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Magnetic oscillations of in-plane conductivity in quasi-two-dimensional metals
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We develop the theory of transverse magnetoresistance in layered quasi-two-dimensional (Q2D) metals. Using
the Kubo formula and harmonic expansion, we calculate intralayer conductivity in a magnetic field perpendicular
to conducting layers. The analytical expressions for the amplitudes and phases of magnetic quantum oscillations
(MQO) and of the so-called slow oscillations (SO) are derived and applied to analyze their behavior as a function
of several parameters: magnetic field strength, interlayer transfer integral, and Landau-level width. Both the MQO
and SO of intralayer and interlayer conductivities have approximately opposite phase in weak magnetic field and
the same phase in strong field. The amplitude of SO of intralayer conductivity changes sign at ωcτ0 = √

3. There
are several other qualitative differences between magnetic oscillations of in-plane and out-of-plane conductivity.
The results obtained are useful to analyze experimental data on magnetoresistance oscillations in various strongly
anisotropic Q2D metals.
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I. INTRODUCTION

Magnetic quantum oscillations (MQO) are powerful tools
for studying electronic dispersion and Fermi-surface (FS)
geometry of metallic compounds [1–3]. In recent decades it
has been actively used to investigate the electronic structure
of strongly anisotropic layered compounds, including organic
metals (see, e.g., Refs. [4–9] for reviews), high-temperature
superconductors [10–19] (reviewed in Refs. [20–22]), etc.
In layered compounds magnetoresistance (MR) has several
new and useful qualitative effects, which do not appear in
almost isotropic three-dimensional (3D) metals. The theory
of magnetoresistance in two-dimensional (2D) metals [23,24],
extensively developed in connection to quantum Hall effect,
is also inapplicable to quasi-2D (Q2D) metals; even a weak
interlayer hopping changes drastically the 2D localization
effects and most electronic properties.

The FS of layered metals, e.g., corresponding to the electron
dispersion in Eq. (3), is a warped cylinder. Such a FS has two
close extremal cross-section areas S1 and S2 by the planes in
k space perpendicular to magnetic field B, which give two
close MQO frequencies F1,2 = S1,2/(2πeh̄). According to the
standard theory [1–3], the observed MQO are given by the
sum of oscillations with these two frequencies and almost
equal amplitudes, which gives the beats of MQO amplitude
[3], typical to Q2D metals. The beat frequency

�F ≡ F1 − F2 ≈ 2tzBz/(h̄ωc) (1)

can be used to measure the interlayer transfer integral tz ≈
�F h̄ωc/(2Bz), while its nontrivial dependence on the tilt angle
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θ of magnetic field (with respect to the normal to conducting
layers), given by [25]

�F (θ )/�F (0) = J0(kF d tan θ ), (2)

allows one to extract the in-plane Fermi momentum kF . As
follows from Eq. (2), the beat frequency �F (θ ) goes to
zero in the so-called Yamaji angles θYam, given by the zeros
of the Bessel function: J0(kF d tan θYam) = 0. The angular
oscillations of the effective interlayer transfer integral tz(θ ),
given by Eq. (2), also result in the angular magnetoresistance
oscillations (AMRO), first discovered [26] in Q2D organic
metal β-(BEDT-TTF)2IBr2 in 1988 and then actively stud-
ied both in Q2D and quasi-one-dimensional organic metals
[4–9,27–30]. The interplay between AMRO and MQO is also
nontrivial [30,31] and leads to some new effects, such as “false
spin zeros” [31].

Another interesting feature of magnetoresistance in Q2D
metals is the so-called slow oscillations (SO) [32,33]. These
oscillations come from the mixing of two close frequencies
F1 and F2 and have the frequency equal to the doubled beat
frequency in Eq. (1). Similarly to AMRO and contrary to the
usual MQO, the SO are not sensitive to the smearing of the
Fermi level, because they contain only the difference of Fermi
levels at different kz given by tz. Hence, the SO are usually
much stronger than the true MQO and can be observed at
much higher temperature [32,34]. These slow oscillations were
first observed in layered organic metal β-(BEDT-TTF)2IBr2

and erroneously interpreted as MQO from small FS pock-
ets [26,35]. Similar oscillations have also been observed in
other organic conductors, e.g., β-(BEDT-TTF)2I3 [36,37],
κ-(BEDT-TTF)2Cu2(CN)3 [38], and κ-(BEDT-TSF)2C(CN)3

[39], while the band-structure calculations [6] do not predict
the corresponding small FS pockets in these compounds. The
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kz dispersion is not the only possible source of SO. In fact,
any splitting of the electron dispersion, leading to two close FS
extremal cross-section areas, produces slow oscillations of MR
with frequency given by the double difference between these
FS areas. For example, the bilayer crystal structure, common in
many cuprate high-Tc superconductors and in numerous other
strongly anisotropic materials, produces such splitting of the
electron spectrum and the corresponding SO [34,40,41].

The SO turn out to be quite useful to study the parameters
of electronic structure of layered metals. First, their frequency
FSO = 2�F gives the difference between the two close ex-
tremal FS cross-section areas. Depending on the origin of SO,
this gives the strength of FS warping due to kz dispersion
and the value of the interlayer transfer integral tz according
to Eq. (1), the bilayer splitting, or another type of splitting
of the electron spectrum. Second, the Dingle temperature T ∗

D

of SO is considerably less than the Dingle temperature TD of
MQO [32], because at low temperature it only contains the
contribution from short-range impurities and does not contain
the variations of the Fermi level due to long-range spatial
inhomogeneities that damp MQO. Hence, the comparison of
the Dingle temperatures of SO and MQO gives information
about the type of disorder. In typical samples of organic metal
β-(BEDT-TTF)2I3 the ratio TD/T ∗

D ≈ 5.3 � 1 [32], which
makes SO much stronger than MQO at any temperature. Third,
if SO are due to kz dispersion, the angular dependence of SO
frequency gives the in-plane Fermi momentum kF according
to Eq. (2).

