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Exploiting the links between ground-state correlations and independent-fermion
entropy in the Hubbard model
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The ground-state properties of the half-filled Hubbard model are investigated in the framework of lattice density
functional theory. The single-particle density matrix γijσ is regarded as the central variable of the many-body
problem, where i and j refer to the lattice sites and σ to the spin. The interaction-energy functional W [γijσ ] is
calculated exactly for representative finite periodic systems by performing exact Lanczos diagonalizations. The
relationship between W [γijσ ] and the entropy S[ηkσ ] of independent fermions with natural-orbital occupations ηkσ

is analyzed. A simple approximation to the interaction energy of the half-filled Hubbard model is proposed, which
takes the form W = W (S[ηkσ ]). Using this functional we derive the ground-state energy, kinetic energy, average
number of double occupations, charge distribution, magnetic susceptibility, and field-induced spin polarization in
one-, two-, and three-dimensional periodic lattices. The limit of infinite dimensions is also explored. The accuracy
of the method is assessed by comparison with available exact numerical or analytical results. Goals, limitations,
and possible extensions of the domain of applicability of the functional are discussed.
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I. INTRODUCTION

The quantum many-body problem has always been one of
the most important challenges in condensed-matter physics.
From a first-principles perspective, the most significant
progress over the past decades has been achieved in the
framework of density functional theory (DFT). The density
functional methodology builds on the seminal theorem of
Hohenberg and Kohn [1], which states that the ground-state
properties of electrons in an arbitrary external potential can
be regarded as functionals of the electronic density n(r). The
underlying one-to-one mapping between the ground state and
n(r) allows us in principle to avoid the calculation of the
ground-state wave function |ψ〉. Thus, n(r) takes the role of
the fundamental variable of the many-body problem.

Most practical applications of DFT are performed within
the Kohn-Sham scheme, which reduces the interacting many-
particle problem to a set of self-consistent single-particle
equations [2]. A central concept in this context is the functional
F [n(r)] = T [n(r)] + W [n(r)] giving the optimal sum of the
kinetic energy T [n(r)] and the interaction energy W [n(r)]
of an electronic system having an arbitrary physical n(r).
Although formally exact, the applications of DFT are hindered
by the fact that the explicit form of F [n(r)] remains unknown.
Consequently, the actual calculations must resort to some
approximation to F [n(r)], among which the local spin-density
approximation (LSDA) [2,3], the generalized-gradient approx-
imations (GGAs) [4–6], and the so-called hybrid functionals
[7–9] are the most widespread at present. More recently, related
methods based on the single-particle density matrix γ (r,r ′)
have also been developed [10–22].

Hohenberg-Kohn-Sham’s theory has demonstrated its pre-
dictive power in countless applications throughout the most
large variety of fields. However, there are still several open
problems, where the conventional exchange and correlation

functionals perform poorly. This applies in particular to strong
electron-correlation effects, for example, the dissociation of
closed-shell molecules [23], the physics of heavy-fermion
materials [24], high-temperature superconductivity [25], and
Mott insulators [26–28]. Finding an accurate DFT description
of these phenomena remains a serious challenge [29–34]. In
order to understand the properties of these systems, several
many-body lattice Hamiltonians have been developed, which
focus on the most relevant dynamics of the valence electrons.
Motivated at the origin by the description of molecular bonding
[35,36], magnetic impurities in metals [37], and itinerant
electrons in narrow bands [38–40], the theory of many-body
models has grown to a high level of sophistication, not only
from a methodological perspective, but also concerning the
physical effects that are taken into account in the modelization.
In this way, subtle phenomena such as valence and spin
fluctuations, separation of charge and spin degrees of freedom,
superconductivity, correlation-induced localization, etc., have
been revealed [25,41,42]. Despite these achievements, and
although the electron dynamics is simplified with respect to
the full first-principles problem, deriving the properties of these
models remains a very difficult task. Exact analytical results
are rare [43–47], and accurate numerical solutions are either
inaccessible or very demanding [26,48–51]. Consequently,
developing theoretical methods capable of describing the
physics of many-body lattice Hamiltonians is a subject of
considerable interest.

In past years, a number of studies of electron correlations
have been performed by applying the concepts of DFT to
lattice models [52–65,65–69]. Indeed, taking into account the
universality of DFT, and its demonstrated efficiency in complex
ab initio calculations, it is reasonable to expect that DFT,
with an appropriate ansatz for the kinetic- and interaction-
energy functionals, should be a most valuable approach to
correlated lattice models. Early studies have addressed the
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band-gap problem in semiconductors [52–54] and the role
of the off-diagonal elements of the density matrix in order
to describe strong electron correlations [55]. Density-matrix
energy functionals have been proposed and applied to the
Anderson model [56]. Moreover, local approximations have
been derived based on the Bethe-ansatz exact solution of the
one-dimensional Hubbard model [57], and time-dependent
approaches have been developed [58]. Particularly relevant
in the context of this paper is the lattice density functional
theory (LDFT) formulated in Refs. [59,60], which considers
the single-particle density matrix γijσ as the central variable
of the many-body problem.

The LDFT approach has been successfully applied to a
variety of physical situations involving strong electron cor-
relations, for example, the single-impurity Anderson model
[63–65], the Hubbard model with homogeneous and inhomo-
geneous local potentials, dimerized chains, attractive pairing
interactions, and inhomogeneous local repulsions [60–62,65–
69]. The basic idea behind the available functionals is to adopt
a real-space perspective and to take advantage of the scaling
properties of W as a function of the bond order γ12σ , which
measures the degree of charge fluctuations between nearest
neighbors (NNs). The actual dependence of W on γ12σ can
then be inferred from a simple reference system, for instance,
the Hubbard dimer. In its simplest version, this approach
gives access only to the diagonal and NN elements of the
density matrix. Models having interatomic hoppings beyond
NNs cannot usually be treated in this framework, although
an extension has been recently proposed, which overcomes
this limitation [69]. Therefore, the domain of applicability of
the functionals proposed so far for the Hubbard model and
the properties that can be derived from them are somewhat
limited. Moreover, describing the dependence of W on the
complete density matrix γ is necessary in order to be able
to take full advantage of the universality of LDFT. In fact,
only in this case the interaction-energy functional is completely
independent from the topology, dimensionality and structure
of the system. A more flexible formulation would also allow
us to predict the distance dependence of γijσ , even if the
actual hybridizations are short ranged, as usually found in
narrow-band systems. This would be interesting in order to
analyze how electron localization develops in real space with
increasing Coulomb-repulsion strength, which is also relevant
for transport properties. Finally, knowing all nonvanishing
γijσ would allow us to determine the average occupation
numbers of the translational-invariant Bloch states along the
crossover from weak to strong correlations. It is the goal of this
paper to develop an interaction-energy functional W [γ ] for the
Hubbard model by adopting a delocalized k-space perspective.
To this aim, we focus on homogeneous periodic systems and
investigate the dependence of W on the eigenvalues ηkσ of
γσ , which define the average occupation of the natural orbitals
and thus represent the spin-polarized electronic density in k
space. A simple energy functional E[ηkσ ] is proposed for the
half-filled Hubbard model, which exploits certain analogies
between ground-state electron correlations and the entropy
of independent fermions having the occupation-number dis-
tribution ηkσ . This functional is subsequently applied in the
framework of LDFT to one-, two-, and three-dimensional
lattices.

The remainder of the paper is organized as follows. In Sec. II
the fundamental concepts of LDFT are briefly recalled, giving
emphasis to its application to periodic systems. In Sec. III
the relationship between independent-fermion entropy S and
degree of electron correlations in the half-filled Hubbard model
is discussed. This leads to a simple ansatz for the interaction-
energy functional W [γ ], whose properties are analyzed in the
limits of weak and strong correlations. Results for finite and
infinite periodic lattices are presented and discussed in Sec. IV.
The accuracy of the proposed approximation to W is assessed
by comparison with exact results whenever possible. Finally,
Sec. V summarizes our main conclusions and points out some
possible future extensions.

II. DENSITY FUNCTIONAL THEORY ON A LATTICE

A. General formulation

Given a discrete basis set of single-particle orbitals {φi(r)},
a nonrelativistic many-electron system is described by the
Hamiltonian

Ĥ = T̂ + Ŵ =
∑
ijσ

tij ĉ
†
iσ ĉjσ +

∑
ijkl

σσ ′

Wijkl ĉ
†
iσ ĉ

†
jσ ′ ĉlσ ′ ĉkσ ,

(1)

where ĉ
†
iσ (ĉiσ ) creates (annihilates) a particle with spin σ at the

orbital φi(r). The index i denotes the lattice site as well as the
different local orbitals. The parameters tij are single-particle
matrix elements, where εi = tii refers to the energy levels and
tij for i �= j to the hopping integrals. The interaction term is
characterized by the Coulomb integrals Wijkl [25]. Once a basis
set {φi(r)} is adopted, only the single-particle matrix elements
tij depend on the external potential v(r) acting on the electrons.
Therefore, in the spirit of DFT, they define the actual problem
under study. From the perspective of lattice models the hopping
matrix tij specifies the topology and dimensionality of the
lattice, as well as the range of the single-particle hybridizations.

