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Charge density wave phase, Mottness, and ferromagnetism in monolayer 1T -NbSe2
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The recently investigated 1T polymorph of monolayer NbSe2 revealed an insulating behavior suggesting a
star-of-David phase with

√
13 × √

13 periodicity associated with a Mott insulator, reminiscent of 1T -TaS2. We
examine this novel two-dimensional material from first principles. We find an instability towards the formation
of an incommensurate charge density wave (CDW) and establish the star-of-David phase as the most stable
commensurate CDW. The Mottness in the star-of-David phase is confirmed and studied at various levels of theory:
the spin-polarized generalized gradient approximation (GGA) and its extension involving the on-site Coulomb
repulsion (GGA+U ), as well as the dynamical mean-field theory. Finally, we estimate Heisenberg exchange
couplings in this material and find a weak nearest-neighbor ferromagnetic coupling, at odds with most Mott
insulators. We point out the close resemblance between this star-of-David phase and flat-band ferromagnetism
models.
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I. INTRODUCTION

Transition-metal dichalcogenides (TMDs) have been ex-
tensively studied for their charge density wave (CDW) phases
[1–4], historically being the first materials where the Peierls
instability [5] manifests itself, although this point of view
has been frequently challenged in the last few years [6,7].
More recently, TMDs (for recent reviews, see, e.g., [8,9])
have attracted further attention due to their novel topological
properties [10,11], unconventional Ising superconductivity
[12–15], as well as the possibility to thin them down to a
single layer [16], leading to a rich family of two-dimensional
(2D) materials that includes semiconductors with promising
technological applications [17].

TMDs with chemical composition MX2 are layered mate-
rials, each layer consisting of a transition metal (M = Ti, V,
Nb, Ta, etc.) forming a triangular lattice sandwiched between
two atomic planes of chalcogen atoms (X = S, Se, Te). The
local coordination sphere of the transition metal can have
either trigonal prismatic or distorted octahedral symmetry,
giving rise to two families of polytopes, referred to as 2H

and 1T , respectively, where 1 and 2 stand for the number
of inequivalent layers in the unit cell for bulk materials. The
different coordination environments lead to distinct crystal-
field splittings of the d-like bands and therefore very different
electronic properties [8].

Among all the TMDs, 1T -TaS2 displays arguably the most
complex phase diagram. Indeed, 1T -TaS2 exhibits a series
of structural phase transitions that involves one second-order
and two first-order transitions upon decreasing temperature
[2,18,19]. The low-temperature commensurate charge density
wave (CCDW) phase is characterized by the formation of
star-of-David clusters of Ta atoms in a

√
13 × √

13 supercell
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associated with the emergence of a narrow band crossing the
Fermi level [20,21], favoring the opening of a Mott correlation
gap. Moreover, it has recently been pointed out that no trace
of magnetic order is observed down to very low temperatures,
indicating a possible quantum spin liquid (QSL) state [22].

Only known so far in the 2H phase, 1T -NbSe2 has recently
been successfully synthesized in a monolayer form [23].
Niobium is situated in the same column of the periodic table
as tantalum, which implies that these two transition-metal
elements are isoelectronic and have formal d-shell populations
of 4d1 and 5d1 in NbSe2 and TaS2, respectively. It has been
found that a superlattice is formed in monolayer 1T -NbSe2 and
that the electronic structure exhibits an insulating energy gap
of ∼0.4 eV, strongly suggesting a phase diagram analogous to
1T -TaS2.

The purpose of this paper is to provide a first-principles
study of this new material, including the instability of the
metallic undistorted 1T phase towards a CDW phase, structural
properties and different scenarios for the nature of the gap,
correlation effects, and magnetism. Our work confirms the√

13 × √
13 phase as the most stable commensurate CDW

phase as well as the opening of a correlation gap that is, to some
extent, captured even by spin-polarized GGA calculations.
GGA+U and dynamical mean-field theory (DMFT) calcula-
tions provide further insight and suggest a gap of the charge
transfer type. An estimation of Heisenberg exchange couplings
surprisingly indicates a ferromagnetic ground state, contrary
to what one would expect in a Mott insulator. We suggest
that if confirmed, the ferromagnetism strongly resembles the
flat-band ferromagnetism [24–31] effect in multiband Hubbard
models and that this star-of-David phase could be a real
material realization of this effect in 2D.

This paper is organized as follows. Section II briefly
describes the computational methodology. In Sec. III, we study
the fermiology and the phonon dispersion of the undistorted
1T phase as well as possible commensurate superlattices.
In Secs. IV and V, we present an analysis of the electronic
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structure and magnetism of the
√

13 × √
13 phase. Section

VI offers conclusions.

II. COMPUTATIONAL METHODOLOGY

First-principles density functional theory (DFT) calcula-
tions were performed using the QUANTUM ESPRESSO package
[32]. The interaction between the valence and core electrons
is described by means of ultrasoft pseudopotentials [33]
(available from the PSLIBRARY [34,35]), explicitly including
the s and p semicore electrons as valence electrons for Nb
atoms. The plane-wave cutoffs are set to 60 and 300 Ry
for the wave functions and charge density, respectively. The
exchange-correlation functional is approximated by the gener-
alized gradient approximation according to Perdew, Burke and
Ernzerhof (PBE) [36]. For GGA+U calculations, we adopt
the simplified formulation of Cococcioni and de Gironcoli
[37], with a Hubbard parameter U = 3.02 eV for Nb 4d

orbitals, calculated from linear response in a supercell of
the undistorted 1T phase containing 75 atoms. Brillouin-zone
integration is performed on a 24 × 24 × 1 k-point mesh (8 ×
8 × 1 and 6 × 6 × 1 for the

√
13 × √

13 and 4 × 4 supercells,
respectively) and a Marzari-Vanderbilt smearing [38] of 1 mRy.
To simulate the monolayer form, we include approximately
13 Å of vacuum between periodic replicas. Lattice constants
and atomic positions of various phases are determined by
fully relaxing the structure at the PBE level until all the
Hellmann-Feynman forces are less than 10−4 Ry/Bohr. The
spin-orbit coupling is not included, but its effect is described
in the Supplemental Material [39].

