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Quantum signature of exciton condensation
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Exciton condensation, a Bose-Einstein-like condensation of excitons, was recently reported in an electronic
double layer (EDL) of graphene. We show that a universal quantum signature for exciton condensation can be
used to both identity and quantify exciton condensation in molecular systems from direct calculations of the
two-electron reduced density matrix. Computed large eigenvalues in the particle-hole reduced-density matrices
of pentacene and hexacene EDLs reveal the beginnings of condensation, suggesting the potential for exciton
condensation in smaller scale molecular EDLs.
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I. INTRODUCTION

Exciton condensation is a Bose-Einstein-like condensation
of particle-hole pairs (or excitons) into the same quantum
state. It has been realized in optical traps with polaritons
[1–4], semiconductor electronic double layers (EDLs) like
gallium arsenide (GaAs) [5–10], and most recently, EDLs
of graphene [11], proving that condensation is possible in
atom-thin bilayers bound by van der Waals forces [12–23],
as well as the transition metal dichalcogenide 1T -TiSe2 [24].
Importantly, the graphene-based experiment demonstrated that
the condensation is stable upon creating an imbalance up to
30% in the electrons (and holes) between the two graphene
layers [11]; this result reveals the potential richness of the
quantum many-body states and phases associated with exciton
condensation. Like superconductivity, exciton condensation
has potential applications to dissipationless energy transfer.

In this paper, we examine a theoretically definitive and yet
computationally practical signature of exciton condensation.
While a variety of both experimental and theoretical signatures
of exciton condensation exist, they are typically not definitive
indicators of exciton condensation. The quantum signature
developed here, the large eigenvalue of the (modified) particle-
hole matrix [25–29], is present if and only if the fermion system
exhibits condensation of particle-hole pairs (excitons) into a
global state—exciton condensation. It allows us to predict the
existence and extent of exciton condensation in any quantum
system from only an electronic structure calculation of the
two-electron reduced density matrix (2-RDM) [30–44]. While
this definition includes various phase transitions involving
condensates of soft phonons that are not conventionally viewed
in these terms, such disruptive transitions, as explained by
Kohn and Sherrington [45], can be relevantly viewed in the
context of exciton condensation.

The large eigenvalue of the particle-hole RDM was first
presented in 1969 by Garrod and Rosina in the context of
collective excitations [25]. This result provides the analog for
exciton condensation of Yang and Sasaki’s general definition
of fermion condensation in terms of the large eigenvalue of
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the 2-RDM [26–28]. Jérome, Rice, and Kohn [46] discussed
exciton condensates, also called exciton insulators, in terms of
the 2-RDM in 1967, but they did not discuss the particle-hole
RDM or extend Yang and Sasaki’s large eigenvalue to the
particle-hole RDM. While the paper of Jérome, Rice, and Kohn
[46] and related early work [47–49] are well known in the study
of exciton insulators, the equally important result of Garrod and
Rosina [25] has been largely neglected. The large eigenvalue
opens new possibilities for using electronic-structure compu-
tations to detect and study exciton condensation. It can be used
for exploring potential experimental enhancements through the
tuning of chemical composition and external fields.

The paper computationally employs the large eigenvalue to
show evidence for the beginnings of exciton condensation in
pentacene and hexacene EDLs. This result provides evidence
for the formation of an exciton condensate in a molecular-scale
system without the application of external fields. Varsano
et al. [50] recently predicted the formation of an exciton
insulator (condensate) in carbon nanotubes, sharing some
of the characteristics of the acene EDLs. Nontrivial direct
calculations of the two-electron reduced density matrix (2-
RDM) capture strong electron correlation including the long-
range order of the exciton condensation. Such calculations,
cited by the National Research Council in 1995 as one of
the top outstanding problems in physical science, have only
become possible recently [30–44]. In the case of pentacene and
hexacene EDLs they correspond to wave-function calculations
where the wave function, if constructible as a combination
of determinants, would require a billion times the degrees of
freedom treatable today by state-of-the-art supercomputers.
Molecular-scale condensates, screened by electronic structure
calculations, may be useful for the development of dissipation-
less molecular circuits and devices, especially in the context
of molecular electronics.