In addition to SO, in Q2D metals there is another notable
effect of a phase shift of the beats of MQO of interlayer
conductivity as compared to magnetization [42]. This phase
shift increases with the increase of magnetic field. The ex-
planation and calculation of this effect [33,42], done using
the Boltzmann transport equation and the Kubo formula, have
shown that, similarly to SO, it appears when the terms ∼h̄ωc/tz
are not neglected. Hence, in almost isotropic 3D metals, where
tz is of the order of Fermi energy EF � h̄ωc, both effects
are negligibly small. However, in Q2D conductors, where
h̄ωc/tz ∼ 1, both effects can be strong.

The rigorous theory of SO was developed only for the
interlayer magnetoresistance [32,33]. However, their quite
generic origin and various experiments [12,19,34] suggest that
similar SO must also be observed in the in-plane electronic
transport. A semiphenomenological description of in-plane
SO, proposed in Refs. [34,41], does not contain the calculation
of in-plane diffusion coefficient D|| but only assumes that its
oscillations have the same phase as the oscillations of the
density of states (DOS) due to the Landau quantization. Even
this is not generally valid, as we show below. In addition, in
Refs. [34,41,43] the amplitude of MQO of D||, which affects
the amplitude and even the sign of SO of intralayer MR, has
not been calculated.

In this paper we calculate the in-plane MR in layered
Q2D metals using the Feynman diagram technique. This
calculation shows some qualitative differences of intralayer
and interlayer MR. For example, the amplitude of SO turns
out to have nonmonotonic magnetic field dependence and may
even change the sign. The phase shifts of MQO and their beats
in Q2D metals also differ for intralayer and interlayer MR.

II. THE MODEL AND BASIC FORMULAS

Let us consider layered Q2D metals with electron dispersion

ε3D(k) = h̄2
(
k2
x + k2

y

)
/(2m∗) − 2tz cos(kzd), (3)

where the interlayer transfer integral tz is assumed to be
independent of electron momentum [44]. In a magnetic field
B along the z axis, i.e., perpendicular to conducting layers, its
electron dispersion becomes

ε(n, kz) = h̄ωc

(
n + 1

2

) − 2tz cos(kzd), (4)

where ωc = eBz/(m∗c) is cyclotron frequency, m∗ is effective
electron mass, e is the electric charge, and c is the speed of
light. The diagonal component of the in-plane conductivity
tensor σij (ε) is given by [28,48–51]

σxx(ε) = e2h̄

πV

+∞∑
{n, n′}=0

∑
kx , kz

|〈n′, kx, kz|vx |kz, kx, n〉|2

× ImGR
n′ (kx, kz, ε)ImGR

n (kx, kz, ε), (5)

where V = LxLyLz is the volume, which is canceled after
the summation over momenta, ImGR

n represents the imaginary
part of the retarded electron Green’s function GR

n , and vx

is the electron velocity along x axis. The matrix elements
〈n′, kx, kz|vx |kz, kx, n〉 of electron velocity vx = px/m∗ in the
basis of the Landau-gauge quantum numbers {kx, kz, n} of an
electron in magnetic field are given by [28]

〈n′, kx, kz|vx |kz, kx, n〉
= −ih̄√

2m∗lH
(
√

n′ + 1δn,n′+1 −
√

n′δn,n′−1), (6)

where lH = √
h̄c/(eBz) = √

h̄/(m∗ωc) is the magnetic length.
Equation (6) can be checked by a direct calculation. The square
of this matrix element of electron velocity is

|〈n − 1, kx, kz|vx |kz, kx, n〉|2 = h̄2n

2m2∗l
2
H

. (7)

The summation over momenta in Eq. (5) can be replaced by
the integration according to∑

kx

=
∫ Ly/l2

H

0

dkxLx

2π
,

∑
kz

=
∫ π/d

−π/d

dkzLz

2π
. (8)

In the Born approximation or even in the self-consistent
Born approximation (SCBA) the self-energy part R(ε) from
short-range impurity scattering depends only on electron en-
ergy ε and does not depend on electron quantum numbers
[33,52–55], and the electron Green’s function does not depend
on kx :

ImGR
n (kx, kz, ε) = ImGR

n (kz, ε)

= ImR(ε)

[ε − εn + 2tz cos(kzd) − ReR(ε)]2 + [ImR(ε)]2
,

(9)

where εn = h̄ωc(n + 1/2). Substituting Eqs. (7)–(9) in Eq. (5)
one obtains the expression for diagonal conductivity in the

045118-2



MAGNETIC OSCILLATIONS OF IN-PLANE … PHYSICAL REVIEW B 98, 045118 (2018)

SCBA approximation:

σxx(ε) = e2(h̄ωc)2�2

4π3h̄

∫ π/d

−π/d

dkz

×
+∞∑
n=0

n{[εn+1 − ε∗ − 2tz cos(kzd)]2 + �2}−1

[εn − ε∗ − 2tz cos(kzd)]2 + �2
,

(10)

where we introduced the notations

ε∗ ≡ ε − ReR(ε), � ≡ |ImR(ε)|. (11)

Introducing the dimensionless quantities

α ≡ α(ε∗) ≡ 2πε∗/(h̄ωc), a ≡ α(ε∗) + λ cos(kzd), (12)

λ = 4πtz/(h̄ωc), γ = 2π�/(h̄ωc), (13)

we can rewrite the expression (10) for diagonal conductivity
as

σxx(ε) = e2γ 2

πh̄

∫ π/d

−π/d

dkz

+∞∑
n=0

f (n), (14)

where

f (n) ≡ n
{[

2π
(
n − 1

2

) − a
]2 + γ 2

}−1[
2π

(
n + 1

2

) − a
]2 + γ 2

. (15)