The Hohenberg-Kohn (HK) theorem [1] states that in the
absence of degeneracies the ground-state electron density n(r)
defines unambiguously the ground-state wave function |ψ〉 of
any electronic system subject to a local potential v(r). It is
therefore interesting to consider the density operator n̂(r) =∑

σ ψ̂†
σ (r)ψ̂σ (r) by expressing the field operators ψ̂†

σ (r) and
ψ̂σ (r) in terms of the basis functions φi(r) and the correspond-
ing creation and annihilation operators. Since

n̂(r) =
∑
ijσ

φ∗
i (r) φj (r) ĉ

†
iσ ĉjσ , (2)

the particle density n(r) in any state |ψ〉 is given by

n(r) = 〈ψ |n̂(r)|ψ〉 =
∑
ijσ

γijσ φ∗
i (r) φj (r), (3)

where

γijσ = 〈ψ |ĉ†iσ ĉjσ |ψ〉 (4)

denotes the elements of the single-particle density matrix
(SPDM). Equation (3) shows that γ defines n(r), the funda-
mental variable of DFT, in any many-body state |ψ〉. Notice,
moreover, that all matrix elements γijσ are required in order to
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determine n(r) completely, once the basis set {φi(r)} is fixed.
As we shall see, the importance of the off-diagonal elements
of γ is a consequence of the nonlocality of the hopping
integrals tij . Furthermore, an independent lattice version of
the HK theorem has been formulated, which demonstrates the
existence of a unique mapping between nondegenerate ground
states |ψ0〉 and the corresponding density matrix γ 0 [63]. In
this work, a universal formulation of density functional theory
is aimed, i.e., one which applies to arbitrary lattice structures,
dimensions, and hopping integrals tij . Therefore, it is necessary
to consider the full SPDM γ as the fundamental variable
of the many-body problem. A similar situation is found in
the continuum when nonlocal pseudopotentials are considered
(see Ref. [10]). Notice, however, that alternative density
functional descriptions of many-body lattice models have been
proposed, which are based solely on the diagonal elements
γiiσ = niσ of the SPDM, i.e., on the density or site occupation
numbers niσ [52–58]. While this approach is rigorously valid,
the associated interaction-energy functionals W [niσ ] depend
on the considered lattice structure and hopping integrals tij .
Let us finally mention that interaction-energy functionals of the
single-particle density matrix γ (r,r ′) have also been proposed
in order to study problems with local potentials v(r), even
though this is not required by the Hohenberg-Kohn theorem
[11–22].

The ground-state energy functional can be written as

E[γ ] = T [γ ] + W [γ ], (5)

where

T [γ ] =
∑
ijσ

tij γijσ (6)

denotes the single-particle contribution representing the kinetic
and potential energy of the electrons in the lattice. The second
term in (5) is the interaction-energy functional

W [γ ] = min
|ψ〉→γ

⎡
⎢⎣∑

ijkl

σσ ′

Wijkl 〈ψ |ĉ†iσ ĉ
†
jσ ′ ĉlσ ′ ĉkσ |ψ〉

⎤
⎥⎦, (7)

which represents the minimum interaction energy among all
N -particle states |ψ〉 that yield the given γ according to Eq. (4)
[59,70]. Notice that, in contrast to T [γ ], the explicit form of
the functional W [γ ] is not known in general. Therefore, the
main challenge in LDFT is to find good approximations to W .

Before formulating a minimization scheme for the energy
E, it is useful to discuss the domain of definition of W as a
functional of γ . Equation (7) implies a minimization over the
set of all |ψ〉 which yield the density matrix γijσ . In order
that this set is not empty, and that the definition of W [γ ]
makes sense, one needs to restrict the domain of definition
of W [γ ] to pure-state N -representable γ , i.e., to the density
matrices that can be obtained from Eq. (4) for some many-body
state |ψ〉. This set includes, of course, the density matrix γ 0

corresponding to the ground state |ψ0〉, from which the energy
E0 and the expectation values O[γ 0] = 〈ψ0|Ô|ψ0〉 of other
observables O are obtained. It is well known that all SPDMs
are necessarily diagonalizable with eigenvalues ηkσ satisfying
0 � ηkσ � 1. However, a sufficient condition characterizing
pure state N -representable SPDMs is not known at present.

And yet such a criterion exists for the larger set of ensemble-
N -representable density matrices γijσ = Tr{ρ̂ ĉ

†
iσ ĉjσ }, which

are derived from mixed-state density operators ρ̂. In this case
the above-mentioned necessary condition is also sufficient.
For this reason, we extend the domain of definition for the
functionals (5)–(7) to the larger set of ensemble-representable
density matrices. In this case the minimization in Eq. (7) should
run over all density operators ρ̂ yielding the given γ . This
should have no consequences in practice since for integer
N the minimum of the energy functional (5) over the set
of ensemble-representable density matrices corresponds to a
pure-state N -representable γijσ , namely, the density matrix
γ 0

ijσ of the ground state. Therefore, extending the domain
of definition should not change the physical results. Notice,
however, that the previous considerations need not strictly hold
when approximations to W [γ ] are involved.

In order to obtain the equations giving the ground-state
properties we express

γijσ =
∑

k

uikσ ηkσ u∗
j kσ (8)

in terms of its eigenvectors or natural orbitals uikσ and of
its eigenvalues or orbital occupations ηkσ . The stationary
condition on the energy functional (5) with respect to variations
of u∗

ikσ and ηkσ under the constraints∑
k

ηkσ = Nσ (9)

on the number of spin-σ electrons Nσ , and∑
i

|uikσ |2 = 1 (10)

on the normalization of the natural orbitals, yields the coupled
equations ∑

i

∂E[γ ]

∂γijσ

uikσ = λkσ uj kσ (11)

and
∂E[γ ]

∂ηkσ

= μσ . (12)

These equations can in general be solved by means of the
double-loop iterative procedure proposed in Ref. [69]. In this
scheme, the orbital occupations ηkσ are first optimized keeping
the current ansatz for the natural orbitals uikσ fixed. The thus
obtained γijσ allows one to calculate ∂E/∂γijσ and thus the
new eigenvectors uikσ according to Eq. (11). These represent
the natural orbitals to be used in the optimization of ηkσ

in the subsequent iteration, until convergence is achieved.
Nevertheless, in this study, no numerical iterative procedure
is actually necessary since an exact analytic solution of the
self-consistent equations (11) and (12) can be obtained for
the proposed functional dependence of the interaction energy
W [ηkσ ].

B. Periodic systems

For the purpose of deriving an approximation to the
interaction-energy functional we focus on homogeneous, peri-
odic single-band systems. In this case, due to the translational
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symmetry, the ground-state SPDM depends only on the vector
connecting the lattice sites Ri and Rj , i.e.,γijσ = γσ (Ri − Rj )
and in particular γiiσ = Nσ/Na is independent of i. Applying
the Bloch theorem to γσ one obtains the eigenvectors

uikσ = 1√
Na

e−ik·Ri , (13)

which are classified by the wave vectors k in the first Brillouin
zone (BZ). Substituting Eq. (13) into Eq. (8), one finds

γijσ = 1

Na

∑
k∈BZ

ηkσ e−ik·(Ri−Rj ), (14)

which is characterized by the occupation numbers ηkσ . Con-
sequently for periodic systems, the occupation numbers ηkσ

can be regarded as the fundamental variables in LDFT. The
kinetic-, interaction-, and total-energy functionals T =
T [ηkσ ], W = W [ηkσ ], and E = E[ηkσ ] depend solely on ηkσ .
In particular, the kinetic-energy functional (6) is given by

T [ηkσ ] =
∑

k∈BZ σ

εk ηkσ , (15)

where

εk =
Na∑
i=1

t(Ri) cos(k · Ri) (16)

is the tight-binding dispersion relation for tij = t(Ri − Rj ).
The total energy

E[ηkσ ] =
∑
kσ

εkηkσ + W [ηkσ ] (17)

has to be minimized by keeping a fixed number of spin-σ
electrons

Nσ =
∑
k∈BZ

ηkσ . (18)

One therefore introduces the Lagrange functional

L[ηkσ ,μσ ] = E[ηkσ ] −
∑

σ

μσ

(∑
k∈BZ

ηkσ − Nσ

)
(19)

and solves the extremum condition ∂L/∂ηkσ = 0 for all kσ .

