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Quantum-to-classical crossover is a fundamental question in dynamics of quantum many-body systems. In
frustrated magnets, for example, it is highly nontrivial to describe the crossover from the classical spin liquid
with a macroscopically degenerate ground-state manifold to the quantum spin liquid phase with fractionalized
excitations. This is an important issue, as we often encounter the demand for a sharp distinction between the
classical and quantum spin liquid behaviors in real materials. Here we take the example of the classical spin
liquid in a frustrated magnet with novel bond-dependent interactions to investigate the classical dynamics, and
critically compare it with quantum dynamics in the same system. In particular, we focus on signatures in the
dynamical spin structure factor. Combining Landau-Lifshitz dynamics simulations and the analytical Martin-
Siggia-Rose approach, we show that the low-energy spectra are described by relaxational dynamics and highly
constrained by the zero mode structure of the underlying degenerate classical manifold. Further, the higher energy
spectra can be explained by precessional dynamics. Surprisingly, many of these features can also be seen in the
dynamical structure factor in the quantum model studied by finite-temperature exact diagonalization. We discuss
the implications of these results and their connection to recent experiments on frustrated magnets with strong
spin-orbit coupling.
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I. INTRODUCTION

The crossover between classical and quantum regimes in
frustrated magnets has been an important theoretical question
in the last few decades. This issue is particularly important in
understanding the nature of the quantum spin liquid phases
which may arise at low temperature due to extreme quantum
fluctuations. In the classical regime, there may exist a win-
dow of temperatures below the Curie-Weiss scale where the
correlated spin moments are thermally fluctuating within the
degenerate manifold of classical ground states. This is the co-
operative paramagnetic state, or the so-called classical spin liq-
uid. In the quantum regime, it is clearly not possible to maintain
such a state down to zero temperature as the quantum ground
state should be unique (up to a topological degeneracy in the
case of quantum spin liquids). An important question is how
much information about the degenerate manifold of classical
ground states is encoded in the emergent quantum spin liquid at
zero and low temperatures. Such a question may be especially
relevant for two-dimensional spin liquid phases which show
no finite-temperature phase transition, but only crossovers.

One natural place to look for the clue for this question is
the dynamical spin correlation or the dynamical spin struc-
ture factor. A recent work on the Kitaev model [1] in two

dimensions investigates the dynamical spin correlations of the
classical Kitaev model via Landau-Lifshitz (LL) dynamics
[2]. The resulting dynamical structure factor was compared
with that of the quantum model [3–5], which is exactly
solvable and supports a quantum spin liquid ground state
with gapless Majorana fermion excitations. There exist two
crossover temperatures, Tv and TQ, in the Kitaev model on the
honeycomb lattice, as seen in the specific heat [6]. At T < Tv ,
the vision or flux gap is larger than the temperature scale so that
the system is essentially characterized by the zero-temperature
ground state. When Tv < T < TQ, the flux degree of freedom
is thermally disordered, but the Majorana fermions are still well
defined. For T > TQ, the system crosses over to the classical
regime. It was found that the dynamical spin correlations in
the quantum model at T > Tv are remarkably similar to those
of the cooperative paramagnetic regime of the classical model
at finite temperature. Moreover, the dynamical structure factor
of the quantum model knows about the zero mode structure of
the classically degenerate manifold, even when Tv < T < TQ.
This suggests that all the classically degenerate spin states
are participating in the quantum fluctuations down to T ≈ Tv ,
which eventually leads to the emergence of the quantum spin
liquid phase at low temperature T < Tv .
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In principle, it is not necessary that the full degenerate
manifold of the classical states is involved in the formation
of the quantum spin liquid at low temperature, since thermal
entropy or zero-point quantum fluctuations may select a subset
of the full degenerate manifold at some intermediate tempera-
ture. On the other hand, when the full degenerate manifold is
participating in quantum fluctuations at low temperature, as in
the case of the Kitaev model for Tv < T < TQ, and if the spin
correlations remain short-ranged, it is highly suggestive that
the zero-temperature ground state would indeed be a quantum
spin liquid. An alternative choice for the zero-temperature
ground state could be a magnetically ordered state or a quantum
critical point, which would show the development of long-
range dynamical spin fluctuations. In the case of the Kitaev
model, we already know that this is not the case and that the
zero-temperature ground state is a quantum spin liquid. One
may, however, be able to use this lesson to infer the possible
presence of a quantum spin liquid in models which are not
exactly solvable.

In the current work, we investigate the dynamical spin
correlations in the classical and quantum � model [7] (defined
below) on the honeycomb lattice, which is known to possess
a macroscopically degenerate manifold of classical ground
states [8], while the quantum model is not exactly solvable.
This model represents the bond-dependent anisotropic and
symmetric spin interactions on the honeycomb lattice:

H = �
∑

α �=β �=γ

∑
〈r,r ′〉 ∈ γ

(
Sβ

r Sα
r ′+Sα

r S
β

r ′
)
, (1)

where Sα
r are spin operators at sites r of a honeycomb lattice,

and α,β,γ = x,y,z. Such interactions (as well as the Kitaev in-
teraction mentioned above) arise in strongly spin-orbit-coupled
Mott insulators such as Li2IrO3 and α-RuCl3, where Ir4+ or
Ru3+ ions form effective J = 1/2 local moments. Currently,
the relative importance of the Kitaev and � interactions is an
important issue in theoretical and experimental investigations
of this class of Kitaev-like materials [7,9–23]. For instance,
the dominance of one of these interactions or the cooperation
of these two interactions may lead to the possible emergence
of quantum spin liquid in these materials, especially in the
presence of external pressure or magnetic field.

We first use the Landau-Lifshitz dynamics to compute the
dynamical structure factor in the classical model at finite
temperature. It is shown that the zero mode structure of the de-
generate manifold of classical ground states is reflected in the
low-frequency part of the dynamical spin fluctuation spectra.
For example, in the case of the antiferro-sign of the � > 0
interaction, the structure factor at low frequencies is suppressed
at the � and X points of the Brillouin zone, which we explain
using the constraints on the classical spin states which belong to
the degenerate manifold. Next, we employ the Martin-Siggia-
Rose (MSR) formulation of Langevin dynamics to further
understand the nature of the dynamical spin correlations. These
two different methods lead to essentially the same dynamical
spin correlations, leading to the conclusion that the system
itself may be acting as an effective thermal bath. Furthermore,
it is shown that the low-frequency response is relaxational and
reflects the zero mode structure, while the higher-frequency
response is mostly precessional, and some characteristic

precessional modes exist at finite frequencies. The evolution of
dynamical spin correlations is also investigated as a function
of temperature for the comparison with the quantum model.

The dynamical spin structure factor in the quantum � model
is studied by exact diagonalization via the shifted Krylov
subspace method, which is combined with a typical quantum
state approach at finite temperature. In previous studies [24],
it was shown that there exist two crossover temperatures,
T1 ≈ 0.03� and T2 ≈ 0.4�, in the specific heat, similar to the
case of the Kitaev model. T2 marks the crossover from the
high-temperature classical regime to the quantum regime. We
find that the dynamical spin correlations at low frequencies
in the quantum model show distinct signatures of the zero
mode structure of the degenerate manifold of classical ground
states even when T1 < T < T2, which gradually crosses over
to the low-temperature extreme quantum limit for T < T1. This
behavior is reminiscent of the dynamical spin correlations in
the Kitaev model, where correlations as a function of temper-
ature are remarkably similar to the classical result. This means
that the short-range spin fluctuations from the degenerate
manifold persist even in the quantum regime of T1 < T < T2.
On the other hand, the dynamical spin correlations at zero
temperature, while they remain short ranged, show features
that are not present in the classical model. In the case of the
� model, we currently do not know what the quantum ground
state is. One possibility is that below a certain temperature
a symmetry is broken due to order by quantum disorder [8].
Interestingly, however, recent density-matrix renormalization
group and exact diagonalization studies suggest the possible
presence of a quantum spin liquid ground state in the � model
[25]. Since we do not have an analytical understanding of the
underlying quasiparticles in the � model, we cannot make a
more precise connection to underlying quantum degrees of
freedom, which was possible in the case of the Kitaev model.
Nonetheless, the phenomenological similarity to the classical-
quantum correspondence in the Kitaev model is striking. We
may speculate that the entire degenerate manifold of classical
states would participate in quantum fluctuations that lead to the
formation of the quantum ground state at zero temperature,
such as a quantum spin liquid phase. Our findings will help
understanding this outstanding issue and a possible connection
to experiments on Kitaev-like materials.