III. HARMONIC EXPANSION OF CONDUCTIVITY

The sum over the Landau-level (LL) index n in Eq. (14) can
be transformed to the sum over harmonics using the Poisson
summation formula [56], given by

+∞∑
n=0

f (n) =
+∞∑

p=−∞

∫ +∞

h

dnf (n) exp(2πipn), (16)

where the number h ∈ (−1, 0). In the limit of strong harmonic
damping, i.e., when the factor RDJ0(λ)  1, where RD =
exp(−γ ) ≈ RD0 = exp(−γ0) = exp[−2π2kBTD/(h̄ωc)] is
the Dingle factor, we may keep only the zeroth and first
harmonics in this expansion:

σxx(ε) ≈ σ (0)
xx (ε) + σ (1)

xx (ε), (17)

where the zeroth-harmonic term

σ (0)
xx (ε) = e2γ 2

πh̄

∫ π/d

−π/d

dkz

∫ +∞

−1/2
dnf (n), (18)

and the first-harmonic term

σ (1)
xx (ε) = 2

e2γ 2

πh̄

∫ π/d

−π/d

dkz

∫ +∞

−1/2
dnf (n) cos (2πn). (19)

The integrals in Eqs. (18) and (19) simplify in the limit
when the number nF of filled LLs is large, i.e., when
a ∼ EF /(h̄ωc) ≈ nF � 1, where EF is the Fermi energy.
Then, after changing the integration variable from n to l =
2π (n + 1/2) − a, we can also change the lower integration
limit from −a to −∞, because all integrals converge at a lower

integration limit. The integral over n in Eq. (18) becomes∫ +∞

−1/2
dnf (n) ≈

∫ +∞

−∞

dl(l + a − π )/(2π )2

(l2 + γ 2)[(l − 1)2 + γ 2]

= a

8πγ (γ 2 + π2)
, (20)

and substituting this in Eq. (18) we obtain

σ (0)
xx (ε) = e2γ

8π2h̄

∫ π/d

−π/d

dkz

λ cos(kzd) + α

γ 2 + π2

= e2

4πh̄d

αγ

γ 2 + π2
. (21)

Similarly, at a � 1 the integration over n in expression (19)
for σ (1)

xx (ε) gives∫ +∞

−1/2
dnf (n) cos (2πn) ≈ aγ cos(a)

8π (γ 2 + π2)
exp(−γ ). (22)

Substituting this and Eq. (12) in Eq. (19), we obtain the integral
over kz only, which can be easily taken as

σ (1)
xx (ε) = − e2γ

4π2h̄

∫ π/d

−π/d

dkz

α(ε∗) + λ cos(kzd)

γ 2 + π2

× cos[α(ε∗) + λ cos(kzd)] exp(−γ )

= − e2α

2πh̄d

γ exp(−γ )

γ 2 + π2

[
J0(λ) cos (α)−λ

α
J1(λ) sin(α)

]
,

(23)

where to integrate over kz we used the identities [57,58]∫ π

−π

dn exp[ia cos(n)] = 2πJ0(a), (24)∫ π

−π

dn cos(n) exp[ia cos(n)] = 2πiJ1(a). (25)

If λ/α ≈ 2tz/EF  1, in Eq. (23) one can neglect the last
term in the square brackets, but at 2tz/EF ∼ 1 it must be kept.
This term gives the phase shift of MQO of conductivity and
leads to the finite amplitude of MQO even in the beat nodes
[see Eq. (41) below], which can be used to measure the ratio
2tz/EF .

In the SCBA for pointlike impurity scattering the electron
self-energy is proportional to the Green’s function in the
coinciding points G(r, r, ε), and its oscillations are given by
[33]

R(ε)

�0
= A(ε) − i − 2i

+∞∑
p=1

(−1)p exp {p[iα(ε∗) − γ ]}J0(λp),

(26)

where �0 is a nonoscillating part of ImR(ε), related to mean
free time τ0 = h̄/(2�0) without magnetic field, and A(ε) is
a slowly varying function of energy ε, which only shifts the
chemical potential. Hence, A(ε) does not affect the observed
conductivity and is hereinafter neglected.

Below we find explicitly all the terms which contribute to
MQO and SO in the lowest order in the small factor RDJ0(λ).
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A. Contribution from the zeroth-harmonic term σ (0)
xx

Equation (21) is an oscillating function of ε, because it
contains oscillating functions γ (ε) and α(ε∗). Keeping only
zeroth and first harmonics in Eq. (26) we obtain

γ = γ (ε) ≈ γ0[1 − 2 exp(−γ ) cos(α)J0(λ)], (27)

and α = α(ε∗) also contains oscillations coming from
ReR(ε) in Eq. (26). However, the relative amplitude of
α(ε∗) oscillations is much smaller, namely, by a factor γ0/α ≈
�0/EF  1, than that of γ (ε), although their absolute am-
plitudes are comparable. Hence, in Eq. (21) the oscillations
of α(ε∗) can be neglected. Note that the products cos (α)e−γ

and sin (α)e−γ do not give the SO in the second order in RD .
Indeed, using Eq. (26) and introducing the small parameter

γ1 ≡ 2γ0RDJ0(λ)  1, (28)

in the second order in RD we obtain

cos(α) ≈ cos[α + γ1 sin(α)] ≈ cos[α] − γ1 sin2(α), (29)

where α = 2πε∗/(h̄ωc) = 2πEF /(h̄ωc) is the value of α

averaged over the MQO period, and

exp(−γ ) ≈ RD exp[γ1 cos(α)] ≈ RD[1 + γ1 cos(α)]. (30)