II. THEORY

In Bose-Einstein condensation, bosons condense upon cool-
ing into the same lowest-energy orbital. For example, in the
alkali-metal Bose-Einstein experiments [51–53], nearly a mole
of alkali-metal bosons condense into the lowest Gaussian
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orbital of a harmonic magnetic trap. A signature of Bose-
Einstein condensation is a large eigenvalue in the one-boson
RDM given by

1D(1; 1̄) = 〈�|ψ̂†(1)ψ̂(1̄)|�〉, (1)

where � is the N -boson wave function, each roman number
represents the spatial coordinates and spin component of a
boson, and the quantum-field operators ψ̂†(1) and ψ̂(1) create
or annihilate a boson [26,54]. Unlike either fermion or exciton
condensation, Bose-Einstein condensation is not driven by
electron correlation; the wave function of a noninteracting
pure-state Bose-Einstein condensate is a product of the single
orbital φ(1) in which the bosons condense.

In fermion condensation, pairs of fermions condense into a
single two-electron function known as a geminal [26–29]. In
superconductivity, for example, electrons pair to form Cooper
pairs that condense into a single geminal with long-range order
[55]. As shown by Yang [26] and Sasaki [27,28] independently,
the signature of a fermion condensation is a large eigenvalue
in the 2-RDM given by

2D(12; 1̄2̄) = 〈�|ψ̂†(1)ψ̂†(2)ψ̂(2̄)ψ̂(1̄)|�〉, (2)

where � is the N -fermion wave function and the quantum-field
operators ψ̂†(1) and ψ̂(1) create and annihilate a fermion at
position 1. Even though the Pauli exclusion principle shows
that the maximum fermion occupation of an orbital is bounded
from above by one, Yang [26] and Sasaki [27,28] proved that
the maximum eigenvalue of the 2-RDM can be proportional to
the number N of fermions in the limit of strong correlation.

Exciton condensation, distinct from both Bose-Einstein and
fermion condensations, is the condensation of particle-hole
pairs (excitons) into a single particle-hole function. By analogy
with the well-known cases of Bose-Einstein and fermion
condensations, the signature of exciton condensation is two
large eigenvalues in the particle-hole RDM [25] given by

2G(11̄; 22̄) = 〈�|ψ̂†(1)ψ̂(1̄)ψ̂†(2̄)ψ̂(2)|�〉, (3)

where � is the N -fermion wave function and ψ̂†(1) and
ψ̂(1) are fermion quantum-field operators. There are two large
eigenvalues in the case of exciton condensation because the
particle-hole RDM, even in the noninteracting limit, always
has one large eigenvalue corresponding to a ground-state-to-
ground-state projection rather than an excitation. This eigen-
value, which might be viewed as spurious as it is unrelated
to exciton condensation, can be removed by subtraction of its
ground-state resolution to generate a modified particle-hole
matrix, having a single large eigenvalue upon condensation:

2G̃(11̄; 22̄) =2 G(11̄; 22̄) −1 D(1; 1̄)1D(2; 2̄). (4)

In the noninteracting limit, all of the eigenvalues of the modi-
fied particle-hole RDM are equal to zero or one; furthermore,
in typical molecular systems the largest eigenvalue is very
nearly one. In early work on reduced density matrices, Garrod
and Rosina showed that the largest eigenvalue of the modified
particle-hole matrix, or the maximum number of excitons in
the condensate, is bounded from above by N/2 [25].

Formation of the exciton condensate requires particle-hole
pairs that can occupy the same particle-hole function. This type
of pairing can be achieved through spatial symmetry [56–58].
Exciton condensation has been achieved in EDLs of GaAs

[5–9] and graphene [11–17]. The double layers allow the
particles in one layer to pair with the holes in the opposite layer
and vice versa. Conceptually, we can picture a checkerboard
of particles (black) and holes (white) in one layer paired
with an inverted checkerboard of holes (white) and parti-
cles (black) in the other layer [58]. Such a pairing requires
that the particles and holes become strongly entangled. In
contrast, Bose-Einstein condensation requires neither pairing
nor entangling of the bosons. As a consequence, exciton
condensation has more in common with fermion condensation
where the fermions form a strongly correlated Cooper pair that
participates in the condensation.