The rest of the paper is organized as follows. In Sec. II, we
present numerical results obtained from the LL dynamics of the
classical model. Section III describes how qualitatively similar
results can be obtained analytically within an MSR formalism.
The dynamic correlations of the corresponding quantum model
are given in Sec. IV. We conclude with a discussion of our main
findings in light of recent experiments in Sec. V, while details
of our calculations are relegated to the Appendixes.

II. LANDAU-LIFSHITZ DYNAMICS

We study the dynamical spin correlations of the � model,
Eq. (1), whereby the spin operators are replaced by classical
vectors in the Heisenberg equation of motion. The resulting
LL equation of motion is

dSr

dt
= Sr×Br , (2)
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FIG. 1. Trace of the dynamical magnetic structure factor
S(Q,ω) = ∑

α Sαα( Q,ω) for (a) AFM (� > 0), (b) FM (� < 0) �

models along the Brillouin zone path, K − � − M − Y − X − K −
M, as depicted in the inset.

where Br is the molecular field acting on the spin Sr . This LL
equation can be solved numerically by applying a fourth-order
Runge-Kutta algorithm with adaptive step size. The average
over configurations at a given temperature T is obtained from
the Metropolis Monte Carlo sampling method. We note that
a closed LL dynamics is more appropriate than Langevin
dynamics when the experiment is much faster than the spin-
lattice relaxation, which is the typical case in inelastic neutron-
scattering experiments. The simulations are performed on a
finite lattice of 30 × 30 unit cells (1800 spins) with periodic
boundary conditions.

Figure 1 shows the trace of the dynamical spin structure
factor, S( Q,ω) = ∑

α Sαα( Q,ω), obtained for the antiferro-
magnetic (AFM) (� > 0) and ferromagnetic (FM) (� < 0)
versions of the � model. As expected for a liquid state,
S( Q,ω) exhibits a continuum of low- and high-frequency
modes. The low-frequency (zero) modes arise from the very
slow dynamics through different classical ground states. The
number of zero modes is macroscopic because of the extensive
residual entropy of the ground-state manifold. This dynamics
is expected to be relaxational because the average of the
local field over a period 2π/ω is equal to zero. In contrast,
the high-frequency modes correspond to the much faster spin
precession around the local fields produced by a given ground-
state configuration. Accordingly, the average of the local fields
Br over a period 2π/ω remains finite.

Both the low- and high-frequency modes contain relevant
information about the liquid state. The momentum distribution
of the zero-energy modes is a direct consequence of the set of
constraints defining the ground-state manifold. Specifically,
we show in Appendix A that the Fourier transform Sα(q) =∑

r Sα
r eiq·r of any state Sα

r in the ground-state manifold
vanishes for both q = � and q = X. As a result, the low-energy

FIG. 2. (a) Elastic component of the trace of the magnetic struc-
ture factor S( Q,ω = 0). (b)–(d) S( Q,ω), integrated over finite energy
cuts: (b) ω/� = [0.1,0.3], (c) ω/� = [0.8, 1.0], and (d) ω/� = [1.8,
2.0].

spectral weight of Sαα( Q,ω) is suppressed at the � and X
points of the Brillouin zone [see Fig. 2(a)]. Correspondingly,
as shown in Figs. 2(b)–2(d), the missing low-energy spectral
weight at these two points is shifted to frequencies of order
�. In other words, magnetic excitations with wave vectors �

and X are purely precessional. Indeed, as shown in Fig. 2,
the precessional modes have the highest intensity at these two
wave vectors. As we will see later, the low-energy modes of the
quantumS = 1/2 model inherit this structure. The high-energy
modes contain information about the magnitude and spatial
distribution of the instantaneous local fields Br of a typical
ground-state spin configuration. The dispersion of these modes
contains information about the magnetic correlation length of
the spin liquid state.

To gain more insight on the structure of the zero-energy
modes, we also present the real-space spin-spin correlation
function, S(r,ω), as a function of ω and T . Figure 3 shows
the elastic contribution S(r,ω = 0) for different distances
up to fifth nearest neighbors (NN) and T = 10−5�. (Cal-
culations need to be done at finite T to have fluctuations
and be able to exploit the fluctuation-dissipation theorem.)
Remarkably, this is significant only for the on-site and for the

FIG. 3. S(r,ω = 0) as a function of |r|/a (where a is the lattice
parameter) at T = 10−5�.
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FIG. 4. Static spin-spin correlation function, S̃αβ = 〈Sα
o Sβ

r 〉 = ∫
Sαβ (r,ω)dω, mapped on the real-space lattice with respect to an arbitrary

origin denoted by the cross (×). The temperature of the simulation is T = 10−5�.

third-nearest-neighbor (|r|/a = 2, where a is the lattice pa-
rameter) correlation functions. The values obtained for other
distances are smaller than the statistical error of the MC
calculation. Therefore, the fast exponential decay of the elastic
contribution indicates that the magnetic correlation length is
of order 2a.

A similar behavior is observed in the static real-space spin-
spin correlation function, S̃αβ (r) = 〈Sα

0 S
β
r 〉 = ∫

Sαβ (r,ω)dω,
shown in Fig. 4. This figure also includes off-diagonal com-
ponents of the spin-spin correlation function. In all the cases,
the correlation function is significant only for distances |r|
equal to or smaller than the separation between third nearest
neighbors (opposite sites of each hexagon). Moreover, a subset
of the nine spin-spin correlator components αβ vanishes
for any given r . The form of the real-space correlations,
as depicted in Fig. 4, is well accounted for by considering
the symmetries of the Hamiltonian, Eq. (1). To show this,
we begin by considering the three ways in which one can
decompose the honeycomb lattice into hexagon plaquettes,
shown in Fig. 5. With each plaquette of a given decomposition
we associate six spin components, one from each site around
the plaquette. Specifically, a spin component is associated with
a neighboring hexagon plaquette if it is of the same type as the
bond connecting it with a neighboring plaquette of the same
decomposition. There exist three symmetry operations [8], one
for each plaquette decomposition, which correspond to π spin
rotations about an axis that depends on the sublattice which
each spin belongs to. For example, the symmetry operation
corresponding to the white plaquettes in Fig. 5 corresponds
to a π rotation about the x axis for sublattices 1 and 4,

about the y axis for sublattices 2 and 5, and about the z axis
for sublattices 3 and 6. This transformation leaves the spin
components {Sx

1 ,S
y

2 ,Sz
3,S

x
4 ,S

y

5 ,Sz
6} invariant (the subscript is

the six-sublattice index), while it changes the sign of the other
ones. In Appendix B, we show that these symmetries, which
are also symmetries of the quantum model, result in vanishing
correlations between spin components which are associated
with plaquette of different decompositions, according to the
rule we just described.