In the second order in RD the product

cos(α) exp(−γ ) ≈ RD{cos[α] + γ1[cos2(α) − sin2(α)]}
= RD(cos[α] + γ1 cos[2α]) (31)

does not contain the constant term giving SO but only the
second harmonics cos [2α]. Similarly,

sin (α) ≈ sin[α + γ1 sin(α)] ≈ sin[α] + γ1 cos(α) sin(α)
(32)

and sin (α) exp(−γ ) do not contain constant or SO terms in the
second order in RDJ0(λ). Hence, in the second order in RD ,
Eq. (27) simplifies to

γ ≈ γ0[1 − 2 exp(−γ0)J0(λ) cos(α)]. (33)

Substituting Eq. (33) in Eq. (21), expanding up to the second
order in RDJ0(λ), and replacing α with α we obtain [59]

σ (0)
xx (ε) = σ (0)

xx (ε) + σ (0)
xx (ε)QO + σ (0)

xx (ε)SO, (34)

where the nonoscillating Drude conductivity

σ (0)
xx (ε) = σ (0)

xx ≈ e2

4πh̄d

αγ0

γ 2
0 + π2

, (35)

the fast quantum oscillations of conductivity come from the
first-order term in RDJ0(λ) and are given by

σ (0)
xx (ε)QO ≈ 2σ (0)

xxRDJ0(λ)
γ 2

0 − π2

γ 2
0 + π2

cos (α), (36)

and the slow oscillations of conductivity appear in the second
order in RDJ0(λ):

σ (0)
xx (ε)SO ≈ 2σ (0)

xx

γ 2
0

(
γ 2

0 − 3π2
)(

γ 2
0 + π2

)2 R2
DJ 2

0 (λ), (37)

where we have used the identity cos2 (α) = [1 + cos (2α)]/2
and neglected the second harmonics of MQO, i.e., omitted
terms ∝ cos (2α).

B. Contribution from the first-harmonic term σ (1)
xx and total

expressions for magnetic oscillations

To find the fast quantum oscillations of σ (1)
xx (ε) in the lowest

order in RDJ0(λ) it is sufficient to replace γ by γ0 and α(ε∗)
by its average value α in Eq. (23):

σ (1)
xx (ε)QO ≈ −2σ (0)

xxRD

[
J0(λ) cos (α) − λ

α
J1(λ) sin(α)

]
.

(38)

Then, the sum of Eqs. (36) and (38) gives the total fast quantum
oscillations in the first order in RDJ0(λ):

σ QO
xx (ε) = σ (0)

xx (ε)QO + σ (1)
xx (ε)QO

≈ −2σ (0)
xxRD

[
2π2J0(λ)

γ 2
0 + π2

cos (α) − λ

α
J1(λ) sin(α)

]
.

(39)

We transform this trigonometric expression to

σ QO
xx (ε) ≈ −AQO

xx cos(α + �φQO), (40)

where the amplitude of MQO is given by

AQO
xx = 2σ (0)

xxRD

√√√√ 4π4(
γ 2

0 + π2
)2 J 2

0 (λ) +
(

λ

α

)2

J 2
1 (λ) (41)

and a phase shift of MQO is

�φQO = arccos

⎡⎣ 2π2J0(λ)α√
[2π2J0(λ)α]2 + [

λJ1(λ)
(
γ 2

0 + π2
)]2

⎤⎦.

(42)

This phase shift jumps by ∼π and changes the sign of σ QO
xx at

certain values of magnetic field, corresponding to the beats of
MQO at J0(λ) = 0. The second term in the denominator makes
this phase jump smoother and is missing in phenomenological
theories [34,41].

The derived expressions (39)–(42), describing the MQO
of in-plane conductivity in the lowest nonvanishing order in
RDJ0(λ), have several important features. Due to the second
term in Eq. (39), the MQO amplitude AQO

xx , given by Eq. (41)
and plotted in Fig. 1, is nonzero even at beat nodes J0(λ) = 0,
corresponding to the minima of MQO amplitude, where it
increases with the increase of ratio λ/α = 2tz/EF . At maxima
the MQO amplitude AQO

xx is proportional to the square of elec-
tron velocity and, for a parabolic in-plane electron dispersion,
to the Fermi energy EF , in agreement with the standard theory
[3] [see Fig. 1(a)]. Equations (39) and (41) suggest that at
γ0 � π , in addition to the standard Dingle factor, the MQO
are damped by the factor 1/(γ 2

0 + π2). We illustrate all this in
Fig. 1 by plotting the amplitude AQO

xx as a function of 1/λ =
Bz/(2π�F ) for three different ratios of tz/EF . In Fig. 1(a) we
keep tz fixed and vary EF , which may correspond to different
Fermi-surface pockets or Fermi-surface reconstruction, and
in Fig. 1(b) we keep EF fixed and vary tz. In all figures the
MQO amplitude increases with the increase of magnetic field
because of the Dingle factor. In Fig. 1(a) at the beat nodes
the MQO amplitude is the same for all three curves because
E−1

F in the factor tz/EF is compensated by the overall factor
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FIG. 1. The amplitude of quantum oscillations of in-plane diagonal conductivity for three different ratios tz/EF . (a) The amplitude of
quantum oscillations of normalized in-plane diagonal conductivity AQO

xx d/G0 given by Eq. (41) as a function of 1/λ ∼ Bz [here G0 = e2/(πh̄)
is the quantum of conductance] for three different values of Fermi energy EF . The positions of local minima of MQO amplitude (beat nodes)
do not depend on Fermi energy EF , but the amplitude of MQO amplitude does according to Eq. (41) and discussion after Eq. (42). The taken
parameters are m∗ = 0.04me, �0 = 14.5 K , tz = 10 meV, EF = {5, 10, 20}tz. (b) The same as in panel (a) at fixed EF but for three different
values of tz. The values at local minima of MQO depend on tz. The taken parameters are m∗ = 0.04me, �0 = 14.5 K , tz = {1/5, 1/15, 1/20}EF ,
EF = 200 meV.