Nonetheless, fermions exploit a different symmetry to
achieve pairing than the particles and holes which pair to
form excitons. Due to their exchange symmetry, fermions
occupy a two-fermion function g(12) that is antisymmetric
in the exchange of the coordinates of particles 1 and 2, that
is g(21) = −g(12). The function g(12) can be viewed as an
antisymmetric matrix whose trace is zero and whose imaginary
eigenvalues are paired [59]:∫

g(12)φ±i(2)d2 = ±εiφ±i(1). (5)

Although this pairing is present in all systems of fermions,
it can lead to fermion condensation when the occupations
εi become degenerate for multiple pairs of orbitals, i.e., φ+i

and φ−i for a range of i. Fermion condensation, whether
induced by phonons as in BCS superconductivity [55] or
another mechanism, exploits the antisymmetry of fermions to
support the condensation of multiple fermion pairs into the
same two-fermion state g(12). In contrast, the particle-hole
function f (12) occupied by excitons in exciton condensation
lacks an intrinsic pairing due to antisymmetry. The pairing
of the particle and the hole must be accomplished by another
symmetry such as the spatial symmetry created by the electron
double layer (EDL). The EDL symmetry satisfies the fun-
damental symmetry requirement for the pairing of particles
and holes, and, consequently, molecules and materials in EDL
formation are likely candidates for exciton condensation.

III. APPLICATIONS

Using the large eigenvalue of the particle-hole RDM as a
quantum signature of the exciton condensation, we examined
two molecular-scale bilayers: (1) a stretched hydrogen-chain
EDL and (2) face-to-face pentacene and hexacene EDLs. For
each system, the 2-RDM was directly determined without
computation of the many-electron wave function. The energy
was computed as a variational functional of the 2-RDM
[30–44,60], which was constrained by N -representability con-
ditions [32,41,44,61] that are necessary for it to represent an
N -electron quantum system. Because the N -representability
conditions are nonperturbative with polynomial computational
scaling, the variational 2-RDM method is able to catpture
strong correlation in molecules that are too correlated to
treat by density functional theory or single-reference ab initio
methods and yet too large to treat by either full or partial
configuration-interaction calculations. Applications have re-
cently been made to study strong correlation in transition-metal
complexes [43] and the nitrogenase catalyst FeMoco [62] as
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FIG. 1. (a) A schematic of the hydrogen-chain EDL shows the
distance � between hydrogen atoms in each chain and the distance d

between the two chains. (b) The largest eigenvalue of the modified
particle-hole RDM is shown as a function of the parameter d in Å for
� = 6 Å.

well as compute molecular conductivity in benzenedithiol [63].
Finally, the particle-hole RDM, containing the signature of
exciton condensation, was computed by a linear mapping of
the 2-RDM. Additional details are provided under Methods in
the Supplemental Information [64].

A sketch of the hydrogen-chain EDL is shown in Fig. 1(a).
As shown, each chain was chosen to have five hydrogen atoms.
Two geometric parameters in the EDL are the distance �

between hydrogen atoms in each chain and the distance d

between the two chains. The two-dimensional parameter space
defined by d and � was explored to maximize the largest
eigenvalue of the particle-hole RDM. We found that the optimal
� is approximately 6 Å, corresponding to a highly stretched
geometry. With � = 6 Å, the plot in Fig. 1(b) shows the largest
eigenvalue of the modified particle-hole RDM as a function
of the parameter d. As d increases from 2 Å to 2.6 Å , we
observe a rapid increase in the largest eigenvalue indicating the
formation of a condensate with approximately two excitons.
For d less than 2 Å covalent bonds form between the layers,
quenching the possibility for condensation as electrons pair in
the bonding orbital. Furthermore, for d greater than a certain
distance (3 Å in this case), the particles and holes of the
two layers become too independent to form excitons. Table
1 in the Supplemental Information [64] also shows a second
large eigenvalue in the modified particle-hole RDM, indicating
some exciton condensate in a second particle-hole eigenstate.
The second large eigenvalue is important because it reveals the
potential richness of possible condensate states and phases.
Table 2 in the Supplemental Information [64] further shows
that the magnitude of the largest eigenvalue generally increases
with the length of the hydrogen EDLs.