12

3

4

6

5

3

3

4

4 5

6

6

12

5

12

3

2

4 5

1

6

x-bond
y-bond
z-bond

FIG. 5. Six-sublattice decomposition of the honeycomb lattice.
We also show the three different decompositions of the lattice into
isolated hexagonal plaquettes.
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FIG. 6. S(r,ω) as a function of temperature and energy (h̄ω) for
AFM (� > 0) � model. Panels (a), (d), and (e) show −S(r,ω) for r
connecting first, third, and fifth nearest-neighbor sites, respectively.
Panel (b) shows S(r,ω) for r connecting nearest-neighbor sites. Panel
(c) shows that S(r,ω) = 0 for r connecting second-nearest-neighbor
sites.

However, the spin-spin correlations are further restricted in
the classical limit. Classically, the three components of each
spin commute with each other, and as a result, one can define
a local transformation that flips the sign of an individual spin
component. The classical version of the � model is invariant
under a local symmetry transformation that changes the sign
of one spin component of each of the six spins in a single
hexagon plaquette. The spin component that changes sign is
the one corresponding to the only bond which does not connect
two spins in the same hexagon [8]. For instance, the symmetry
transformation changes the sign of {Sx

1 ,S
y

2 ,Sz
3,S

x
4 ,S

y

5 ,Sz
6} for

a single white hexagon plaquette. This is the local symmetry
that gives rise to the macroscopic degeneracy of the classical
ground-state manifold. Consequently, the correlation function
〈Sα

0 S
β
r 〉 vanishes unless both Sα

0 and S
β
r belong to the same

single hexagon. This restricts correlations to third neighbor
at most and determines the specific components which have
nonzero correlations, as seen in Fig. 4. For example, only the
diagonal components of the on-site correlations are nonzero,
since different components of a given spin are associated
with different plaquettes, and thus, uncorrelated. Similarly, the
only other nonvanishing diagonal components of the spin-spin

FIG. 7. Temperature evolution of S( Q = �,ω) for AFM (� > 0)
� model.

correlation function appears for third neighbors, e.g., for the
white plaquette mentioned earlier we have only a finite 〈Sx

1 Sx
4 〉

in addition to the on-site correlation. Similar considerations
restrict finite off-diagonal correlations to nearest and second-
nearest neighbors around one plaquette.

Figure 6 shows the temperature and frequency dependence
of S(r,ω) for several values of r . In agreement with the
symmetry analysis given in Appendix B, S(r,ω) vanishes for
any frequency when r connects second-nearest-neighbor sites
[see Fig. 6(b)]. The temperature dependence ofS(r,ω) for other
values of r indicates a crossover from partially precessional to
fully diffusive behavior at a temperature of order �. The tem-
perature dependence of S( Q = �,ω) shown in Fig. 7 confirms
this crossover, indicating that the system evolves continuously
from a low-temperature (T < �) correlated liquid (classical �

liquid) to a high-temperature paramagnetic state.

III. LANGEVIN DYNAMICS

Although, as noted in the previous section, neutron-
scattering experiments are faster than spin-lattice relaxation, a
Langevin approach may still be used to analytically understand
dynamic correlations in LL dynamics. The nonlinear nature of
Eq. (2) gives rise to strong relaxation due to inelastic processes,
in addition to the more direct precessional dynamics. In other
words, the fluctuating spins act as their own heat bath, leading
to strong relaxation. At a phenomenological level, it is possible
to capture the two types of spin dynamics in a generalized
Langevin equation, where a linear term describes the spin
relaxation, while precession is included in a residual nonlinear
term. We thus propose to study the stochastic dynamics of a
system of soft classical spins [26] Sα

i , given by

∂Sα
i

∂t
= gεαβγ S

β

i

∂H

∂S
γ

i

− γ
∂H

∂Sα
i

+ ηα
i , (3)

where i,j denote a site on a honeycomb lattice, α,β = x,y,z,
and the noise term ηα

i obeys〈
ηα

i (t)ηβ

j (t ′)
〉 = 2γ T δij δαβδ(t − t ′). (4)

As described below, the unitless phenomenological parame-
ters, γ setting the relaxation rate and g the precession rate,
are chosen by comparing the dynamical correlations with the
results of the LL simulation, while T is simply the temperature.
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The spins are taken to be soft with mass �, and with a
general nearest-neighbor spin interaction K

αβ

ij , as given by the
following Hamiltonian:

H =
∑
αβ

∑
〈ij〉

K
αβ

ij Sα
i S

β

j + �

2

∑
iα

(
Sα

i

)2
. (5)

The mass � is an additional, temperature-dependent, phe-
nomenological parameter which determines the average spin
size 〈S2

i 〉. Quadratic Hamiltonians of this type are suitable for
studying spin dynamics in cases where there is no long-range
order. We will apply this to the classical � model, which
has macroscopic degeneracy in its ground state, preventing
long-range order even at low temperatures. A similar treatment
for the Kitaev model is given in the Appendix. Following a
path-integral formulation of the MSR approach [27–29], we
write a generating functional for dynamical correlations as

Z =
〈∫

DS |M| δ
(
∂Sα

i

∂t
− gεαβγ S

β

i

∂H

∂S
γ

i

+ γ
∂H

∂Sα
j

− ηα
i

)〉
η

,

(6)

where 〈· · ·〉η denotes averaging over the noise fluctuations η,
and M is a Jacobian matrix. For the model we consider here
we may take the determinant |M| = 1. Writing the δ function
as an integral over Ŝα

i , and averaging over η, we obtain Z =∫
DŜ DS e−S where the MSR action is given by

S = −
∫

dt
[
Ŝα

i

(
∂tS

α
i + γK

αβ

ij S
β

j + γ�Sα
i

)
+ γ T

(
Ŝα

i

)2 − gεαβγ Ŝα
i S

β

i K
γδ

ij Sδ
j

]
. (7)

Within this formalism it is possible to calculate dynamical
correlation functions, using perturbation theory in g.

Zeroth order in g. When g = 0, the dynamics is purely
relaxational. The bare response Green’s function, defined as

[G0(ω)]αβ

ij ≡ 〈Ŝα
i (−ω)Sβ

j (ω)
〉
0, (8)

is given by (its inverse)[
G−1

0 (ω)
]αβ

ij
= (−iω + γ�)δαβδij + K

αβ

ij . (9)

We will represent this diagrammatically using Fig. 8(a). Sim-
ilarly, the bare correlation function is given by

[C0(ω)]αβ

ij ≡ 〈Sα
i (−ω)Sβ

j (ω)
〉
0 = 2γ T (G†

0(ω)G0(ω))αβ

ij .

(10)

Diagrammatically, this is represented in Fig. 8(b), where the
noise vertex is represented by a dot, • = 2γ T .

In the pure � model, which is defined by

K
αβ

ij =
{
� α �= β �= 〈ij 〉
0 otherwise , (11)

the classical degrees of freedom can be divided into sectors—
one for each hexagon. For example, as discussed in the previous
section, going around one of the white hexagons in Fig. 5,
we can identify six spin components which interact only
within themselves. Their dynamics is independent of the rest
of the system, manifesting the macroscopic degeneracy of

G0(ω))αβ
ij =

ω
iα jβ

C0(ω))αβ
ij =

ω
iα jβ =

ω

ω
iα jβ

iα

jβ

kγ

= αβδδijK
δγ
ik + αγδδikKδβ

ij

ω) =

(a) (

(b) (

(c)

(d) Σ(

(e) C(ω) = + Σ

+ Σ + Σ Σ

+ Σ Σ + Σ Σ + · · ·

FIG. 8. Feynman diagrams for the MSR formalism: (a) bare
response function, (b) bare correlation function, (c) precession vertex,
(d) self-energy diagram, (e) perturbative expansion of the dressed
correlation function, in powers of the self-energy , see Eq. (15).