III. RECIPROCAL-SPACE APPROXIMATION TO W [γ ] IN
THE HUBBARD MODEL

In the following, we consider the single-band Hubbard
model, which is given by

Ĥ = T̂ + Ŵ =
∑
ijσ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓. (20)

In the usual notation, tij is the hopping integral between atoms
or lattice sites located at Ri and Rj and U is the onsite Coulomb
repulsion. The periodicity of the lattice and the s-like character
of the local orbitals implies that tij = t(|Ri − Rj |) depends
only on the distance between the atoms i and j .

In order to derive a physically sound approximation to
W [γ ] from a k-space perspective, it is useful to consider two
important limiting situations, for which Levy’s constrained

minimization (7) can be exactly solved. The first one concerns
idempotent density matrices, i.e., γ 2

σ = γσ . It is easy to see that
in this case the occupation numbers ηkσ are 0 or 1, and that the
only many-body state |ψ〉 which can yield this kind of γ is the
Slater determinant made of the occupied natural orbitals uikσ .
The corresponding interaction energy W is then equal to the
Hartree-Fock energy

WHF =
∑

k k′
occ.

(Wkk′kk′ − Wkk′k′k), (21)

where Wkk′kk′ (Wkk′k′k) stands for the direct (exchange)
Coulomb integrals between Bloch states. In particular for the
Hubbard model we have WHF = U DHF, where

DHF =
∑
i k k′

ηk↑ ηk′↓ |uik↑|2 |uik′↓|2 =
∑

i

γii↑γii↓ (22)

is the uncorrelated average number of double occupations
for the spin-density distribution γiiσ . Since the many-body
eigenstates of the kinetic-energy operator T̂ are simple Slater
determinants, the ground state γ is idempotent in the limit of
vanishing interactions, provided that degeneracies are absent.
However, if there are degeneracies not arising from spin (i.e., at
the Fermi energy of the single-particle spectrum εk) one usually
finds fractional occupation numbers and a reduced W < WHF,
even for arbitrary weak interactions.

The other important limit is given by the scalar density
matrices γσ = nσ1, where nσ = Nσ/Na is the density of spin-
σ electrons. In this case, the occupation numbers ηkσ = nσ are
independent of k. In order to represent a scalar γ one may con-
struct symmetrized localized states where charge fluctuations
are suppressed and the interaction energy is minimal. For the
Hubbard model one thus obtains W∞ = U D∞, where

D∞ =
{

0 if Ne � Na,

Ne − Na if Ne > Na
(23)

is the minimal number of double occupations. Scalar density
matrices are most relevant in the limit of strong interactions
or vanishing hopping integrals, particularly at half-band filling
where the ground-state kinetic energy tends to zero.

Notice that the above considerations are independent of the
actual form of the natural orbitals uikσ . The discussed limits
allow us to quantify the changes in W as a function of ηkσ , from
integer occupations ηkσ = 0 or 1 to k-independent occupations
ηkσ = nσ . They also provide information on the dependence
of W on uikσ in the limits of weak and strong correlations.
Nevertheless, describing the behavior of W for intermediate γ

remains a challenge.
In order to interpret and approximate W for arbitrary ηkσ ,

it is useful to consider the independent-fermion entropy (IFE)

S[ηkσ ] = −
∑
kσ

[ηkσ ln(ηkσ ) + (1 − ηkσ ) ln(1 − ηkσ )], (24)

which corresponds to an arbitrary occupation-number distri-
bution ηkσ of the natural orbitals, i.e., not necessarily the
equilibrium one [71]. On the one side, if the electrons are
uncorrelated, we have ηkσ = 0 or 1 and therefore S = 0. This
is the minimum possible value of S regarded as a functional of
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ηkσ . On the other side, if the electrons are localized, we have
ηkσ = nσ = Nσ/Na for all k, which implies that S takes its
maximum possible value S∞ for the given number of spin-σ
electrons Nσ . At half-band filling we have (n↑ + n↓) = 1 and
S∞ can be written as

S∞ = −2Na[n↑ ln(n↑) + n↓ ln(n↓)]. (25)

It is interesting to notice that the distributions of ηkσ which
yield the extreme values of the interaction energy W for fixed
uikσ also correspond to the extreme values of the IFE. This
suggests that S[ηkσ ] could be used as a measure of the degree
of electron correlations, by means of which the functional
dependence of W [ηkσ ] could be efficiently approximated.

In order to quantify the relation between W [γ ] and S[γ ],
we have determined W exactly for the half-filled Hubbard
model by performing Levy’s minimization (7) for periodic γijσ

[see Eqs. (13) and (14)]. This requires introducing Lagrange
multipliers λij in order to ensure that |ψ〉 gives the desired fixed
values of γijσ . As shown in Ref. [59], the λij take the role of
interatomic hoppings in the Euler-Lagrange eigenvalue equa-
tions giving the minimum 〈ψ |Ŵ |ψ〉. In practice, one assumes
different ratios between the λij at different distances, which
correspond to one-dimensional (1D) and two-dimensional
(2D) lattices having first and second NN λij . The overall
values of λij are then scaled from λij = 0 to λij  U in order
to obtain different occupation-number distributions ηkσ and
thereby scan the complete range of values of S, from weak
to strong correlations (0 � S � S∞). For not too large finite
systems, the ground-state Hubbard problem resulting from the
minimization in Eq. (7) can then be solved by using the Lanczos
method [72,73]. Once the many-body state |ψ〉 yielding the
minimum 〈ψ |Ŵ |ψ〉 has been found, it is straightforward to
calculate the corresponding γijσ from Eq. (4). The natural
orbital occupations ηkσ are obtained by diagonalizing γijσ or
by direct Fourier transformation [see Eq. (14)]. In this way,
the functional relation between W and γijσ , or between W and
ηkσ , is established. For each occupation-number distribution
ηkσ , the corresponding S[ηkσ ] follows directly from Eq. (24).

Figure 1 shows the relation between the interaction energy
W [ηkσ ] and the independent-fermion entropy S[ηkσ ] for a
number of 1D and 2D half-filled lattices having different
numbers of atoms Na � 12 and different occupation-number
distributionsηkσ . Remarkably, the simpleS[ηkσ ] captures most
of the dependence of W on ηkσ . One observes indeed that
the relation between W and S is approximately independent
of the size and dimension of the system, and of the precise
form of the distribution ηkσ . The deviations from the common
approximately linear trend are always small (below 10%).
Therefore, we propose to approximate W [ηkσ ] by a simple
function

W = W (S[ηkσ ]) (26)

of the IFE given by Eq. (24). The relation between W and S

appears to be close to linear over a wide range of values of S,
at least for the considered half-filled cases. Nevertheless, some
deviations from the linear behavior are found for very small S,
where the orbital occupations are close to integer (see Fig. 1).
For simplicity, we shall use a linear approximation to W (S) in
the applications discussed in Sec. IV.

0.0 0.2 0.4 0.6 0.8 1.0

S/S∞

0.0

0.2

0.4

0.6

0.8

1.0

W
/W

H
F

FIG. 1. Relation between the exact interaction energy W [ηkσ ] of
the periodic half-filled Hubbard model and the independent Fermion
entropy S[ηkσ ] corresponding to different natural-orbital occupation
distributions ηkσ . The results are obtained from Lanczos diagonal-
izations on finite 1D rings having Na = 6 (circles), Na = 10 (upright
triangles) and Na = 14 (squares), as well as for finite 2D square-lattice
rectangles having Na = 2 × 4 (downright triangles) and Na = 3 × 4
(diamonds) with periodic boundary conditions. The solid symbols
correspond to first NN hoppings t01, while the open symbols also
include second NN hoppings t02 = t01/2.

It is important to keep in mind that assuming that W

depends on ηkσ only through S remains an approximation,
irrespectively of the detail by which W (S) may be interpolated.
In fact, Eq. (26) imposes some restrictions on the k depen-
dence of the ground state ηkσ , which deserve to be clarified.
Let us assume that the interaction energy is some arbitrary
function W = W (S) of the IFE. Replacing W in Eq. (17), the
Euler-Lagrange equations ∂L/∂ηkσ = 0 yield the ground-state
occupation numbers

ηkσ = 1

1 + e(εk−μσ )/ϑ
, (27)

where

ϑ = −dW

dS
(28)

plays the role of an effective temperature, which is common
to all kσ . Notice that ϑ changes with the form of W (S) and
with the actual ground-state value of S. The spin-dependent
chemical potential μσ is chosen to reproduce the total number
of spin-σ electrons according to Eq. (18). Clearly, the set
of equations (27) has to be solved self-consistently for all
kσ together with Eqs. (18) and (28) since ϑ depends on the
distribution ηkσ through S, and μσ depends on ϑ . Thus, the
relation between ηkσ and the single-particle band structure εk

varies as a function of the Coulomb interaction U through the
effective temperature ϑ . Let us recall that W scales linearly
with U and therefore ϑ = −U dD/dS, where D is the average
number of double occupations. Aside from the quantitative
aspects, to be discussed in detail in Sec. IV, we may already
conclude that the assumption W = W (S) always implies that
ηkσ follows the Fermi-Dirac distribution since neither ϑ nor μσ

depend on kσ . This means that ηkσ is a continuous function
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of εk, except in the uncorrelated case (U = 0). Fermi-liquid
behavior, with a discontinuity in ηkσ at μσ , or Luttinger-
liquid behavior, showing a diverging derivative of ηkσ at μσ ,
cannot be described by this approximation. And still, despite
these restrictions, we shall be able to show that already the
most simple entropy-based ansatz for W [ηkσ ] gives a quite
accurate account of the ground-state properties of the half-
filled Hubbard model, particularly in the strongly correlated
limit.