EF in σ (0)
xx . In Fig. 1(b) three different curves, corresponding

to various values of tz, also correspond to different magnetic
field strength, because we plotted AQO

xx as a function of 1/λ ∝
Bz/tz. Therefore, at low field the blue curve, corresponding
to tz = EF /5, is higher at MQO maxima. The second term in
Eq. (39) also results in additional phase shift in Eq. (42), which

depends on magnetic field via λ and γ0 and is essential only
near the beat nodes J0(λ) = 0, as illustrated in Fig. 2.

To find the slow oscillations of σ (1)
xx (ε) in the lowest (second)

order in RDJ0(λ) we need to expand γ in Eq. (23) according to
Eq. (33) and take into account oscillations of α. This expansion
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FIG. 2. Quantum oscillations of in-plane diagonal conductivity as compared to RD cos(α) and to the oscillating part ρosc of the DOS, where
ρosc ≡ −2ρ0 cos(α)RDJ0(λ). The phases of DOS and of σxx oscillations coincide everywhere except the proximity of beat nodes. The taken
parameters are m∗ = 0.04me, �0 = 14.5 K , tz = 20 meV, EF = 200 meV.

gives

σ (1)
xx (ε) − σ (1)

xx (ε)QO ≈ 4σ (0)
xx

π2 − γ 2
0

γ 2
0 + π2

R2
DJ0(λ)

× cos (α)

[
J0(λ) cos (α) − λ

α
J1(λ) sin(α)

]
, (43)

and the SO coming from this expression are given by

σ (1)
xx (ε)SO ≈ 2σ (0)

xx (ε)
π2 − γ 2

0

γ 2
0 + π2

R2
DJ 2

0 (λ). (44)

The total SO of diagonal in-plane conductivity are given by
the sum of Eqs. (37) and (44):

σ SO
xx (ε) ≈ 2π2σ (0)

xxR2
DJ 2

0 (λ)
π2 − 3γ 2

0(
γ 2

0 + π2
)2 . (45)

To summarize the calculations, the harmonic expansion [by the
parameter γ1 ≡ 2γ0RDJ0(λ)  1] of intralayer conductivity
σxx(ε) is given by the sum of three main terms:

σxx(ε) ≈ σ (0)
xx (ε) + σ QO

xx (ε) + σ SO
xx (ε), (46)

where the term σ (0)
xx (ε) corresponds to the nonoscillating part

of conductivity and is given by Eq. (35), σ QO
xx (ε) describes the

MQO of intralayer conductivity given by Eq. (39), and σ SO
xx (ε)

describes the slow oscillations of intralayer conductivity and
is given by Eq. (45).

C. Damping by temperature and sample inhomogeneities

As was shown in Refs. [32,33,41], the smearing of the
Fermi level by temperature and by long-range sample inho-
mogeneities damps only the fast MQO σ QO

xx (ε), and does not
affect the constant part σ (0)

xx (ε) or the SO σ SO
xx (ε). Indeed,

at finite temperature T conductivity σxx = σxx(T ) is given
by the integral of σxx(ε) over electron energy ε weighted
by the derivative of Fermi distribution function n′

F (ε) =
−1/{4T cosh2 [(ε − μ)/(2T )]} with the chemical potential
μ = EF :

σxx(μ, T ) =
∫

dε [−n′
F (ε)] σ (ε). (47)

Among the three terms in Eq. (46) only the second term σ QO
xx (ε),

describing MQO, is a rapidly oscillating function of electron
energy ε because of its dependence on α(ε). As a result of
the integration over ε, only this term acquires the additional
temperature damping factor

RT = [2π2kBT /(h̄ωc)]/ sinh[2π2kBT /(h̄ωc)], (48)

and the electron energy ε is replaced by the chemical potential
μ. The macroscopic spatial inhomogeneities smear the Fermi
energy along the whole sample. Hence, in addition to the
temperature smearing in Eq. (47), given by the integration
over electron energy ε, conductivity σ acquires the coordi-
nate smearing, given by the integration over Fermi energy
μ around its average value μ0 weighted by a normalized
distribution function D(μ) = D0[(μ − μ0)/W ] of width W :
σ = ∫

dμσ (μ)D(μ). Again, only the second term σ QO
xx , de-

scribing MQO, is a rapidly oscillating function of μ via α(μ),
and only this term acquires additional damping factor

RW =
∫

dxD0(x) cos [2πxW/(h̄ωc)] = RW [W/(h̄ωc)],

(49)
due to the sample inhomogeneities. This damping of MQO by
long-range sample inhomogeneities in layered organic metal
β-(BEDT-TTF)2IBr2 was shown to be much stronger than
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the damping by usual short-range impurities [32], making the
amplitude of SO much larger than that of MQO. The SO, given
by Eq. (45), do not depend on μ and, hence, are not damped
by the factor RW . This property makes the observation of SO
much easier than that of MQO. It was used in the alternative
interpretation [40,41] of the observed [10–19] MQO in YBCO
high-temperature superconductors.

D. Influence of electron spin on conductivity

All previous expressions are for spinless electrons. If we
take into account the spin splitting of Fermi level EF ±
1
2gμe|B| (g is the electron g factor, and μe is the Bohr
magneton) and sum expressions (35) for Drude conductivity
over both spin components, we simply multiply the spinless
result (35) by 2:

σ (0)
xx (ε) ≈ e2

2πh̄d

αγ0

γ 2
0 + π2

. (50)

For MQO σ QO
xx , given by Eq. (39), the sum of both spin

components gives

σ QO
xx (ε) ≈ −2σ (0)

xxRDRS

[
2π2J0(λ)

γ 2
0 + π2

cos (α) − λ

α
J1(λ) sin(α)

]
,

(51)

where the spin damping factor RS of MQO in quasi-2D metals
with tz  EF is RS = cos [πgm∗/(2me cos θ )] (me is the free-
electron mass).