the classical system. We rename these degrees of freedom as
follows,{

Sx
1 ,S

y

2 ,Sz
3,S

x
4 ,S

y

5 ,Sz
6

} ≡ {σ1,σ2,σ3,σ4,σ5,σ6}. (12)

The Hamiltonian, restricted to this sector, is given by

Hhexagaon =
6∑

l=1

(
�σlσl+1 + �

2
σ 2

l

)
. (13)

The energy eigenvalues, which determine the relaxation rate,
are εm = 2� cos πm/3 + �, m = 1 . . . 6. Clearly, the model
is stable only for � > 2|�|. The g = 0 dynamical correlation
function within these six spin components is given by

〈σl(ω)σl′(ω
′)〉= 1

6

6∑
m=1

cos

(
πm(l−l′)

3

)
2γ T 2πδ(ω + ω′)

ω2 + γ 2ε2
m

,

(14)

while the correlation with spin components which do not
appear in Eq. (12) is identically zero. � may be chosen so that
〈σ 2

l 〉 is a constant; at the g = 0 level � should obey 〈σ 2
l 〉 =∑

m(T/6εm) = 1. Clearly, the dynamics for g = 0 is purely
relaxational, with a peak at ω = 0. Thus, γ can be chosen
such that Eq. (14) reproduces the width of the low-energy peak
as obtained in the LL simulations. Focusing on the dynamic
structure factor 〈Sα(q,ω)Sα(−q,−ω)〉, we note that for each
hexagon 〈Sx

l Sx
l′ 〉 �= 0 only for l,l′ = 1,4, 〈Sy

l S
y

l′ 〉 �= 0 only for
l,l′ = 2,5, and 〈Sz

l S
z
l′ 〉 �= 0 only for l,l′ = 3,6, in line with

the symmetry consideration of the previous section and in
Appendix B. In the antiferromagnetic � model, the lowest
eigenvalue is ε3 = −2� + �. Noting that there are nonzero
correlations only for l − l′ = 0,3, we find that the contribution
of this eigenvalue to the spectrum at � vanishes, and one would
expect only the higher-energy modes, i.e., faster relaxations,
to contribute at this momentum. A similar argument holds for
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Γ

ω
/Γ

Γ

Γ

ω
/Γ

Γ

FIG. 9. Dynamic structure factor as obtained from Eq. (15), for
(a) the AFM � > 0, and (b) the FM � < 0 models. Here we have
used γ = 0.12, � = 2.05�, and g2T = 0.04�.

the low-energy correlations at X . Thus we find a depletion in
the dynamic structure factor at � and X , echoing the analysis
of the zero modes in the previous section.

Perturbation theory in g. It is possible to treat the precession
term using diagrammatic perturbation theory. We represent
the symmetrized precession vertex by Fig. 8(c). The dressed
correlation function C

αβ

ij (ω) can be calculated approximately
by summing over a subset of infinite diagrams, as shown in
Fig. 8. Specifically, we approximate C(ω) by a product of two
infinite series,

C(ω) ≈ 2γ T

∣∣∣∣∣G0(ω)
∞∑

n=0

((ω)G0(ω))n
∣∣∣∣∣
2

, (15)

where the self-energy  is calculated to leading order in g. The
self-energy term for the � model dynamics mixes different
sectors, and therefore its calculation must be done in Fourier
space. However, the procedure is no different than in quantum
field theory, once the appropriate Feynman rules are deter-
mined. Figure 9 shows the resulting dynamic structure factor.
Equation (14), obtained for g = 0, qualitatively accounts for
the low-frequency features, including the depletion at � and
X in the AFM case. The main qualitative effect of finite g > 0
on the dynamic structure factor is the addition of correlations
peaked at finite frequency, due to the precession of the spins. In
Appendix C we describe the calculation for the Kitaev model,
which is simpler and can be done in real space. Furthermore,
the closed-form result for the Kitaev model shows that the
self-energy is larger for the mode which is suppressed at low
energies. Similar behavior is observed in Fig. 9 for the �

model, where the precession features appear at finite frequency
at the same momentum positions with depleted low-energy
correlations. Besides the qualitative effect of precessional
dynamics, a finite g is also expected to renormalize the values
of γ and � required to fit the numerical data obtained at a given
temperature.

FIG. 10. Finite-size honeycomb clusters with 24 spins and peri-
odic boundary conditions. Bonds along the three different directions
are labeled as the x, y, and z bond, which are along −60◦, 60◦, and
horizontal directions, respectively.

IV. DYNAMICS OF THE SPIN- 1
2 MODEL

Using the exact-diagonalization method, described in
Ref. [32] and Appendix D, we study the finite-temperature
dynamical spin structure factors of the S = 1/2 AFM �

model. Here we use a 24-site cluster with periodic boundary
conditions, illustrated in Fig. 10. As explained below, the
dynamical spin structure factor of the quantum model shows a
gradual classical-to-quantum crossover when the temperature
is decreased.

Before going into details of the quantum spin dynamics of
the � model, we summarize the energy scale of the quantum
S = 1/2� model. As shown in Ref. [24] and Fig. 11, there are
two temperature scales given by the peaks in the temperature
dependence of the specific heat. The higher-temperature peak
appears at around T2/� ≈ 0.4 and the lower-temperature peak
emerges below T1/� � 0.03. The two-peak structure in the
temperature dependence of the specific heat has been found
in the Kitaev model [6] and in the proximity of the Kitaev’s
spin liquid [33], although the balance of the entropy released
by these two peaks is different from that of the � model.

In Fig. 12, the momentum dependence of the equi-energy
slices of S( Q,ω) are shown by changing temperature and

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.01  0.1  1  10

FIG. 11. Specific heat C/N of the AFM � model on the N =
24-site cluster [24], calculated by the typical pure quantum states ap-
proach [30,31]. There are two maxima in the temperature dependence
of C/N . The error bars are the standard errors estimated by 32 random
initial vectors.

045121-7



ANJANA M. SAMARAKOON et al. PHYSICAL REVIEW B 98, 045121 (2018)

FIG. 12. Equi-energy slices of the dynamical spin structure factors of the � > 0 model. The momentum dependence of the equi-energy
slices is shown by changing temperature and frequency. From the top row to the bottom row, the equi-energy slices of the dynamical spin
structure factors are shown at T/� = 1, 0.5, 0.2, and 0.1. The equi-energy slices are prepared by averaging the spectra within an energy window
whose width is 0.1. For visibility, the dynamical spin structure factors at discrete momenta obtained by the simulation are interpolated. Here,
the broadening factor η/� = 0.02 is used (see Appendix D for the definition of η).

frequency. The equi-energy slices are prepared by averaging
the spectra within an energy window whose width is 0.1.
The momentum dependence is numerically interpolated for
visibility without changing the simulation results at the dis-
crete momenta Q compatible with the finite-size cluster. At
T/� = 1 > T2/� ≈ 0.4, almost momentum-independent be-
haviors of S( Q,ω) are found except around the � point, where
spectral weight is suppressed for ω/� < 1 and is shifted to the
high-energy region ω/� > 1. Below T/� = 0.5 ≈ T2/�, the
suppression of the low-energy spectral weight (or relaxational
dynamics) at � and X points becomes notable, which is
consistent with the classical dynamics.

To examine the temperature dependence of the low-energy
spectral weight, we show the temperature evolution of S( Q =
�,ω) in comparison with S( Q = M,ω) in Fig. 13. Below
the high-temperature scale T/� ≈ 0.4, S( Q = �,ω) shows
reduced spectral weight in the low-energy region below
ω/� ≈ 0.5, while S( Q = M,ω) shows substantial spectral
weight in the low-energy region. We further note that the
Fourier transformation of S( Q,ω), S(r�m,ω), also satisfies the
symmetry properties at finite temperatures, as discussed in
Sec. II.