For the following applications, we propose to approximate
W [ηkσ ] by the simple linear relation

W [ηkσ ] = WHF

(
1 − S[ηkσ ]

S∞

)
, (29)

where

WHF = UDHF = U
∑

i

γii↑γii↓ (30)

is the Hartree-Fock Coulomb energy and S∞ is the upper bound
forS[ηkσ ] given by Eq. (25). Substituting Eq. (29) into Eq. (17),
and using that in the homogeneous case WHF = UNan↑n↓, one
obtains the energy functional

E[ηkσ ] =
∑
kσ

εk ηkσ + UNan↑n↓

(
1 − S[ηk]

S∞

)
(31)

=
∑
kσ

εk ηkσ + WHF − ϑ S[ηkσ ], (32)

with the effective temperature ϑ = −dW/dS =
UNan↑n↓/S∞. A simple physical interpretation follows.
In the present linear ansatz, the correlation energy W − WHF

of the interacting problem having occupation numbers ηkσ

is approximated by the entropy contribution −ϑS to the
Helmholtz free energy of an auxiliary noninteracting system
at an effective finite temperature ϑ , which is proportional to
U . In this way, fractional occupations ηkσ are obtained in the
ground state of all interacting systems (U �= 0).

IV. RESULTS AND DISCUSSION

In this section we apply the linear IFE approximation of
the interaction-energy functional to the half-filled Hubbard
model on one-, two-, and three-dimensional lattices. First,
we consider finite systems with periodic boundary conditions
and compare the calculated ground-state properties with the
outcome of exact Lanczos diagonalizations. Second, we in-
vestigate the one-dimensional infinite chain for which the
exact Bethe-ansatz solution is available. Third, we apply the
method to the Hubbard model on the 2D square lattice,
the 3D cubic lattice, and the limit of infinite dimensions.
Finally, spin-polarized systems are considered.

A. Finite periodic rings

In Fig. 2, results are given for several ground-state properties
of a ring with Na = 14 sites and N↑ = N↓ = 7 electrons as a
function of the Coulomb interaction strength U/t . These were
obtained either by using the IFE approximation to LDFT or by
exact numerical Lanczos diagonalizations. Figure 2(a) shows
that the proposed ansatz for W reproduces the ground-state en-
ergy E0 very accurately for all U/t . The discrepancies between
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FIG. 2. Ground-state properties of the 1D Hubbard model on a
ring having Na = 14 sites and N↑ = N↓ = 7 electrons as a function
of the Coulomb-repulsion strength U/t . The linear independent-
fermion entropy (IFE) ansatz (blue full curves) is compared with
exact numerical Lanczos diagonalizations (red dashed curves): (a)
ground-state energy E0, (b) average number of double occupations
D and kinetic energy T , (c) natural-orbital occupation numbers
ηk↑ = ηk↓, and (d) density-matrix elements γ0δ↑ = γ0δ↓ between an
atom i = 0 and its δth-nearest neighbor.

IFE and exact results are always less than 1.2%. In particular
in the strongly correlated limit we obtain E0/Na = −α t2/U

with αIFE = 2.77, while the exact result is αex = 2.79. This
demonstrates the ability of LDFT and the IFE ansatz to account
for the Heisenberg limit of the Hubbard model, where the
energies associated to spin and charge degrees of freedom
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are widely separated. Moreover, it is important to remark that
the accuracy in E0 is not the consequence of a significant
compensation of errors. Indeed, as shown in Fig. 2(b), very
good results are obtained for both the average number of double
occupations D and the kinetic energy T . Only in the weakly
correlated limit (U/t < 1) we find that the IFE calculations
overestimate D by remaining too close to DHF = Na/4. This
reflects inaccuracies in our approximation to W [ηkσ ] for nearly
integer ηkσ , which can be partly ascribed to the deviations
from linearity in W (S) for small S, as already observed in the
context of Fig. 1. The results for D for small U/t can in fact be
improved by adapting the dependence of W as a function of S

for small S. However, a systematic universal way of developing
such improvements is not known at present. It is also possible
that these inaccuracies are intrinsic to the IFE ansatz (26). In
any case, the small errors in D do not affect E0 significantly
since for small U/t the kinetic contribution T dominates, for
which very accurate results are obtained.

In addition to the average kinetic and Coulomb energies,
it is important to evaluate the ground-state density matrix γ 0

which minimizes the energy functional E[γ ]. A first insight
from a k-space perspective is provided by Fig. 2(c), where the
ground-state occupation numbers ηkσ are shown as functions
of the interaction strength U/t . In the 14-atom ring, there
are eight distinct curves for ηkσ , which correspond to k = 0,
k = ±νπ/7a with ν = 1–6 and k = π/a, as implied by time
inversion symmetry (i.e., ηkσ = η−kσ ∀ k). Taking into account
Eq. (27) and the fact that the k dependence of the single-particle
spectrum εk respects the point-group symmetry of the lattice,
one concludes that the ηkσ derived from any IFE approximation
of the form (26) always satisfies the local symmetry properties
of the model.

Another fundamental property of the average Bloch-state
occupations may be inferred from the electron-hole symmetry
of the half-filled Hubbard model on bipartite lattices. In this
case, one can show that

ηkσ = 1 − ηk+q,σ , (33)

where q satisfies εk+q = −εk. In the 1D chain we have q =
π and in general one finds q = ∑d

i=1 bi/2, where bi denotes
the different elementary vectors of the reciprocal lattice [see
Eq. (16)]. To prove the relation (33), one can first show that the
Hubbard Hamiltonian Ĥ is invariant under the electron-hole
transformation ĥ

†
kσ = ĉk+q,σ . The eigenstates of Ĥ can then

be chosen to be eigenstates of the electron-hole transformation
whose eigenvalues are ±1. In particular, for the ground state
|ψ0〉 we have

〈ψ0|ĉ†kσ ĉkσ |ψ0〉 = 〈ψ0|ĥ†
kσ ĥkσ |ψ0〉

= 〈ψ0|1 − ĉ
†
k+q,σ ĉk+q,σ |ψ0〉, (34)

which coincides with Eq. (33). From the perspective of LDFT
it is interesting to observe that the IFE approximation (26)
always satisfies the electron-hole symmetry since εk+q = −εk,
combined with Eq. (27), implies Eq. (33).

Quantitatively, one observes that in most cases the
IFE approximation reproduces quite accurately the U/t

dependence of the occupation numbers. For U/t � 1 one
obtains, as expected, ηkσ = 1 for |k| � π/2 and ηkσ = 0 other-
wise. As the Coulomb repulsion increases, charge fluctuations

are progressively suppressed in order to reduce double occu-
pations. Thus, ηkσ decreases (increases) for |k| < π/2 (|k| >

π/2) until ηkσ → 1/2 for all kσ in the strongly correlated limit
(U/t → ∞). Notice, however, that our ansatz underestimates
(overestimates) ηkσ for |k| = 3π/7 (|k| = 4π/7) and interme-
diate interaction strength. These values of k correspond to the
smallest |εk|. In other words, the approximation overestimates
the excitation of electrons across the Fermi energy εF = 0.
This could be a consequence of the relatively small slope
of the Fermi distribution in the vicinity of εF . In fact, in
the thermodynamic limit, the derivative of ηkσ is expected to
diverge for εk = εF , as in a Luttinger liquid [74].