The influence of spin splitting on SO depends on electron
dispersion and on the coupling between two spin components.
For the parabolic in-plane dispersion, given by Eq. (3), and in
the absence of any coupling between two spin components, the
Zeeman spin splitting only adds a factor of 2 to σ SO

xx , similar
to the Drude term. Indeed, the SO term in Eq. (45) does not
depend on energy, and the sum over two spin-split energy bands
only adds a factor of 2 to the final expression. However, for a
more complicated in-plane electron dispersion this simple con-
clusion may be violated. Moreover, in real compounds there
is often some coupling between two spin components due to
spin-dependent scattering, chemical-potential oscillations and
oscillating magnetostriction, or other effects. This coupling
between two spin components introduces additional terms to
SO, which may lead to the angular dependence of SO amplitude
and even to an analog of the spin-zero effect.

E. The limiting cases of large and small
interlayer transfer integrals tz

In this section we compare the results obtained with two
previously known limiting cases, namely, 2D and 3D cases.
The SO are specific to quasi-2D metals, being neglected in both
these limiting cases. In the 2D case, tz = 0, the SO have zero
frequency and, hence, do not exist. In 3D metals, where tz ∼
EF � h̄ωc, the SO may exist but have too small amplitude,
being less than MQO by a factor ∼RD

√
h̄ωc/(2π2tz)  1.

Hence, below we compare only the usual MQO of intralayer
conductivity.

In the 2D limiting case, taking tz = 0 and λ = 0 in Eq. (39),
we obtain the following expression for the MQO of intralayer

conductivity:

σ QO
xx (ε, tz = 0) ≈ −σ (0)

xxRD

4π2

γ 2
0 + π2

cos (α). (52)

It coincides with Eq. (2.15) of Ref. [60], where the quantum
transport in a 2D electron system under magnetic fields was
studied. Note that the amplitude of MQO in Eq. (2.15) of
Ref. [60] is twice larger than that in Eq. (2.16) of the same
work [60] or in Eq. (6.40) of Ref. [23], where the quantum
oscillations of Im or τ are neglected.

The limiting 3D case corresponds to large tz �
h̄ωc, i.e., λ � 1. In this limit one may use asymp-
totic expansions of the Bessel functions at large argu-
ment in Eq. (39): J0(λ) ≈ √

2/(πλ) cos(λ − π/4), J1(λ) ≈√
2/(πλ) sin(λ − π/4). Then Eq. (39) simplifies to

σ QO
xx (ε) ≈ −

(
23

πλ

)1/2

σ (0)
xxRD

[
2π2 cos (α)

γ 2
0 + π2

cos
(
λ − π

4

)
− λ

α
sin(α) sin

(
λ − π

4

)]
. (53)

In a strong magnetic field γ0  1, RD ≈ 1, and Eq. (53) in
terms of initial parameters reduces to

σ QO
xx (ε)

σ (0)
xx

≈ − 2

π

(
2h̄ωc

tz

)1/2

×
[

cos

(
2πEF

h̄ωc

)
cos

(
4πtz

h̄ωc

− π

4

)
− 2tz

EF

sin

(
2πEF

h̄ωc

)
sin

(
4πtz

h̄ωc

− π

4

)]
. (54)

We compare Eq. (54) with the expression obtained in Ref. [61]
(see Eq. (4) of Ref. [61]) and written in a more convenient form
in Eq. (90.22) of Ref. [62]:

(σxx)A =
∑

ex

+∞∑
l=1

(−1)lσ (l)
xx cos

{
l
cSex

eh̄Bz

± π

4

}
, (55)

where ex ≡ {min, max} means the extremal cross section of
the Fermi surface,

σ (l)
xx = 25/2π1/2(eh̄)1/2bex

c1/2B
3/2
z l1/2

∣∣∣∣∣ ∂2S

h̄2∂k2
z

∣∣∣∣∣
−1/2

ex

, (56)

and bex is the quantity bz(EF , kz ex(EF )) given by Eqs. (90.13)
and (90.15) of Ref. [62] and taken at points kz ex , corresponding
to Fermi-surface extremal cross sections. The “±” in Eq. (55)
means “−” for maximum and “+” for minimum of the function
Sex(kz) [63].

In our case there are two extremal cross sections over the
period 2π/d. These extremal cross-section areas of the Fermi
surface are

Sex = 2πm∗[EF + 2tz cos(kzd)]|ex = 2πm∗(EF ± 2tz). (57)

Their second derivatives at extremal points are

∂2S

h̄2∂k2
z

∣∣∣∣ex = −4πm∗d2tz

h̄2 cos(kzd)

∣∣∣∣
ex

= ∓4πm∗d2tz

h̄2 . (58)
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If we assume that bmax = bmin, which is valid at least if tz 
EF , the sum over extremal cross sections for l = 1 in Eq. (55)
can be simplified:∑

ex

cos

{
cSex

eh̄Bz

± π

4

}
= 2 cos

(
2πEF

h̄ωc

)
cos

(
4πtz

h̄ωc

− π

4

)
.

(59)
Using auxiliary Eqs. (56), (58), and (59) in Eq. (55), we find the
oscillating part of intralayer conductivity for the first harmonic
l = 1:

(
σ QO

xx

)
A

≈ −
√

25eh̄3b2
max

m∗cB3
z tzd

2
cos

(
2πEF

h̄ωc

)
cos

(
4πtz

h̄ωc

− π

4

)
.

(60)
From Eq. (90.15) on page 387 of Ref. [62] one can evaluate
the intralayer conductivity σxx averaged over the period of
magnetic oscillations:

(σxx)A = 2h̄

B2
z

∫ π/d

−π/d

b(EF , kz)dkz ≈ 4πh̄bmax

dB2
z

. (61)

Finally, gathering Eqs. (60) and (61), we find the ratio of
oscillating and nonoscillating parts:(

σ QO
xx

)
A

(σxx)A
≈ −

(
2h̄ωc

π2tz

)1/2

cos

(
2πEF

h̄ωc

)
cos

(
4πtz

h̄ωc

− π

4

)
.