For closer comparison with the classical dynamics, we show
S( Q,ω) at T/� = 0.5, 0.2, 0.1, and 0 along symmetry lines
in Fig. 14. In addition to the suppression of the low-energy
spectral weight at � and X points, which is in common with
the classical spin dynamics, the low-energy spectral weight
for ω/� � 0.5 decreases at K and Y upon cooling. This
suppression at the K and Y points is characteristic of the
S = 1/2 � model.

To gain insight into the difference between the quantum and
classical dynamics at the K and Y points, we examine the static
spin-spin correlation function at zero temperature. In Fig. 15,
〈Sα

0 S
β
r 〉 (α,β = x,y,z) are shown in the 24-site cluster with the

periodic boundary condition. These correlators in the quantum
model are very similar to the static correlation functions of the
classical model, as shown in Fig. 4. Due to the symmetry of the
� model, the static spin-spin correlation functions are zero for

many spin pairs. However, there are differences among them:
For example, there exist finite nearest-neighbor correlations
〈Sα

0 S
β
r 〉 (α,β = x,y,z) for α = β and the additional second-

nearest-neighbor correlations for α �= β. The fact that these
correlations are finite, while they are absent in the classical
limit, indicates that quantum fluctuations are important even
when T > T1.

The most significant difference is the nearest-neighbor
correlations for α = β, which are zero in the classical model
due to the local symmetry discussed in Sec. II. The nearest-
neighbor ferromagnetic correlations in the real space hinder

 10-1  100  101 0

 1

 2

 3

 10-1  100  101 0

 1

 2

 3

(a)

(b)
 0

 0.5

 1

FIG. 13. Temperature evolution of S( Q = �,ω) and S( Q =
M,ω) for the � > 0 model.
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FIG. 14. Dynamical spin structure factors of the S = 1/2 AFM �

model at (a) T = 0.5, (b) T = 0.2, (c) T = 0.1, and (d) T = 0, along
symmetry lines. For visibility, the broadening factor η/� = 0.02 is
used (see Appendix D for the definition of η).

-0.2

-0.1

 0

 0.1

 0.2

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

FIG. 15. Real-space static spin-spin correlation function,
〈Sα

0 Sβ
r 〉 (α,β = x,y,z), of the S = 1/2 � > 0 model on the 24-site

cluster with periodic boundary conditions, at T = 0. The location
of the origin 0 is denoted by the open circle (◦). The radiuses of the
closed circles at r represent the amplitude of |〈Sα

0 Sβ
r 〉|, while the

color of the closed circles shows 〈Sα
0 Sβ

r 〉. Within numerical accuracy,
there is no spin-spin correlation represented by a circle with a radius
smaller than the width of the solid lines representing the bonds.

the antiferromagnetic low-energy fluctuations at the Y and K

points in the momentum space. As a result, these correlations
harden the spin fluctuations at these momenta. In other words,
these correlations suppress the relaxational dynamics and
introduce the quasicollective precessional dynamics at these
momenta.

A quantitative description of the classical-quantum
crossover is obtained by examining the temperature depen-
dence of the typical static spin-spin correlation functions
shown in Fig. 16. While the off-diagonal nearest-neighbor
correlations 〈Sα

0 S
β
r 〉 on the γ bond, where (α,β,γ ) is a

FIG. 16. Temperature dependence of static spin-spin correlations
of the AFM � model on the 24-site cluster. Here, the error bars, which
are smaller than or comparable to the symbol size, are the standard
errors estimated by several random initial vectors.
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permutation of (x,y,z), are dominant at temperatures above
and around T2/� ≈ 0.4, the diagonal nearest-neighbor cor-
relations 〈Sα

0 Sα
r 〉 start to saturate upon cooling for T < T2.

Therefore, the classical precessional dynamics due to the off-
diagonal nearest-neighbor correlations governs the dynamics
for T � T2. On the other hand, the emergent quantum dynam-
ics is generated by the diagonal nearest-neighbor correlations
for T < T2. Here, we note that dominance of the off-diagonal
nearest-neighbor correlations originates from their Curie-like
temperature dependence in the high-temperature region, which
is evident in the inset of Fig. 16, while temperature dependence
of the diagonal nearest-neighbor and third-nearest-neighbor
correlations shows T −2 and T −3 scaling, respectively. In
Appendix E we show how these power-law behaviors can be
obtained using a high-temperature expansion.

V. DISCUSSION

In this work, we investigated classical and quantum dy-
namics of the � model, the bond-dependent symmetric and
anisotropic spin interaction on the honeycomb lattice. Such
exchange interaction arises in strongly spin-orbit-coupled Mott
insulators, in addition to the usual Heisenberg and Kitaev
(the bond-dependent Ising) interactions [7,14]. There exist a
number of so-called “Kitaev materials,” such as α,β,γ -Li2IrO3

and α-RuCl3, where the Kitaev interaction, if dominant, may
lead to a quantum spin liquid phase. However, the strength of
the� interaction can be as large as that of the Kitaev interaction,
especially in the case of α-RuCl3, according to recent ab initio
computations [15]. The presence of other interactions has been
regarded as an obstacle for realizing the quantum spin liquid
ground state in this class of materials.

On the other hand, the � interaction is also highly frustrated
at the classical level, just like the Kitaev model. Given that the
strength of this interaction is significant in some materials, the
nature of the quantum ground state of the � model is highly
relevant for the interpretation of the experiments. In the case of
α-RuCl3, for example, it has been speculated that the scattering
continuum seen in recent neutron-scattering experiments may
come from a nearby quantum spin liquid, even though the
actual ground state is a magnetically ordered state [34,35]. The
magnetic order can be suppressed by an external in-plane mag-
netic field, and the resulting paramagnetic state is speculated to
be a field-induced quantum spin liquid [18,20,21]. Currently
it is highly debated whether the Kitaev interaction or other
interactions or both could be responsible for the formation of
a putative quantum spin liquid ground state.

In the present work, we focused on the � interaction
and pointed out the similarity to the Kitaev model in the
correspondence between classical and quantum dynamics. We
showed that the zero mode structure of the highly degenerate
manifold of the classical ground states is reflected in the clas-
sical dynamical spin structure factor. In addition, we clarified
different roles of relaxational and precessional dynamics in
the dynamical spin structure factor of the classical model.
Remarkably, this feature survives in the quantum model down
to very-low-energy scales. This would imply that the full
degenerate manifold of the classical states is participating in
quantum fluctuations down to very-low-energy scales. This
situation resembles the results of the Kitaev model, obtained

in a previous study [2], where the quantum dynamical spin
structure factor is qualitatively similar to the classical results
down to low energies above the small flux gap in the underlying
spin liquid ground state. This correspondence in the Kitaev
model was apparent even in the temperature/energy window
where the underlying low-energy degrees of freedom are
Majorana fermions, not the semiclassical spins. Since the
quantum � model is not exactly solvable, we do not know
the true quantum ground state at zero temperature. It has
been suggested that order by quantum disorder leads to a
symmetry-broken state [8]. The resemblance to the Kitaev
model, however, suggests that the quantum ground state of the
� model may also be a quantum spin liquid, which results from
the “collapse” of the degenerate classical manifold. Such a
conclusion may also be consistent with a recent density-matrix
renormalization group computation of the same model [25],
where the ground seems to be a highly correlated quantum
paramagnet. If the � model can indeed support a quantum
spin liquid ground state, the presence of this interaction in
real materials may not necessarily be an obstruction for the
realization of the quantum spin liquid ground state. The firm
answer to this question would require further studies of the
quantum and classical models with both the Kitaev and �

interactions.
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APPENDIX A: ZERO MODE STRUCTURE

The momentum space distribution of the zero modes can
be derived from the set of constraints satisfied by the ground-
state manifold. As reported by Rousochatzakis and Perkins
[8], the classical ground state of the AFM � model satisfies
the following constraints on each bond of the lattice:

Sx
1 = −S

y

2 , and S
y

1 = −Sx
2 for z bonds,

Sx
1 = −Sz

2, and Sz
1 = −Sx

2 for y bonds, (A1)

S
y

1 = −Sz
2, and Sz

1 = −S
y

2 for x bonds,
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(a) (b)

A
B

1
2

3
4

FIG. 17. (a) Two-sublattice decomposition of the honeycomb
lattice. (b) Four-sublattice decomposition of the honeycomb lattice.

where 1 and 2 denote the two sites on the given bond.
Equation (A2) implies that the following identities hold for
any ground-state configuration:

Sx
A = −S

y

B, S
y

A = −Sx
B, Sx

A = −Sz
B,

Sz
A = −Sx

B, S
y

A = −Sz
B, Sz

A = −S
y

B, (A2)

where S
μ

A =∑j∈A S
μ

j and S
μ

B =∑j∈B S
μ

j and (A, B) de-
note the two sublattices of the honeycomb lattice shown
in Fig. 17(a). The conditions (A2) lead to Sx

A = S
y

A = Sz
A,

Sx
B = S

y

B = Sz
B , and S

μ

A + S
μ

B = 0, implying that the ground
states of the classical AFM � model have no zero-momentum
component. This simple analysis proves the absence of elastic
(ω = 0) spectral weight at the � point.

Our next goal is to demonstrate the absence of elastic weight
at the X points. For this purpose, we divide the honeycomb
lattice into four sublattices, as shown in Fig. 17(b). Without
loss of generality, we prove the statement for one of the three
X points, say X1. The C6 symmetry of the honeycomb lattice
guarantees that the result is the same for X2 and X3. The X1

component of a given spin configuration is

S
μ

X1
= 2√

N

[
S

μ
1 + S

μ
2 − S

μ
3 − S

μ
4

]
, (A3)

where S
μ
r =∑j∈r S

μ

j and the integer index 1 � r � 4 denotes
each of the six sublattices and N is the total number of sites.
From the general ground-state condition (A2), we obtain

S
y

1 = −Sz
2, Sz

1 = −S
y

2 , Sx
1 = −S

y

4 ,

S
y

1 = −Sx
4 , Sz

1 = −Sx
4 , Sx

1 = −Sz
4,

Sx
2 = −S

y

3 , S
y

2 = −Sx
3 , Sx

2 = −Sz
3,

Sz
2 = −Sx

3 , S
y

3 = −Sz
4, Sz

3 = −S
y

4 . (A4)

These identities give Sx
1 = −S

y

4 = Sz
3 = Sx

2 , Sx
3 = −S

y

2 =
Sz

1 = −Sx
4 , implying that Sx

X1
= 0. Similarly, Eq. (A4) leads

to S
y

1 = −Sz
2 = Sx

3 = −S
y

2 , Sz
1 = −Sx

4 = S
y

1 = −Sz
2, Sz

3 =
−S

y

4 = Sx
1 = −Sz

4, implying that S
y

X1
= Sz

X1
= 0. In other

words, the ground-state configurations of the AFM � model
have no � or Xμ (μ = 1,2,3) components, implying the
absence of elastic (ω = 0) spectral weight at any of those wave
vectors.

APPENDIX B: SYMMETRY ANALYSIS OF Sαβ (r,r ′,ω)

Here we derive selection rules of the real-space dynamical
spin structure factor of H for arbitrary spin S. For this
purpose, we introduce the six-sublattice decomposition of the
honeycomb lattice that is depicted in Fig. 5 [8]. We demonstrate
that six out of the nine components of the real-space and
real-time magnetic structure factor,

Sαβ (r,r ′,t) = 〈Sα
r (0)Sβ

r ′(t)
〉
, (B1)

always vanish as a consequence of the Hamiltonian symmetries
that we discuss next.

It was noticed in Ref. [8] that the � model (1) is invariant
under a set of three spin transformations acting on each of the
six sublattices depicted in Fig. 5.

(1) If we decompose the full lattice into the white hexagons
shown in Fig. 5, the Hamiltonian H is invariant under the
symmetry operation

Ra =
∏

i∈{1,4}
C2x(i)

∏
i ′∈{2,5}

C2y(i ′)
∏

i ′′∈{3,6}
C2z(i

′′). (B2)

(2) Similarly, a lattice decomposition into the dark-gray
hexagons shown in Fig. 5 reveals the symmetry operation

Rb =
∏

i∈{6,5}
C2x(i)

∏
i ′∈{3,4}

C2y(i ′)
∏

i ′′∈{1,2}
C2z(i

′′). (B3)

(3) Finally, a decomposition into the light-gray hexagons
in Fig. 5 leads to the symmetry operation

Rc =
∏

i∈{2,3}
C2x(i)

∏
i ′∈{1,6}

C2y(i ′)
∏

i ′′∈{4,5}
C2z(i

′′). (B4)

We will derive now selection rules based on these sym-
metries. Given that these selection rules are exactly the same
for any pair of sites r and r ′ belonging to a given pair of
sublattices ν and ν ′, we will use the notation 〈Sα

ν (0)Sβ

ν ′(t)〉
instead of 〈Sα

r (0)Sβ

r ′(t)〉. We start by considering spin-spin
correlators between sites on the same sublattice, i.e., both
r and r ′ belong to the same sublattice ν (1 � ν � 6). Off-
diagonal contributions involve a product of two different
spin components Sα

ν and Sβ
ν with α �= β. Because both spin

operators belong to the same sublattice, they rotate about the
same axis under the transformations Ra , Rb, or Rc. We can
always choose the transformation Rη that corresponds to a
π rotation about the α axis. Given that α and β are different
components, we have

R†
ηS

α
ν Rη = Sα

ν , and R†
ηS

β
ν Rη = −Sβ

ν , (B5)

implying that〈
Sα

ν (0)Sβ
ν (t)
〉 = Tr

[
e−(H/kBT )Sα

ν (0)Sβ
ν (t)
]

= Tr
[
R†

ηe
−(H/kBT )Sα

ν (0)Sβ
ν (t)Rη

]
= Tr

[
e−(H/kBT )R†

ηS
α
ν (0)RηR†

ηS
β
ν (t)Rη

]
= −〈Sα

ν (0)Sβ
ν (t)
〉 = 0. (B6)

By using this result and from the Hamiltonian symmetry under
the product of a spin rotation by 2π/3 about the [111] direction
and an orbital rotation by the same angle along the direction
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perpendicular to the plane of the honeycomb lattice, we obtain〈
Sα

ν (0)Sβ
ν (t)
〉 = δαβ

〈
Sz

ν(0)Sz
ν(t)
〉

(B7)

for general values of α and β.
We consider now the spin-spin correlator (B1) for r and r ′

belonging to different sublattices with the same parity (ν �=
ν ′ and ν + ν ′ even). For any diagonal component (μ = ν),
it is easy to verify that at least one of the three symmetry
transformations, Ra , Rb, or Rc, changes the sign of only one
of the two spin operators:

R†
ηS

α
ν Rη = ±Sα

ν , and R†
ηS

α
ν ′Rη = ∓Sα

ν ′ . (B8)

Here η = a,b, or c denotes the transformation that satisfies
(B8). Note that R†

η = Rη. Once again, following the same
procedure as in Eq. (B6), we obtain〈

Sα
ν (0)Sα

ν ′ (t)
〉 = 0. (B9)

By using a similar procedure, we can demonstrate that three,
out of the six, off-diagonal correlators between different
sublattices with the same parity are also equal to zero:〈

Sx
1 (0)Sy

3 (t)
〉 = 〈Sy

1 (0)Sz
3(t)
〉 = 〈Sz

1(0)Sx
3 (t)
〉 = 0,〈

Sx
1 (0)Sz

5(t)
〉 = 〈Sz

1(0)Sy

5 (t)
〉 = 〈Sy

1 (0)Sx
5 (t)
〉 = 0,〈

S
y

2 (0)Sz
4(t)
〉 = 〈Sz

2(0)Sx
4 (t)
〉 = 〈Sx

2 (0)Sy

4 (t)
〉 = 0,〈

S
y

2 (0)Sx
6 (t)
〉 = 〈Sx

2 (0)Sz
6(t)
〉 = 〈Sz

2(0)Sy

6 (t)
〉 = 0. (B10)

We note that 〈Sα
r (0)Sβ

r ′(t)〉 = 0 implies 〈Sβ

r ′(0)Sα
r (t)〉 = 0.