The occupation numbers ηkσ are related to the density-
matrix elements γijσ by a standard Fourier transformation.
Since γijσ depends only on the interatomic distance, it is
sufficient to consider only the matrix elements of the form γ0δσ

between an atom i = 0 and its δth-nearest neighbor. Notice
that in half-filled bipartite lattices γ0δσ vanishes between
sites belonging to the same sublattice. In the 1D chain, this
means γ0δσ = 0 for even δ. The statement can be shown
using Eq. (33) by expressing γijσ as the Fourier transform
of ηkσ . Alternatively, one may consider the electron-hole
transformation ĥ

†
iσ = ±ĉiσ , where the positive sign applies

to the sites on one of the sublattices and the negative sign
to the other sublattice. Since the Hubbard model is invariant
upon this transformation, the eigenstates of Ĥ can be chosen
to respect this symmetry, i.e., to remain unchanged or simply
change sign upon replacing all electrons by holes. Thus,
we have 〈ψ0|ĉ†iσ ĉjσ |ψ0〉 = 〈ψ0|ĥ†

iσ ĥjσ |ψ0〉 for all i �= j . In
particular, when i and j belong to the same sublattice we have
ĉ
†
iσ ĉjσ = ĥiσ ĥ

†
jσ= − ĥ

†
jσ ĥiσ , which impliesγijσ = − γjiσ = 0

since γijσ is real. A similar argument shows that any IFE
approximation of the form (26) also fulfills this symmetry.
In fact, since Ĥ is invariant under the given electron-hole
transformation, the single-particle energies ε

(h)
k of the holes

coincide with the corresponding single-particle energies εk of
the electrons. Moreover, since the number of electrons Nσ

and the number of holes N (h)
σ are the same for N↑ = N↓ =

Na/2, the chemical potential for electrons and holes are also
the same (i.e., μ(h)

σ = μσ ). Equation (27) implies that in the IFE
approximation η

(h)
kσ = ηkσ and accordingly γ

(h)
ijσ = γijσ [see

Eq. (14)]. Finally, it follows that γijσ = 0 when i and j belong
to the same sublattice.

The four distinct nonvanishing elements γ0δσ having δ

odd in the 14-atom ring are shown in Fig. 2(d). The IFE
results are in good qualitative agreement with the exact ones.
However, for intermediate values of U/t our approximation
underestimates the delocalization of the electrons beyond first
NNs (i.e., γ03σ , γ05σ , and γ07σ ). For example, for U/t = 4, the
calculated |γ03σ | is about 50% smaller than the exact result,
while γ05σ and γ07σ nearly vanish. Although the correlation-
induced localization is qualitatively explained, the localization
length is underestimated. The discrepancies in γ0δσ (δ � 3)
seem more severe from a local perspective than what one might
have expected on the basis of the Fourier transform ηkσ . As
shown in Fig. 2(c), the IFE approximation to ηkσ is quite
accurate except for k = ±3π/7 and ±4π/7. Let us finally
observe that the IFE results for the NN γ01σ are very good
for all U/t . Also, the variance �k =

√
〈k2〉, which increases

045135-7



T. S. MÜLLER, W. TÖWS, AND G. M. PASTOR PHYSICAL REVIEW B 98, 045135 (2018)

monotonously with U/t as a result of localization, is precisely
reproduced. This is consistent with the very good accuracy of
the calculated kinetic energy, which is proportional to γ01σ .

B. Finite systems in two dimensions

In Fig. 3, results are given for the ground-state properties of
the half-filled Hubbard model on a 4 × 4 2D square-lattice
cluster with periodic boundary conditions (N↑ = N↓ = 8).
Comparison with exact Lanczos diagonalizations shows that
the performance of the linear IFE approximation in two dimen-
sions is similar to the 1D case. The ground-state energy E0 is
accurately reproduced for all values of U/t . In the strongly
correlated limit, we find E0/Na � −α t2/U which correctly
reproduces the behavior of localized Heisenberg spins [74,75].
The obtained αIFE = 5.55 is only 13% larger than the exact
result αex = 4.81 deduced form the Lanczos diagonalizations.
The binding energy |E0| is somewhat overestimated for inter-
mediate values of U/t . This is mainly due to the overestimation
of the kinetic-energy gain |T |, which turns out to be slightly
less accurate than in 1D [compare Figs. 2(b) and 3(b)]. The
average number of double occupations is very close to the
exact result, except for U/t < 2, where it is underestimated
up to 30% for U/t = 0. Although the impact of D on E0 is
not very important for small U/t , the linear increase of E0 for
small values of U is underestimated.

Notice that both the exact and IFE values for D are smaller
than DHF = Na/4 for U = 0. This is a consequence of the
degeneracy of the single-particle spectrum of the periodic
4 × 4 cluster at the Fermi energy εF = 0. It implies that some
of the average natural-orbital occupations are fractional even
for U = 0, namely, for those k having εk = εF = 0. There
are in fact six Bloch states at εF [k = (±π/2,±π/2), (π,0),
and (0,π )]. These are occupied by 6 electrons when U = 0,
the remaining 10 electrons occupy the k = 0, k = (±π/2,0),
and k = (0,±π/2) orbitals. As shown in Fig. 3(c), both exact
and IFE calculations yield ηkσ = 1/2 for k lying on the Fermi
surface, irrespectively of the value of U/t . This corresponds
to an equal occupation of all states having the same εk and
is consistent with the idea behind our ansatz, that increasing
the IFE associated to the natural orbital occupations should
reduce the Coulomb-repulsion energy. Nevertheless, the linear
IFE ansatz happens to be too simple to yield a very accurate D

for small U/t , even if the ηkσ ’s are almost exactly obtained.
As in the 1D case, the average occupation of the single-

particle levels below (above) εF decreases (increases) as U/t

increases, starting from ηkσ = 1 (ηkσ = 0) at U/t = 0. Fig-
ure 3(c) shows that the ηkσ calculated with the linear IFE ansatz
are remarkably accurate for all kσ and in the whole range of
U/t . The approximation respects in particular the invariance
of ηkσ with respect to the rotations and reflections of k that
describe the lattice point-group symmetry since the dispersion
relation εk fulfills these symmetries. In the square lattice
the electron-hole symmetry takes the form ηkσ = ηk±(π,π),σ .
This implies that γijσ = 0 when i and j belong to the same
sublattice, in agreement with the exact solution.

Results for γijσ are shown in Fig. 3(d) as a function of
U/t . The point-group symmetry of the square lattice requires
that, for given values m,n ∈ Z, the density-matrix elements
between the lattice site at (0,0) and any of the lattice sites at

FIG. 3. Ground-state properties of the 2D Hubbard model on
a 4 × 4 square lattice with N↑ = N↓ = 8 electrons and periodic
boundary conditions. Results are given for the linear independent-
fermion entropy (IFE) ansatz (blue full curves) and exact Lanczos
diagonalizations (crosses) as a function of the Coulomb-repulsion
strength U/t : (a) ground-state energy E0, (b) average number of
double occupations D and kinetic energy T , (c) natural-orbital
occupation numbers ηk↑ = ηk↓, and (d) density-matrix elements
γ0δ↑ = γ0δ↓ between an atom i = 0 and its δth-nearest neighbor, as
illustrated in the inset.

(±m,±n) or (±n,±m) (in units of the lattice parameter a) are
all the same (single-band s-like model). Therefore, only the
curves for γ0δσ between an atom 0 and its δth-nearest neighbor
are shown. Notice that all the γ0δσ obtained with the IFE
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approximation closely follow the exact numerical calculations
for all U/t . In particular, the correlation-induced localization
is very well reproduced. The results are in fact significantly
more accurate than in 1D, at least for the short range which
can be explored within a finite cluster [see also Fig. 2(d)].

In order to explore magnetically frustrated systems in the
framework of LDFT, we consider a 4 × 4 cluster of the
triangular 2D lattice with periodic boundary conditions. In
Fig. 4, the IFE results for several ground-state properties are
compared with the corresponding exact Lanczos diagonaliza-
tions. One observes that the ground-state energy E0 is fairly
well reproduced as a function of U/t . However, the binding
is systematically overestimated, particularly for intermediate
interaction strengths (e.g., Eex

0 − EIFE
0 = 0.21Nat for U/t =

9.33). In the strongly correlated limit, the IFE approximation
yields the correct linear dependence on Heisenberg’s coupling
J between localized spins: E0/Na � −αt2/U . However, the
obtained proportionality constant αIFE = 8.32 is significantly
larger than the exact one (αex = 5.14).

The average number of double occupations D obtained with
the IFE approximation is fairly close to the exact calculation,
except for U/t � 4 where it is underestimated by up to 27%
for U/t = 0. This is a consequence of the large (ninefold)
degeneracy of the Fermi level of the 4 × 4 cluster, which is
filled with only two electrons. Under these circumstances,
the IFE approximation overestimates the ability of the finite
many-body system to take advantage of the degeneracy at εF

and suppress part of the double occupations. Nevertheless, the
underestimation ofD has little impact on the Coulomb and total
ground-state energies since U/t is relatively small. A similar
behavior has been observed for the square lattice.

