
91 (2008).

[35] A. S. Belozerov and V. I. Anisimov, J. Phys.: Condens. Matter
26, 375601 (2014).

[36] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys.
Rev. B 72, 035122 (2005); P. Werner, A. Comanac, L. de’
Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405
(20006).

[37] L. V. Pourovskii, T. Miyake, S. I. Simak, A. V. Ruban, L.
Dubrovinsky, and 1. A. Abrikosov, Phys. Rev. B 87, 115130
(2013).

[38] Y. O. Kvashnin, O. Gréanis, I. Di Marco, M. 1. Katsnelson,
A. L. Lichtenstein, and O. Eriksson, Phys. Rev. B 91, 125133
(2015).

[39] M. Potthoff and W. Nolting, Phys. Rev. B 59, 2549 (1999).

[40] M. Potthoff and W. Nolting, Phys. Rev. B 60, 7834 (1999).

[41] I. Leonov, A. L. Poteryaev, V. I. Anisimov, and D. Vollhardt,
Phys. Rev. Lett. 106, 106405 (2011).

[42] A. Hausoel, M. Karolak, E. Sasioglu, A. Lichtenstein, K. Held,
A. Katanin, A. Toschi, and G. Sangiovanni, Nat. Commun. 8,
16062 (2017).

[43] A. A. Katanin, A. S. Belozerov, and V. I. Anisimov, Phys. Rev.
B 94, 161117(R) (2016).

[44] M. Acet, H. Zihres, E. F. Wassermann, and W. Pepperhoff, Phys.
Rev. B 49, 6012 (1994).

045138-7


https://doi.org/10.1103/PhysRevB.84.214422
https://doi.org/10.1103/PhysRevB.84.214422
https://doi.org/10.1103/PhysRevB.84.214422
https://doi.org/10.1103/PhysRevB.84.214422
https://doi.org/10.1038/nmat3120
https://doi.org/10.1038/nmat3120
https://doi.org/10.1038/nmat3120
https://doi.org/10.1038/nmat3120
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.1103/PhysRevB.83.205112
https://doi.org/10.1103/PhysRevLett.101.166405
https://doi.org/10.1103/PhysRevLett.101.166405
https://doi.org/10.1103/PhysRevLett.101.166405
https://doi.org/10.1103/PhysRevLett.101.166405
https://doi.org/10.1103/PhysRevB.97.115141
https://doi.org/10.1103/PhysRevB.97.115141
https://doi.org/10.1103/PhysRevB.97.115141
https://doi.org/10.1103/PhysRevB.97.115141
https://doi.org/10.1103/PhysRevB.88.155120
https://doi.org/10.1103/PhysRevB.88.155120
https://doi.org/10.1103/PhysRevB.88.155120
https://doi.org/10.1103/PhysRevB.88.155120
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1016/0304-8853(83)90072-0
https://doi.org/10.1016/0304-8853(83)90072-0
https://doi.org/10.1016/0304-8853(83)90072-0
https://doi.org/10.1016/0304-8853(83)90072-0
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.96.075108
https://doi.org/10.1103/PhysRevB.96.075108
https://doi.org/10.1103/PhysRevB.96.075108
https://doi.org/10.1103/PhysRevB.96.075108
https://doi.org/10.2355/isijinternational.45.1789
https://doi.org/10.2355/isijinternational.45.1789
https://doi.org/10.2355/isijinternational.45.1789
https://doi.org/10.2355/isijinternational.45.1789
https://doi.org/10.1140/epjb/e2008-00326-3
https://doi.org/10.1140/epjb/e2008-00326-3
https://doi.org/10.1140/epjb/e2008-00326-3
https://doi.org/10.1140/epjb/e2008-00326-3
https://doi.org/10.1088/0953-8984/26/37/375601
https://doi.org/10.1088/0953-8984/26/37/375601
https://doi.org/10.1088/0953-8984/26/37/375601
https://doi.org/10.1088/0953-8984/26/37/375601
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevB.87.115130
https://doi.org/10.1103/PhysRevB.87.115130
https://doi.org/10.1103/PhysRevB.87.115130
https://doi.org/10.1103/PhysRevB.87.115130
https://doi.org/10.1103/PhysRevB.91.125133
https://doi.org/10.1103/PhysRevB.91.125133
https://doi.org/10.1103/PhysRevB.91.125133
https://doi.org/10.1103/PhysRevB.91.125133
https://doi.org/10.1103/PhysRevB.59.2549
https://doi.org/10.1103/PhysRevB.59.2549
https://doi.org/10.1103/PhysRevB.59.2549
https://doi.org/10.1103/PhysRevB.59.2549
https://doi.org/10.1103/PhysRevB.60.7834
https://doi.org/10.1103/PhysRevB.60.7834
https://doi.org/10.1103/PhysRevB.60.7834
https://doi.org/10.1103/PhysRevB.60.7834
https://doi.org/10.1103/PhysRevLett.106.106405
https://doi.org/10.1103/PhysRevLett.106.106405
https://doi.org/10.1103/PhysRevLett.106.106405
https://doi.org/10.1103/PhysRevLett.106.106405
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1103/PhysRevB.94.161117
https://doi.org/10.1103/PhysRevB.94.161117
https://doi.org/10.1103/PhysRevB.94.161117
https://doi.org/10.1103/PhysRevB.94.161117
https://doi.org/10.1103/PhysRevB.49.6012
https://doi.org/10.1103/PhysRevB.49.6012
https://doi.org/10.1103/PhysRevB.49.6012
https://doi.org/10.1103/PhysRevB.49.6012