Similarly, using the symmetries Ra , Rb, and Rc, we can
demonstrate that〈

Sx
1 (0)Sx

6 (t)
〉 = 〈Sz

1(0)Sz
6(t)
〉 = 〈Sx

1 (0)Sy

6 (t)
〉

= 〈Sy

1 (0)Sx
6 (t)
〉 = 〈Sz

1(0)Sy

6 (t)
〉

= 〈Sy

1 (0)Sz
6(t)
〉 = 0,〈

Sx
1 (0)Sx

2 (t)
〉 = 〈Sy

1 (0)Sy

2 (t)
〉 = 〈Sx

1 (0)Sz
2(t)
〉

= 〈Sz
1(0)Sx

2 (t)
〉 = 〈Sz

1(0)Sy

2 (t)
〉

= 〈Sy

1 (0)Sz
2(t)
〉 = 0,〈

S
y

1 (0)Sy

4 (t)
〉 = 〈Sz

1(0)Sz
4(t)
〉 = 〈Sx

1 (0)Sz
4(t)
〉

= 〈Sz
1(0)Sx

4 (t)
〉 = 〈Sx

1 (0)Sy

4 (t)
〉

= 〈Sy

1 (0)Sx
4 (t)
〉 = 0,〈

Sx
2 (0)Sx

1 (t)
〉 = 〈Sy

2 (0)Sy

1 (t)
〉 = 〈Sx

2 (0)Sz
1(t)
〉

= 〈Sz
2(0)Sx

1 (t)
〉 = 〈Sz

2(0)Sy

1 (t)
〉

= 〈Sy

2 (0)Sz
1(t)
〉 = 0,〈

S
y

2 (0)Sy

3 (t)
〉 = 〈Sz

2(0)Sz
3(t)
〉 = 〈Sx

2 (0)Sz
3(t)
〉

= 〈Sz
2(0)Sx

3 (t)
〉 = 〈Sx

2 (0)Sy

3 (t)
〉

= 〈Sy

2 (0)Sx
3 (t)
〉 = 0,〈

Sx
2 (0)Sx

5 (t)
〉 = 〈Sz

2(0)Sz
5(t)
〉 = 〈Sx

2 (0)Sy

5 (t)
〉

= 〈Sy

2 (0)Sx
5 (t)
〉 = 〈Sz

2(0)Sy

5 (t)
〉

= 〈Sy

2 (0)Sz
5(t)
〉 = 0,

= 〈Sz
6(0)Sx

5 (t)
〉 = 〈Sx

6 (0)Sy

5 (t)
〉

= 〈Sy

6 (0)Sx
5 (t)
〉 = 0. (B11)

It is clear then that the symmetries Ra , Rb, and Rc constrain
six components of the real-space spin structure factor to be
identically zero. The six components that vanish depend on
the two sublattices to which the vectors r and r ′ belong to.

APPENDIX C: MSR TREATMENT OF THE CLASSICAL
KITAEV MODEL

In the honeycomb Kitaev model, defined by

K
αβ

ij =
{
K α = β = 〈ij 〉
0 otherwise , (C1)

each component of a given spin is correlated with only one
component of one neighboring spin—the one it interacts with.
Thus,

(
G−1

0

)αβ

ij
=
⎧⎨⎩−iω + γ� α = β,i = j

γK α = β = 〈ij 〉
0 otherwise

, (C2)

from which we find that C0 becomes a 2 × 2 matrix, given by

C0(ω) = 1

2

∑
m=±

(
1 m

m 1

)
1

ω2 + γ 2(� + mK)2
. (C3)

Physically, this indicates that correlations decay at two charac-
teristic rates, as given by the two eigenvalues γ (� ± K). The
dynamic structure factor is obtained by taking the Fourier trans-
form, S(q,ω) = 3C11(ω) +∑δ eiq·δC12(ω), where δ denotes
the vectors connecting nearest neighbors. Evidently, for the
antiferromagnetic Kitaev model, correlations at q = 0 decay
only at the fast rate, γ (� + K), leading to a depletion in the
dynamic structure factor at low frequencies.

At finite g > 0, the infinite series in Eq. (15) becomes a
2 × 2 matrix equation, with

G0(ω) =
(−iω + γ� γK

γK −iω + γ�

)−1

, (C4)

while the self-energy calculation yields

(ω) = −g2K2 1

−iω + 2γ�

T

�2 − K2

(
� K

K �

)
. (C5)

Using Eq. (15), we obtain

C(ω) ≈ 1

2

∑
m=±1

(
1 m

m 1

)

× 2γ T∣∣−iω + γ (� + mK) + g2K2T

�2−K2
�+mK

−iω+2γ�

∣∣2 . (C6)

We obtain the dynamic structure factor by Fourier transforming
this result (see Fig. 18). Note, for example, that only the
m = 1 term contributes to the dynamic structure factor at
q = 0, which is suppressed at low frequencies for the AFM
Kitaev, K > 0. Evidently, the self-energy, Eq. (C5), is larger
for m = 1, producing a precession peak at finite ω, where the
low-frequency correlations are suppressed.

APPENDIX D: DETAILS OF THE ED CALCULATION

When every eigenvalue {Eν} and eigenvector {|ν〉} of the
Hamiltonian H are known, the Green’s function at a finite
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Γ

ω
/K

Γ

ω
/K

FIG. 18. Dynamic structure factor as obtained in Eq. (C6), for
(a) the AFM Kitaev K > 0 and (b) the FM Kitaev K < 0 models.
Here we used γ = 0.25, � = 1.05K , and g2T = 0.1K .

temperature β−1 is given as

GAB
β (ω) =

∑
ν,μ

e−βEν

Z(β)

〈ν|A†|μ〉〈μ|B |ν〉
ω + iη + Eν − Eμ

, (D1)

where Z is the partition function of the system defined
as Z(β) =∑ν e−βEν . For later use, we rewrite the above
expression of GAB

β as

GAB
β (ω) =

∑
ν

e−βEν

Z(β)
〈ν|A† 1

ω + iη + Eν − HB |ν〉. (D2)

Here, we reformulate Eq. (D2) with a typical pure state
[30,31,38–42] |ψβ〉 to avoid using the whole set of Eν and
|ν〉. First, we note that the normalized typical state is naively
expected to behave as

|ψβ〉 ≈
∑

ν

eiϕν
e− β

2 Eν

√
Z(β)

|ν〉, (D3)

where ϕν ∈ [0,2π ) are random numbers. By introducing a
projection operator,

P̂ν = |ν〉〈ν|, (D4)

we rewrite the formula based on a canonical ensemble,
Eq. (D2), as

GAB
β (ζ ) ≈

∑
ν

〈ψβ |P̂νA
† 1

ζ + Eν − HBP̂ν |ψβ〉. (D5)

Thus far, the exact projection operator P̂ν requires the whole
set of |ν〉.