The natural orbitals or Bloch states uikσ having different
wave vectors k may be classified in two groups: those having
the lowest single-particle energies εk, which are fully occupied
in the uncorrelated limit (ηkσ = 1), and those which have
larger εk and are weakly occupied for U = 0 (in average
ηkσ = 1

9 ). The latter fractional occupations for U → 0 are a
consequence of the degeneracy of the single-particle spectrum
of the 4 × 4 triangular cluster, which at half-band filling holds
two electrons with opposite spins in the ninefold-degenerate
Fermi level. Notice that the exact natural orbital occupations
deviate from the average ηkσ = 1

9 [Fig. 4(c)]. This is a subtle
finite-size effect of the electronic correlations, which manage
to completely suppress the Hubbard interaction between the
two electrons at εF even for arbitrarily small U/t . As in
the previously considered bipartite lattice, the occupations
of the Bloch states having ηkσ = 1 for U = 0 decrease
monotonously with increasing U/t , whereas the occupa-
tions of the other Bloch states, having small ηkσ , increase
monotonously [see Fig. 4(c)]. Finally, in the localized limit
(U/t → ∞) one obtains, as expected, ηkσ = 1

2 for all k. The
IFE approximation correctly reproduces the trends in ηkσ as
a function U/t . However, it somewhat overestimates (under-
estimates) ηkσ for the orbitals having ηkσ � 1

2 (ηkσ � 1
2 ) as

the interaction strength increases (U/t > 8). Notice, moreover,
that in any IFE ansatz for W the ground state ηkσ ’s are always
the same for all the Bloch states having the same single-particle
energy εk. Consequently, our approximation cannot resolve
the above-discussed differences in ηkσ among degenerate
natural orbitals. Nevertheless, the IFE results compare very

FIG. 4. Ground-state properties of the half-filled 2D Hubbard
model on a 4 × 4 triangular lattice with periodic boundary conditions
as functions of the Coulomb-repulsion strength U/t . Results are given
for the linear independent-fermion entropy (IFE) ansatz (blue full
curves) and exact Lanczos diagonalization (crosses): (a) ground-state
energy E0, (b) average number of double occupations D and kinetic
energy T , (c) natural-orbital occupation numbers ηk↑ = ηk↓, and
(d) density-matrix elements γ0δ↑ = γ0δ↓ between an atom 0 and its
δth-nearest neighbor (see inset). The open circles in (c) and (d) show
the average of the exact results over the k vectors having the same
single-particle energy εk.

well with the green open circles, which represent the exact
average of ηkσ among the Bloch states having the same εk.
Taking into account that the accidental degeneracies become
irrelevant as the system size grows, one expects that the IFE
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approximation should yield more accurate occupations ηkσ in
the thermodynamic limit.

In Fig. 4(d) the density-matrix elements γ0δ between an
atom 0 and its δth-nearest neighbor is reported as a function
of U/t . One observes that the IFE approximation is in good
qualitative agreement with the exact numerical calculations.
The most significant discrepancies appear for small U/t , where
the differences in γ0δ between some atoms that are further
apart (δ = 2 and 3) cannot be resolved. This is a consequence
of the above-discussed finite-size correlation effects and the
resulting specific dependence of ηkσ on k. In sum, comparison
between Figs. 3 and 4 shows that the overall accuracy of the
IFE approximation in magnetically frustrated systems (e.g., the
triangular 2D lattice) is similar, though in general somewhat
less good than in bipartite lattices such as the square lattice.

C. Infinite periodic lattices

The purpose of this section is to investigate the properties
of the half-filled Hubbard model on infinite periodic lattices by
using the linear IFE approximation to LDFT. To be explicit, we
focus on hypercubic lattices with NN hopping −td < 0, whose
single-particle dispersion relation is given by

εk = − 2t√
d

d∑
α=1

cos(kα), (35)

where kα ∈ (−π,π ] are the components of the wave vector
k in the d-dimensional BZ, measured in units of the inverse
lattice parameter 1/a. Notice that we have scaled the NN
hopping integrals as td = t/

√
d in order to ensure that the

second moment

w2 =
∫

ε2ρ(ε) dε = 2d t2
d = 2t2 (36)

of the single-particle local density of states (DOS) per spin

ρ(ε) = 1

(2π )d

∫
BZ

δ(ε − εk) ddk (37)

is independent of d. This allows us to compare the results for
different dimensions on the same footing and thus explore the
limit of infinite dimensions.

The Bloch-state occupation numbers in the IFE approxima-
tion are given by the Fermi distribution

ηkσ = ησ (εk) = 1

1 + e(εk−μσ )/ϑ
, (38)

where the effective temperature

ϑ = WHF

S∞
= − Un↑n↓

2[n↑ ln(n↑) + n↓ ln(n↓)]
(39)

is independent of S in the linear approximation [see Eqs. (28)
and (29)]. The chemical potential μσ is defined by the usual
constraint

nσ =
∫

ησ (ε) ρ(ε) dε. (40)

The kinetic energy is given by

T

Na

=
∑

σ

∫
ε ησ (ε) ρ(ε) dε (41)

and the independent-fermion entropy by

S

Na

= −
∑

σ

∫
[ησ ln(ησ ) + (1 − ησ ) ln(1 − ησ )] ρ(ε) dε.

(42)

Finally, knowing S, the interaction energy W is calculated from
Eq. (29). For the moment we restrict ourselves to paramagnetic
systems having the same electron density nσ = Nσ/Na = 1

2
for both spins. In this case, we have WHF = UNa/4, S∞ =
2Na ln(2), and thus ϑ = U/(8 ln 2). Spin-polarized systems
will be considered in the following subsection.

In Fig. 5, results are given for the ground-state kinetic,
Coulomb, and total energies of the half-filled Hubbard model in
bipartite lattices having d = 1–3 dimensions, as well as in the
limit d → ∞. In the 1D case, we observe that IFE results for
E0 are nearly indistinguishable from the exact Bethe-ansatz
solution [43]. The relative error |Eex

0 − EIFE
0 |/|Eex

0 |, shown
in the inset of Fig. 5(c), is always smaller than 0.1%. In
particular, the exact result E0 = −4Na ln(2) t2/U is recovered
in the strongly correlated Heisenberg limit. This is most
remarkable since there are no adjustable parameters behind
the IFE approximation but simply the linear ansatz relating
W and S. Notice, moreover, that such a high accuracy is
obtained despite the fact that the occupation numbers ηkσ

do not exhibit the expected Luttinger-liquid behavior [74].
This would require that the derivative of ησ (ε) diverges at
ε = εF , which is of course not possible with a Fermi dis-
tribution [see Eq. (38)]. Most likely the precise behavior at
εF , although crucial for the excitations and the temperature
dependence, has little influence on the total energy of the
system.

It is interesting to observe that the very good accuracy of
the IFE approximation concerning the ground-state energy is
not the result of a significant compensation of errors. Indeed,
also the more difficult kinetic and double-occupation contri-
butions to the ground-state energy are nearly indistinguishable
from the exact solution for all values of U/t . This is clearly
shown by comparing the blue crosses and solid curves in Fig. 5,
as well as by the small relative errors, which are highlighted in
the inset of Fig. 5(c). For example, the largest relative error in
D (�D = 0.18%) is quite small, only slightly more important
than the largest relative error in E (�E = 0.10%).

In 2D no exact solution of the half-filled Hubbard model
is available. In the strongly correlated limit, one may infer E0

from the ground-state energy ε2DH of the spin- 1
2 Heisenberg

model having an exchange constant J = 1. Performing the
appropriate Schrieffer-Wolff transformation [75] for U/t  1
one obtains E0 = −α t2/U with α = 2 − 4 ε2DH in the two-
dimensional case. Taking ε2DH = −0.669 from accurate quan-
tum Monte Carlo (QMC) simulations on finite 2D square-
lattice Heisenberg clusters with periodic boundary conditions
[79] one finds for the Hubbard model αQMC = 4.68, while the
IFE approximation yields αIFE = 8 ln 2 ≈ 5.55. Although the
right dependence on t2/U is obtained, the binding energy is
overestimated by 18% in the strongly correlated limit. For
finite values of U/t , our results for the 2D square lattice
are in very good agreement with the far more demanding
quantum Monte Carlo simulations reported in Refs. [76–78].
This applies both to the ground-state energy E [Fig. 5(a)] and
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FIG. 5. Ground-state properties of the half-filled Hubbard model
on hypercubic lattices having d = 1–3 dimensions and d → ∞ as
functions of the Coulomb-repulsion strength U/t . Results are given
for the (a) ground-state energy E0, (b) average number of double
occupations D, and (c) kinetic energy T . The curves were obtained
in the linear independent-fermion entropy (IFE) approximation to
LDFT. The symbols correspond either to the exact Bethe-ansatz
solution [43] (crosses, 1D) or to numerical quantum Monte Carlo
simulations [76–78] (open circles and triangles, 2D). For each
dimension d the NN hopping integral td is scaled as td = t/

√
d in

order that the second moment of the local density of states w2 = 2dt2
d

is independent of d . The inset in (c) shows the relative difference
�X = |Xex − XIFE|/|Xex| where X stands for the total energy E0,
the kinetic energy T , and the average double occupations D in the 1D
case.

to the average number of double occupations D [Fig. 5(b)].
Compare the dashed green curves with the open circles and
triangles. As in the 1D case, our approximation tends to un-
derestimate D somewhat for weak to intermediate interaction
strength (U/t � 4) and to overestimate it slightly for strong
interactions (U/t � 4). One concludes that in 2D not only
the ground-state energy, but also more subtle observables such

as the average number of double occupations, are accurately
obtained.