(62)
This is twice smaller than in Eq. (54), because in the derivation
of Eqs. (55)–(62) the quantum oscillations of bex and, hence,
of Im are neglected. This extra factor of 2, arising from the
oscillations of Im, is similar to that in the 2D case discussed
above. If we neglected the MQO of Im, instead of Eq. (39)
we would use Eq. (38). Then, performing similar expansion as
in the derivation of Eqs. (53) and (54), from Eq. (38) we obtain
Eq. (62) in the lowest order in tz/EF .

IV. DISCUSSION

The calculations of intralayer conductivity in the previous
section shows that σxx(μ) can be divided into three parts:

σxx(μ, T ) ≈ σ (0)
xx (μ) + σ QO

xx (μ)RT RW + σ SO
xx (μ), (63)

where σ (0)
xx (μ) represents the nonoscillating part of conductiv-

ity given by Eq. (35), σ QO
xx (μ) describes the MQO of intralayer

conductivity given by Eq. (39), and σ SO
xx (μ) describes the

slow oscillations of intralayer conductivity given by Eq. (45).
The second term, representing MQO, acquires two damping
factors RT and RW from temperature and macroscopic sample
inhomogeneities.

The quantum oscillations of interlayer conductivity
σ QO

zz (μ), instead of being given by Eq. (39), are given by
Eq. (18) of Ref. [33], which can be rewritten as

σ QO
zz (μ) ≈ 2σ (0)

zz cos (α)RD

[
J0(λ) − 2

λ
(1 + γ0)J1(λ)

]
. (64)

Let us compare Eq. (39) for σ QO
xx with Eq. (64) for σ QO

zz . They
look similar but have several important differences.

(i) The total sign “−” is responsible for the phase shift
π of MQO of in-plane σxx with respect to interlayer σzz

conductivity.

(ii) The amplitude of MQO of σxx , given by Eq. (41), is
nonzero even in the beat nodes.

(iii) The additional field-dependent phase shift of MQO of
intralayer conductivity is given by Eq. (42).

(iv) The expression in the square brackets in Eq. (64),
responsible for the amplitude oscillations (beats) of MQO of
interlayer conductivity, contains extra term ∝ J1(λ), which
gives the field-dependent phase shift φb of beats of MQO of
σzz [33,42].

This phase shift φb contains the parameter 2(1 + γ0)/λ =
(1 + γ0)h̄ωc/(2πtz), which is not small in strongly anisotropic
Q2D metals. This factor increases with the increase of mag-
netic field; it is ∼1 in strongly anisotropic Q2D metals and  1
in weakly anisotropic almost 3D metals. For the in-plane con-
ductivity σxx in Eq. (39) a similar term results not in the phase
shift of beats but in the phase shift of MQO themselves, given
by Eq. (42). It is small by the parameter λ/α = 2tz/EF and is
approximately field independent. In strongly anisotropic Q2D
metals 2tz/EF  1, and this phase shift is negligibly small.
However, in weakly anisotropic Q2D metals this parameter
λ/α = 2tz/EF ∼ 1, although they have a cylindrical Fermi
surface and are far from the Lifshitz transition and magnetic
breakdown, i.e., EF − 2tz � h̄ωc.

To measure the proposed phase shift of fast Shubnikov
oscillations one can compare the phase of Shubnikov and de
Haas–van Alphen oscillations. The latter are determined by the
oscillations of the DOS [64,65]:

ρ(Bz) ≈ ρ0[1 − 2RDJ0(λ) cos (α)], (65)

where the nonoscillating part of the DOS (per one spin) is
ρ0 = m∗/(2πh̄2d), and the magnetization oscillations per one
spin component are given by [33,65,66]

M̃(Bz) ≈ eEF

2π2h̄cd
RDRT

[
J0(λ) sin (α) + λ

α
J1(λ) cos (α)

]
.

(66)

Equations (65) and (66) are illustrated in Fig. 3 and compared
to conductivity oscillations.

At low magnetic field, when λ � 1, the second term in the
square brackets of Eq. (64) is small, and the MQO of σzz in
Eq. (64) and of σxx in Eq. (39) are in antiphase. Note that
the phase of σxx MQO coincides with the phase of DOS MQO
given by Eq. (65). This is illustrated in Fig. 3. However, at high
fields h̄ωc � 4πtz, expression (64) for interlayer conductivity
σ QO

zz asymptotically is equal to −2σ (0)
zz cos (α)RD[1 + 2γ0],

while σ QO
xx is close to −4π2σ (0)

xxRD cos (α)/(γ 2
0 + π2). Hence,

at high magnetic fields the fast oscillations of σxx , σzz, and the
DOS have the same phase. This agrees with the calculations
of σzz within the two-layer model [30,31,53,67,68] and for 3D
dispersion (4) at h̄ωc � tz [52,54]. Hence, there is a crossover
between these two regimes of σzz at λ ∼ 1.

Let us now compare Eq. (45) for σ SO
xx (ε) with the slow os-

cillations of interlayer conductivity σ SO
zz (ε), given by Eqs. (18)

or (19) of Ref. [33], which can be rewritten as

σ SO
zz (μ) ≈ 2σ (0)

zz R2
DJ0(λ)

[
J0(λ) − 2

λ
J1(λ)

]
. (67)

Similar to the beats of fast MQO, the slow oscillations of
interlayer conductivity σzz have a field-dependent phase shift
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FIG. 3. Quantum oscillations of intralayer diagonal conductivity σ QO
xx , of interlayer conductivity σ QO

zz , and of magnetization M̃ as a function
1/λ = Bz/(2π�F ). One can see that the oscillations of σ QO

zz are shifted from M̃ by a quarter of a period, but at 1/λ ≈ 0.01036 the phase shift
is close to π . Except the beat nodes, the oscillations of σxx have the same phase as those of the density of states, but are in antiphase with the
oscillations of σzz. The parameters for numerical calculations are m∗ = 0.04me, �0 = 14.5 K , tz = 10 meV, EF = 200 meV.

due to the second term 2J1(λ)/λ in the square brackets of
Eq. (67), which is absent in the SO of σxx . This phase shift
φzz

s ∼ 2/λ is small at λ � 1, i.e., everywhere except the last
period of slow oscillations.