The important step is to find an efficient implementation
of the projection operator P̂ν . Although there is no O(NF)
implementation of the exact P̂ν in the literature as far as we
know, where NF is the dimension of the Fock space, there is a
filter operator [43–46] that constructs equi-energy shells and
is realizable with the numerical cost of O(NF) by employing
the shifted Krylov method [47], as follows.

The filter operator [43] is defined by integrating the resol-
vent of Ĥ along a contour Cγ,ρ defined by z = ρeiθ + γ with
0 � θ < 2π as

P̂γ,ρ = 1

2πi

∮
Cγ,ρ

dz

z − H . (D6)

If the filter operator is applied to an arbitrary wave function
|φ〉 =∑ν dν |ν〉, the operator filters the eigenvectors with the
eigenvalues Eν �∈ (γ − ρ,γ + ρ). When a small γ limit is
taken, the filter operator realizes a microcanonical ensemble.
The filter operator is practically implemented as a Riemann
sum [44,45]. The discretized filter operator is defined as

P̂γ,ρ,M = 1

M

M∑
j=1

ρeiθj

ρeiθj + γ − H , (D7)

where θj = 2π (j − 1/2)/M . Multiplication of P̂γ,ρ,M to a
wave function is simply realized by the shifted Krylov subspace
method, while it is hardly achievable by the standard Lanczos
algorithm.

By introducing an appropriate energy grid measured from
the low-energy onset Eb in energy axis,

Em = Eb + (2m + 1)ε, (D8)

the set of the filter operators {P̂Em,ε,M} with the discretization
parameters,

δ = (Eb,ε,M), (D9)

indeed replace the projection operators {P̂n}. The filtered
typical state given by∣∣φm

β,δ

〉 = P̂Em,ε,M |φβ〉 (D10)

is a random vector residing in an equi-energy shell (Em − ε,

Em + ε), which corresponds to a microcanonical ensemble.
A representation of the Green’s function is thus achieved

by employing the filtered typical pure states {|ψm
β,δ〉} as

G̃AB

β,δ
(ζ ) =

L−1∑
m=0

〈
ψm

β,δ

∣∣A† 1

ζ + Em − HB
∣∣ψm

β,δ

〉
. (D11)

After taking appropriate limits and average over the distribu-
tion of the initial random vectors of the typical pure states,
we indeed replace the canonical ensemble prescription by the
typical pure state formula. By setting ζ = ω + iη and

A = B = Ŝα
+ Q ≡ N−1/2

∑
�

e+i Q·r�Sα
� , (D12)

in Eq. (D11) we obtain the dynamical spin structure factor at
a momentum Q and a frequency ω as

S̃
β,δ( Q,ω) = − 1

π
Im
∑

α=x,y,z

L−1∑
m=0

〈
ψm

β,δ

∣∣Sα
− Q

× 1

ω + iη + Em − HSα
+ Q

∣∣ψm

β,δ

〉
, (D13)

where Sα
� (α = x,y,z) is an S=1/2 spin operator.

In the present paper, we set Eb in Eq. (D9) as Eb = −8.6
(< E0  −8.57) for the 24-site cluster of the � model.
The distance among the energy grid points 2ε is set as
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(Ecut − Eb)/L, where L = 128 and Ecut is chosen depending
on T as Ecut = max{min{|Eb|,T ln 1014 + Eb},4}. A random
vector is chosen as a typical pure state |ψ0〉 at infinite temper-
ature. Then, a typical pure state at finite inverse temperature β

is given by |ψβ〉 = e−βH/2|ψ0〉/〈ψ0|e−βH|ψ0〉.

APPENDIX E: HIGH-TEMPERATURE EXPANSION

Here, a high-temperature expansion (small β expansion) of
static spin correlations is obtained up to third order of β. Within
the language of thermal pure quantum states [31] one can write
the finite-temperature expectation value of an operator O as

〈O〉 = E
[(∑

ν c∗
ν〈ν|)e−βH/2Oe−βH/2

(∑
μ cμ|μ〉)]

E
[(∑

ν c∗
ν〈ν|)e−βH

(∑
μ cμ|μ〉)] , (E1)

where {cν} is a set of random complex numbers that satisfy
the normalization

∑
ν |cν |2 = 1 and the average E[· · · ] is

taken over the probability distribution of the random complex
numbers. The denominator is estimated as

E

[(∑
ν

c∗
ν〈ν|
)

e−βH

(∑
μ

cμ|μ〉
)]

= 1 + β2

2NF
tr[H2] + β4

24NF
tr[H4] + O(β6), (E2)

where NF is the Fock space dimension andE[c∗
νcμ] = δν,μ/NF

is used. Then, the numerator is estimated by expanding it with
respect to β. The first term is

E

[(∑
ν

c∗
ν〈ν|
)

O

(∑
μ

cμ|μ〉
)]

=
∑
ν,μ

E[c∗
νcμ]〈ν|O|μ〉

= 1

NF

∑
ν

〈ν|O|ν〉 = 1

NF
tr[O]. (E3)

The higher-order terms are given by

(2nd term) = − β

2NF
tr[OH + HO], (E4)

(3rd term) = β2

4NF
tr

[
1

2
OH2 + HOH + 1

2
H2O

]
, (E5)

(4th term) = − β3

8NF
tr

[
1

6
OH3 + 1

2
HOH2

+ 1

2
H2OH + 1

6
H3O

]
. (E6)

When O is a spin-spin correlation defined by∏
� (Sx

� )n�x (Sz
� )n�y (Sz

� )n�z (n�α = 0,1), tr[O] = 0 or, at least,
tr[O] � NF for

∑
�,α n�α �= 0, because tr[O]/NF is the

expectation value 〈O〉 at β = 0. Only if O is the identity
matrix, tr[O] = NF.

1. yx correlation for nearest-neighbor z bond

The high-temperature expansion of 〈Sy

0 Sx
r 〉 for the nearest-

neighbor z bonds is given as follows. The lowest order of a

2

3

4 5

6

1z

yx

z

xy

FIG. 19. Site indices used in calculations of spin correlations.

finite tr[HmS
y

2 Sx
1Hn]/NF (see Fig. 19 for the site indices) is

given by

�S
y

2 Sx
1 × S

y

2 Sx
1 = �

16
. (E7)

When we set O = S
y

2 Sx
1 in Eq. (E4),

(2nd term) = −β�

16
. (E8)

2. zz correlation for nearest-neighbor z bond

The high-temperature expansion of 〈Sz
0S

z
r 〉 for the nearest-

neighbor z bonds is given as follows. The lowest order of a
finite tr[HmSz

2S
z
1Hn]/NF (see Fig. 19 for the site indices) is,

for example, given by

�2Sz
2S

z
1S

x
2 S

y

1 S
y

2 Sx
1 = �2

64
. (E9)

Then, if we set O = Sz
2S

z
1 in Eqs. (E4) and (E5),

(2nd term) = 0, (E10)

(3rd term) = β2�2

64
. (E11)

3. zz correlation for third nearest neighbor

The high-temperature expansion of 〈Sz
0S

z
r 〉 for the third-

nearest-neighbor pairs across hexagons is given as follows.
The lowest order of a finite tr[HmSz

3S
z
6Hn]/NF (see Fig. 19 for

the site indices) is, for example, given by

�3Sz
3S

z
6 × Sz

3S
y

2 × S
y

2 Sx
1 × Sz

1S
z
6 = �3

256
, (E12)

or

�3Sz
3S

z
6 × Sz

3S
x
4 × Sx

4 S
y

5 × S
y

5 Sz
6 = �3

256
. (E13)

Then, if we set O = Sz
3S

z
6 in Eqs. (E4)–(E6),

(2nd term) = 0, (E14)

(3rd term) = 0, (E15)

(4th term) = 3�3β3

384
. (E16)
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