Concerning the dependence on the lattice dimension we
find a surprisingly fast convergence to the limit of infinite
dimensions, once the NN hoppings are scaled as td = t/

√
d

in order to yield the same second moment or variance w2 =
2dt2

d = 2t2 of the local DOS. This concerns not only the
total energy, but also the kinetic and Coulomb contributions.
One concludes that for d � 2, and in this approximation,
most of the dependence of E0, T , and W on dimensionality
is concealed in the variance of the single-particle spectrum.
Notice that for a fixed NN hopping integral, the mean-root-
square deviation

√
w2 of the local DOS is proportional to√

d, in contrast to the bandwidth wb which is proportional
to d. Therefore, the latter would not be the appropriate scaling
measure. A further interesting result is the universal behavior
found in the limit of strong correlations, i.e., for U/w2 > 4
or equivalently J = 4t2

d /U < 1/2d. In this Heisenberg limit
(U/t  1), the IFE approximation yields E0 = −Jd ln(2) =
−4d ln(2) t2

d /U , which after the d-dependent scaling of the
NN hopping becomes E0 = −4 ln(2) t2/U for all d. Quantum
Monte Carlo simulations and exact diagonalizations on finite
square-lattice clusters show that no such a simple scaling holds
between the ground-state energies of the 1D and 2D Heisen-
berg models [79–81]. After proper scaling of the hopping
integrals td the exact ratio between the 1D and 2D ground-state
energies for U/t  1 is E1D

0 /E2D
0 = 1.185 instead of 1 as

predicted by the IFE approximation. This suggests that the
convergence to the limit of infinite dimensions is probably
slower than the one predicted in this work.

Once the occupation numbers ηkσ which minimize the en-
ergy functional are obtained, it is straightforward to determine
the density-matrix elements γijσ by Fourier transformation. In
Fig. 6, results are given for γ0δσ between an atom i = 0 and
its δth-nearest neighbor in the half-filled 1D Hubbard model
(n↑ = n↓ = 1

2 ). In Fig. 6(a), γ0δσ is shown as a function of
U/t for different odd δ. For even δ one finds γ0δσ = 0 due
to electron-hole symmetry. As expected, γ0δσ decreases with
increasing U/t since charge fluctuations are suppressed in
order to reduce the average number of double occupations.
Notice that the long-range fluctuations (larger δ) get suppressed
faster than the short-range fluctuations. In particular, the γ01σ

between NNs decreases very slowly, proportional to t/U in the
limit U/t → ∞, so that the kinetic energy T ∝ t2/U remains
finite for all finite U .

A different perspective is adopted in Fig. 6(b), where γ0δσ

is plotted as a function of δ for representative values of U/t .
One observes that γ0δσ decreases with increasing distance and
with increasing U/t . Notice the oscillations and changes of
sign in γ0δσ as a function of δ, which are particularly clear for
small U/t and tend to be flattened as the interaction strength
increases.

It is interesting to take advantage of the universality of
LDFT and to consider lattice structures which may show dif-
ferent types of correlations, for example, as a result of magnetic
frustrations. The IFE approximation to the interaction-energy
functional W has been applied to the half-filled Hubbard model
on the 2D triangular lattice in order to explore this problem. The
results obtained for the ground-state energy, kinetic energy, and
average number of double occupations are presented in Fig. 7.
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FIG. 6. Single-particle density-matrix elements γ0δ↑ = γ0δ↓ be-
tween an atom i = 0 and its δth-nearest neighbor in the ground state
of the half-filled 1D Hubbard model, as obtained by using the linear
IFE approximation. In (a), γ0δσ is given for odd δ as a function of the
Coulomb-repulsion strength U/t . Electron-hole symmetry implies
γ0δσ = 0 for even δ. In (b), γ0δσ is shown as a function of δ for
representative values of U/t .

One observes that the dependence on U/t is qualitatively sim-
ilar to the one derived from exact diagonalizations on a finite
4 × 4 cluster with periodic boundary conditions. In the weakly
correlated limit, the IFE approximation recovers the Hartree-
Fock average number of double occupations DHF = 1

4 . In
contrast to previous finite-system calculations, no limitations
resulting from degeneracies in the single-particle spectrum
are present. On the other side, in the strongly correlated
limit one obtains E0/Na � −αt2/U with αIFE = 8.62. This
can be compared with numerical estimates based on exact
diagonalizations of the 2D triangular Heisenberg model, from
which one infers α = 7.41 [82]. The corresponding relative
error is thus only about 16%, which is significantly smaller than
in the previously discussed case of finite triangular lattices.
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FIG. 7. Ground-state properties of the half-filled Hubbard model
on the infinite 2D triangular lattice: (a) total energy E0 and (b) average
number of double occupations D and kinetic energy T , as functions
of the Coulomb-repulsion strength U/t . The full curves are obtained
by using the linear independent-fermion entropy (IFE) approximation
to LDFT, while the crosses correspond to the exact diagonalization
of a finite 4 × 4 plaquette with periodic boundary conditions.

D. Spin-polarized systems

In order to investigate the dependence on the spin polar-
ization, we minimize the energy functional E[ηkσ ] under the
constraint of fixed n↑ − n↓ = 2Sz/Na . Figure 8 shows the
IFE results for the ground-state total, kinetic and Coulomb
energies of the half-filled 1D Hubbard model as a function of
Sz. As expected, Sz = 0 always yields the minimum E, since
at half-band filling the ground state has a total spin S = 0
for all U/t [43]. The energy change �E = E(Sz) − E(0)
with increasing |Sz| is the result of the interplay between the
kinetic-energy increase and the Coulomb-energy decrease as
the occupations ηkσ of the antibonding majority-spin Bloch
states (e.g., εk↑ > 0) grow at the expense of the occupations
of bonding minority-spin states (e.g., εk↓ < 0) [see Figs. 8(b)
and 8(c)]. With increasing |Sz| double occupations are pro-
gressively suppressed since the probability of finding a pair
of electrons with opposite spins at the same site decreases.
In the fully polarized state (i.e., for |Sz| = Na/2) all lattice
sites have one majority-spin electron and therefore local charge
fluctuations are completely suppressed. This implies vanishing
T , D, and E for all U/t [see Figs. 8(b) and 8(c)]. Since E is a
monotonic increasing function of U/t , in particular for Sz = 0,
it is clear that the largest energy change �E(Sz = Na/2) must
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FIG. 8. Ground-state properties of the one-dimensional half-filled
Hubbard model as functions of the spin polarization per atom n↑ −
n↓ = 2Sz/Na for representative Coulomb-repulsion strengths U/t :
(a) total energy E, (b) average number of double occupations D,
and (c) kinetic energy T . The curves were obtained using the IFE
approximation to LDFT, while the crosses in (a) for U/t = 3 and 10
are results taken from Ref. [83].

decrease with increasing U/t reaching �E = 0 for all Sz when
U/t = ∞. In other words, the energy of the system tends
to become independent of the total spin S in the strongly
correlated limit, as the effective Heisenberg exchange-coupling
constant J = 4t2/U between the localized spins tends to zero.

The precise form of �E(Sz) depends on the Coulomb-
repulsion strength U/t , which measures the relative impor-
tance between T and W , and on the shape of the single-particle
local density of states ρσ (ε), which is different for different
lattices. For small Sz it can be written as

�E

Na

= μ2Na

2 χ

(
Sz

Na

)2

+ O
(
S4

z

)
, (43)

where μ is the magnetic moment of the electron and χ stands
for the zero-field susceptibility. For U = 0, χ takes the well-
known Pauli value χP = μ2Na ρ(εF )/4, which is proportional

83

FIG. 9. Ground-state magnetization M = 2Sz of the one-
dimensional half-filled Hubbard model as a function of the applied
magnetic field B, for different values of the Coulomb repulsion
U , as obtained by using the IFE approximation. In the inset, the
zero-field susceptibility is shown as a function of U/t , where χP

stands for the Pauli susceptibility. The solid curve shows the present
IFE approximation, while the dashed curve shows exact results from
Ref. [83].

to the local DOS ρ = ρ↑ + ρ↓ at the Fermi energy εF . In Fig. 8,
the IFE results for E(Sz) are compared with the development
reported by Takahashi in Ref. [83], which is based on the
exact Bethe-ansatz solution and which is exact in the limit
of Sz → 0. A quite satisfactory overall agreement between the
two approaches is observed for the two available values of
U/t = 3 and 10. However, notice that the IFE approximation
tends to systematically underestimate the curvature of E(Sz)
in the vicinity of Sz = 0. This anticipates an overestimation of
the zero-field susceptibility χ , as it will be discussed below.