The main difference of the SO of interlayer σ SO
zz and

intralayer σ SO
xx conductivity is that the amplitude of the latter

depends nonmonotonically on γ0 = π/(ωcτ0), as one can see
from Eq. (45): at γ 2

0 = π2/3 the amplitude of SO of σxx

changes sign, going through zero. At small γ0 < π/
√

3, i.e., at
large ωcτ0 >

√
3 when MQO are strong, the slow oscillations

of intralayer σxx and interlayer σzz conductivity are in the same
phase. At large γ0 > π/

√
3, i.e., at small ωcτ0 <

√
3 when

MQO are weak, the SO of σxx and σzz are in the antiphase. To
demonstrate this phase shift π of SO of in-plane conductivity
σxx with respect to interlayer conductivity σzz, in Fig. 4(a) we
plot the amplitude

ASO
xx ≡ π

2λ
αγ0R

2
D

π2 − 3γ 2
0(

γ 2
0 + π2

)3 (68)

of σ SO
xx d/G0, where G0 = e2/(πh̄) is the quantum of

conductance—the expression for the amplitude follows from
the expression of σ SO

xx d/G0 after using the asymptote of
squared Bessel function J 2

0 (λ) ∼ [1 + sin(2λ)]/(πλ) for λ �
1 and extracting the coefficient before sin(2λ). In Fig. 4(b) we
compare σ SO

xx d/G0 given by Eq. (45) to σ SO
zz d/G0 given by

Eq. (67). Contrary to σ SO
xx , the amplitude of SO of interlayer

conductivity σ SO
zz in Eq. (67) monotonically decreases with

increasing γ0 (see Fig. 4). The nonmonotonic field dependence
of the amplitude of slow oscillations of in-plane conductivity
probably explains the π difference of the phase of SO of

in-plane magnetoresistance observed [34] in rare-earth tritel-
lurides TbTe3 and GdTe3 (see Fig. 6 of Ref. [34]).

V. SUMMARY

To summarize, we calculate the magnetic quantum oscil-
lations of intralayer conductivity σxx in quasi-2D metals in
quantizing magnetic field. This calculation is based on the
Kubo formula and harmonic expansion. It takes into account
the electron scattering by short-range impurities and neglects
the electron-electron interaction. The latter approximation is
justified in the metallic limit of a large number of filled
LLs and finite interlayer transfer integral tz. Previously, such
calculation in quasi-2D metals was performed only for inter-
layer conductivity σzz [33,52]. We calculated analytically the
amplitudes and phases of the usual MQO and the so-called
slow oscillations with frequency ∝ tz, arising from the mixing
of two close MQO frequencies. The SO appear only in the
second order in the Dingle factor, but they are usually stronger
than MQO, because the latter are additionally damped by
temperature and sample inhomogeneities.

The comparison of the results for intralayer σxx and in-
terlayer σzz conductivity shows several qualitative differences
between their oscillations, discussed and illustrated above. The
amplitude of SO of σxx , given by Eqs. (45) and (68) and illus-
trated in Fig. 4, has a nonmonotonic dependence on magnetic
field. This amplitude changes sign at γ0 = π/(ωcτ0) = π/

√
3,

while the amplitude of SO of σzz is a monotonic function of
field. The SO of σxx and σzz have opposite phase in weak
magnetic field and same phase in strong field. The MQO of
σzz have a crossover with a phase inversion at λ ∼ 1, while
MQO of σxx do not have such crossover. Therefore, similarly
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FIG. 4. The amplitude (a) and magnitude (b) of slow oscillations of σxx and σzz. The parameters are the same as in Fig. 3. (a) Amplitude ASO
xx

of slow oscillations of normalized intralayer diagonal conductivity σ SO
xx d/G0 as a function of 1/γ0 = h̄ωc/(2π�0) ∝ Bz. This plot demonstrates

that the amplitude ASO
xx changes its sign at γ0 = π/

√
3. (b) Slow oscillations of intralayer σxx and interlayer σzz conductivity as a function of

1/λ = h̄ωc/(4πtz) ∝ Bz. The slow oscillations of σxx and σzz are in antiphase at low magnetic field and have the same phase at high field.

to SO, the MQO of σzz and σxx have opposite phase in weak
magnetic field and same phase in strong field. This crossover
between high- and low-field limits for MQO of σzz is driven by
the parameter λ = 4πtz/(h̄ωc), while for SO of σxx the driving
parameter is γ = 2π�/(h̄ωc).

Notably, the oscillations of MQO amplitudes, called beats
and arising from the interference of two close frequencies, for
σxx are not complete, i.e., the amplitude of σxx oscillations
is nonzero even in the beat nodes, as given by Eq. (41) and

illustrated in Fig. 1. The field-dependent phase shift of beats,
known for σzz MQO [33,42], does not appear in σxx . However,
for σxx the phase of MQO themselves is shifted by the value
∼tz/EF , as given by Eqs. (39) and (42).

The developed theory and the results obtained are applicable
to describe transverse magnetoresistance in various anisotropic
quasi-2D conductors, including organic metals, high-Tc super-
conducting materials, heterostructures, intercalated graphite,
rare-earth tritellurides, etc.
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