For the hydrogen-chain EDL, Fig. 2 shows the particle-hole
pairing in the eigenstate associated with the largest eigenvalue
of the modified particle-hole RDM. In each panel the proba-

FIG. 2. For the hydrogen-chain EDL, the particle-hole pairing in
the eigenstate associated with the largest eigenvalue of the modified
particle-hole RDM is shown. In (a), (b), and (c), the probability density
of the hole is shown for the particle placed at the position of the red
dot. Coordinates z and x are shown in atomic units (a.u.), where
1 a.u. = 0.529 Å.
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FIG. 3. (a) A schematic picture of the hexacene EDL is shown.
(b) The largest eigenvalue of the modified particle-hole RDM of the
hexacene EDL reaches a maximum of 1.8 around d = 2.5 Å.

bility density of the hole is shown for the particle placed at the
position of the red dot. The probability of finding a particle
on a hydrogen atom in one layer, we observe, is paired with
the probability of finding the hole on the opposite hydrogen
atom in the other layer. This pairing occurs at each site along
the chain, revealing the off-diagonal long-range order of the
exciton condensate.

A schematic picture of the hexacene EDL is shown in
Fig. 3(a). The two hexacene chains, each consisting of six
fused benzene rings, are stacked on top of each other to
form a face-to-face EDL, providing a molecular quasianalog
of the graphene EDL. While the hydrogen-chain EDL has
two parameters d and �, the hexacene EDL has only one
adjustable parameter d, the distance between the layers. For
the hexacene EDL Fig. 3(b) shows the largest eigenvalue of the
modified particle-hole RDM as a function of the distance d.
The largest eigenvalue begins to increase from one around 1 Å ,
reaching a maximum value of approximately 1.8 around 2.5 Å
before decreasing as d increases further. As in the case of the
hydrogen-chain EDL, there is a sweet spot in the distance d at
which the chains are sufficiently separated to prevent bonding
and yet sufficiently close to enable particle-hole entanglement
to form the exciton. Figure 1 in the Supplemental Information
[64] shows a similar plot of the largest eigenvalue for a
pentacene EDL with a structure similar to the hexacene EDL.
We observe that the largest eigenvalue peaks at 1.6 around
2.5 Å , indicating that the degree of exciton condensation is
increasing with increasing chain length. The largest eigenvalue
of the benzene EDL is only 1.195 at a separation of 2.5 Å.
Table 3 in the Supplemental Information [64] reveals that,

FIG. 4. For the hexacene EDL, the particle-hole pairing in the
eigenstate associated with the largest eigenvalue of the modified
particle-hole RDM is shown. In each graph, the probability density of
the hole is shown for the particle placed on the layer at z = −2.36 a.u.
at the position of the red dot. In (a), (b), and (c), the red dot is center,
right of center, and far right of center, respectively. Coordinates z and
x are shown in atomic units (a.u.) where 1 a.u. = 0.529 Å.
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as in the case of the hydrogen-chain EDL, some exciton
condensate forms in the second- and third-largest eigenvalues
of the modified particle-hole matrix for both the pentacene and
hexacene EDLs.

For the hexacene EDL, Fig. 4 shows the particle-hole
pairing in the eigenstate associated with the largest eigenvalue
of the modified particle-hole RDM. As for the hydrogen-chain
in Fig. 2, the probability density of the hole is displayed with the
red dot representing the position of the particle. Significantly,
the Dirac-delta probability distribution of a particle on a ben-
zene ring in one layer is paired with a probability distribution
of a hole that is highly localized on the opposite benzene
ring of the adjacent layer. The three panels reveal that this
pairing of a particle and a hole is present at all sites along
the chain, indicating the presence of off-diagonal long-range
order in the eigenstate associated with the largest eigenvalue.
Analogous plots for the eigenstates of the modified particle-
hole RDM that are not associated with exciton condensation
show a highly delocalized hole probability density that is not
consistent with condensation.

IV. CONCLUSIONS

The large eigenvalue of the modified particle-hole RDM is
a definitive, universal quantum signature of exciton condensa-

tion. Unlike the pairing of fermions in superconductivity that
is driven by antisymmetry, the pairing of particles and holes
in exciton condensation is driven by a more system-specific
symmetry such as the geometric symmetry in the EDLs of
GaAs [5–9] and graphene [12–23]. Computations of molecular
EDLs, including a stretched hydrogen-chain EDL as well
as pentacene and hexacene EDLs, reveal large eigenvalues
of the particle-hole matrix for a range of suitable interlayer
distances. These results may indicate that exciton condensation
is experimentally realizable in smaller scale molecular EDLs
and that it is present in a potentially richer array of systems,
states, and phases than previously conjectured. Such potential
richness, also observed in the results of recent graphene-EDL
experiments, is critical to achieving practical applications of
exciton condensation such as dissipation-free energy transfer.
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