In order to calculate the ground-state magnetization M =
2Sz induced by a uniform external magnetic field B = B êz

and the zero-field susceptibility χ = ∂M/∂B, we use our
previous results for E(Sz) and simply minimize the ground-
state energy EB = E(Sz) + μBSz with respect to Sz. Figure 9
shows the results for the 1D half-filled Hubbard model. One
observes, as expected, that M increases monotonously with
increasing B until saturation is reached (i.e., M/Na = 1). The
spin polarization and in particular the slope χ at B = 0 are
increasing functions of U/t . Thus, the field at which M reaches
saturation decreases with increasing U/t (see Fig. 9). The
more rapid increase of M as a function of B for stronger
Coulomb repulsion can be understood by noting that the
width �E(Na/2) of the spin or Zeeman band decreases with
increasing U/t (see Fig. 8). Moreover, from a quasiparticle
perspective, it can be interpreted as an enhancement of the
effective density of states at the Fermi energy, or equivalently
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as an enhancement of the effective mass of the electrons, as
U/t increases.

The zero-field susceptibility χ can be directly related to
the curvature α of the ground-state energy E as a function
of Sz at Sz = 0. From �E(Sz) = αS2

z + O(S4
z ), one readily

obtains χ = μ2/2α. In the inset of Fig. 9, the IFE calculations
are compared with Takahashi’s exact results for the half-
filled 1D Hubbard model [83]. As expected, we recover the
Pauli susceptibility χ = χP for U = 0. We also qualitatively
explain the increase of χ with increasing Coulomb-repulsion
strength, as the electrons tend to localize and the spin band
narrows. Finally, in the strongly correlated limit (U/t  1),
we obtain that χ increases linearly with U/t , in agreement
with the exact solution. However, the IFE approximation yields
χ � (πχP /4)(U/t), while the exact asymptotic behavior is
given by χ � (χP /π )(U/t). Therefore, the IFE approximation
seriously overestimates the strongly correlated magnetic sus-
ceptibility by a factor π2/4 � 2.5. This is consistent with the
already mentioned underestimation of the curvature of E(Sz)
in the vicinity Sz = 0, which is shown in Fig. 8(a). It means
that the approximation overestimates the density of many-body
states having finite total spin S > 0 in the vicinity of S = 0.

V. SUMMARY AND OUTLOOK

The half-filled Hubbard model has been investigated in the
framework of lattice density functional theory (LDFT). To
this aim, the interaction energy of the model is regarded as
a functional W [γσ ] of the single-particle density matrix γσ

of spin σ . The periodicity of the lattice allows us to adopt a
k-space perspective. Thus, W can be expressed as a functional
of the occupation numbers ηkσ of the natural orbitals of γσ ,
which are Bloch states having a well-defined wave vector k. By
analyzing the limits of weak and strong correlations we were
able to establish useful general links between W [ηkσ ] and the
independent-fermion entropy S[ηkσ ] associated to the natural-
orbital occupations ηkσ . Exact numerical results for W provide
additional support to the statistical analogy by revealing the
approximate relation betweenW andS. A simple explicit linear
ansatz of the form W = W (S[ηkσ ]) has been proposed, which
is suitable for extensive applications. In order to obtain the
ground-state properties, the energy functional E = T + W is
minimized with respect to ηkσ , where T = ∑

kσ ηkσ εk stands
for the kinetic energy functional. A Fermi-type distribution
of the ground state ηkσ is thus obtained, in which Hubbard’s
local Coulomb repulsion U plays the role of an effective
temperature. The present k-space formulation constitutes an
important alternative to previous real-space approaches to
LDFT.

A number of applications of the linear independent-fermion
entropy (IFE) approximation have been performed for the
Hubbard model on finite and infinite lattices having d = 1–3
dimensions as well as in the limit of d → ∞. Comparison with
exact results and state-of-the-art numerical simulations, which
are available for one- and two-dimensional systems, shows
a good agreement as a function of the Coulomb-repulsion
strength U/t from weak to strong correlations. Remarkably
accurate are the IFE results in 1D, where in particular the
strongly correlated Heisenberg limit is exactly reproduced.

However, inaccuracies in the zero-field magnetic susceptibility
χ are also observed in 1D for U/t → ∞.

Concerning the trends for different lattice structures, one
observes that the accuracy of the proposed approximation
improves as the dimension or the coordination number of
the system decreases. Thus, the 1D lattice is described more
precisely than the 2D square lattice, which in turn is described
more precisely than the triangular 2D lattice. Moreover, the
accuracy improves with increasing system size both in the
weakly and strongly correlated regimes, as illustrated, for
example, by the calculations for finite and infinite triangular
lattices. The statistical analogy underlying the IFE approach
seems therefore more suitable for continuous single-particle
spectra.

Two reasons probably contribute to the success of the
present approximation to LDFT. First, in single-band peri-
odic systems, the natural orbitals uikσ = e−ik·Ri /

√
Na are

independent of U/t . Therefore, irrespectively of the system
dimensions, the dependence of W on the shape of the natural
orbitals need not be treated explicitly (translational symme-
try). Second, the Fermi-type distribution of ηkσ obtained in
the IFE approximation is continuous, as the Luttinger-liquid
distribution. This suggests that the IFE approximation should
be best suited for the 1D case. As we move to 3D and
Fermi-liquid behavior sets in, it is reasonable to expect that
the accuracy should tend to worsen to some extent since
the IFE approximation cannot reproduce a proper step in the
occupation numbers. Nevertheless, the overall quality of the
results justifies the validity of the independent-fermion entropy
ansatz, thus shedding new light onto the complex functional
dependence of W [γσ ] for weakly and strongly correlated
systems.

The present investigations open a number of interesting
perspectives for extensions and improvements. The appli-
cations performed in this work concern periodic systems,
which allowed us to focus on the functional dependence of
W on the occupation numbers ηkσ . The natural orbitals uikσ ,
being Bloch states, are independent of the interaction strength.
While this certainly represents a major simplification, we also
know that the translational invariance of the system is not a
prerequisite for the basic links between interaction energy W

and independent-fermion entropy S. Indeed, as discussed in
Sec. III, even in the general case, we have that idempotent
γ , which describes uncorrelated states having integer natural-
orbital occupations, corresponds to a vanishing S, while scalar
γ , which describes strongly correlated localized electrons,
corresponds to maximal S. In order to describe systems
showing nonuniform charge distributions, the dependence of
W on the natural orbitals uikσ has to be taken into account
explicitly.

Another interesting related problem is to investigate the ef-
fects of an external magnetic field, for example, perpendicular
to the 2D square lattice. This introduces Peierls phases in the
NN hopping integrals, depending on the flux enclosed by the
unit cell [84,85] which often lead to remarkable topological
effects. Such applications would require more complicated
minimization procedures of the total-energy functional, for ex-
ample, as proposed in Ref. [69]. Exploring strongly correlated
systems in which the shape of the natural orbitals depends on
U/t should help us understand if the simple IFE approximation
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remains an accurate ansatz or if it should be regarded as the
limit of more sophisticated approaches.

A further challenge is to vary the band filling and thereby
quantify the stability of ferromagnetic ground states. In the
half-filled-band case considered so far, the only way of
achieving a vanishing interaction energy W is that γ becomes
scalar, i.e., γijσ = 0 for i �= j or ηkσ = Nσ/Na for all k.
This corresponds to localized many-electron states having
zero kinetic energy T and total energy E. This allowed us
to safely associate strong correlations to maximum single-
particle entropy. However, it is well known that away from
half-band filling there are states which have a vanishing
interaction energy W = 0 and at the same time a finite kinetic
energy T < 0. The fully polarized ferromagnetic state is one
but not the only example [59]. Therefore, in order to go
beyond half-band filling with the present approach, it would
be necessary to extend the functional W [ηkσ ] in order to allow
for k-dependent occupation-number distributions ηkσ in the
strongly correlated limit.

Finally, we would like to draw your attention to the
energy dependence of the Bloch-state occupation ηkσ near
the Fermi energy. In this work, we have shown that for any
independent-fermion entropy ansatz of the form W = W (S),
the ground state ηkσ follows a Fermi distribution as a function
of the single-particle energy εk, which of course depends on
the interaction strength. Such a smooth nonsingular energy
dependence at εF allows us to describe neither the Luttinger-
liquid behavior expected in 1D nor the Fermi-liquid behavior
appropriate to 3D. Although this limitation happens to have
little consequences on the average ground-state properties, the
situation is likely to be different when looking at low-energy
excitations, temperature effects, or transport properties, which
are most sensitive to the quasiparticle states at εF . It would be
therefore very interesting to consider more general approaches
to W [ηkσ ], beyond the IFE ansatz, in order to identify under
which circumstances Luttinger or Fermi behaviors appear in
LDFT, particularly in connection with the dimensionality and
topology of the lattice.
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