The phonon dispersion is calculated within density func-
tional perturbation theory (DFPT) [40], using a denser mesh
of 84 × 84 × 1 k points and a larger smearing of 5 mRy. To
plot the full dispersion, we have calculated the phonons on
a 12 × 12 grid of q points and used Fourier interpolation. In
addition, we have computed the dispersion close to the CDW
wave vector by performing a DFPT calculation for several
points in its vicinity, using different smearings of 10, 5, and
2.5 mRy and a denser grid of 192 × 192 k points to ensure
convergence of the imaginary frequencies.

DMFT [41] calculations are performed using the AMULET

code [42]. The quantum impurity problem is solved with the
continuous-time quantum Monte Carlo (CT-QMC) algorithm
[43] with ten million QMC steps. The simplified fully localized
limit prescription is adopted to account for double counting.
The spectrum is obtained with the maximum entropy method.

Maximally localized Wannier functions (MLWFs) [44,45]
are obtained using the WANNIER90 code [46]. The susceptibility
is calculated on a dense 400 × 400 × 1 k-point grid with
Wannier-interpolated bands.

III. CHARGE DENSITY WAVE PHASES

We begin our discussion by determining the structural
and electronic properties of the undistorted 1T polymorph of
monolayer NbSe2. The latter contains three atoms per unit
cell and belongs to the symmorphic D3

3d space group. The
lattice constant and the Nb − Se distance at the PBE level are
a = 3.49 Å and dNb-Se = 2.62 Å, respectively.

(b)

(d)(c)

(a)

FIG. 1. (a) GGA band structure of the undistorted 1T phase
of monolayer NbSe2. The t2g bands are emphasized in blue. The
dashed line corresponds to the Fermi energy, set to zero. (b) Fermi
surface of monolayer NbSe2. (c),(d) Ball-and-stick representation of
the undistorted 1T phase of monolayer NbSe2 with an isosurface plot
of one of the three symmetry-equivalent t2g-like Wannier functions.
Selenium atoms are shown in blue.

The electronic structure and the t2g Fermi surface are shown
in Fig. 1. Since the spin-orbit coupling does not play an
important role, we neglect it but briefly describe its effect
in the Supplemental Material [39]. The three t2g bands are
filled with one electron. The bandwidth is rather large (∼3 eV),
implying that the moderate electron-electron interactions can
be neglected at this point. On the other hand, the t2g electrons
are prone to form σ bonds due to their directional character,
implying a large coupling to a local bond-stretching phonon.
The latter is, to the best of our understanding, responsible for
the recurrent occurrence of CDWs in the 1T dichalcogenides
and leads to stronger distortions when the filling is closer to half
filling, as, e.g., in 1T ′-MoS2 [47] or ReS2 [48], in which strong
metal-metal bonds are formed. The Fermi surface is typical
of group-V 1T dichalcogenides and displays pseudonesting,
favoring density wave instabilities with incommensurate wave
vectors Qi = QICDWbi , where bi (i = 1, 2, 3) are the three
reciprocal lattice vectors of a triangular lattice and QICDW ≈
0.25–0.33 [2,49], depending on material-dependent details of
the electronic structure.

Figure 2 shows the calculated phonon-dispersion curves
and bare static susceptibility along the � − M direction.
Neglecting matrix elements, the susceptibility reads

χ0(q) = 1

Nk

∑

k,n,m

f (εn,k+q) − f (εm,k)

εn,k+q − εm,k

, (1)

where f (εn,k) is the Fermi-Dirac distribution and εn,k are
the Kohn-Sham energies. The susceptibility is proportional to
the phonon self-energy in the random phase approximation,
favoring soft phonon modes when it is enhanced at a particular
wave vector [50]. One can see that the system is unstable
against the formation of a CDW with momentum QICDW ≈
0.26, corresponding to the maximum of the susceptibility at
T = 300 K [Fig. 2(b)]. At lower temperatures, the maximum
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(b)(a) (c)

FIG. 2. (a) Calculated phonon dispersion for the undistorted 1T phase of monolayer NbSe2 obtained by Fourier interpolation. Imaginary
frequencies are plotted as negative. (b) Phonon dispersion close to the wave vector of maximum softening with different electronic population
smearing values. Each point corresponds to a DFPT calculation. (c) Calculated bare static susceptibility along the � − M direction at different
electronic temperatures.

is shifted closer to QICDW = 0.27. Accordingly, the calculated
phonon softening becomes stronger closer to QICDW = 0.27
when a smaller smearing is used. We also observe that
at T = 5000 K, the susceptibility is completely flat as the
Fermi surface is blurred. The incommensurability of the soft
phonon mode and its correlation with the maximum of the
susceptibility demonstrate the effect of the fermiology on the
CDW [Fig. 2(c)], even if we stress that the latter is possible only
in the presence of a rather strong electron-phonon coupling due
to imperfect nesting.

As understood by McMillan [51,52], density waves can
further gain energy by adopting a commensurate periodicity
characterized by a momentum QCCDW close to QICDW. This can
lead to first-order incommensurate-to-commensurate phase
transitions (lock-in transitions) as the temperature is lowered.
Such transitions come from higher-order terms of the free
energy and are therefore not captured by a phonon calculation.
The calculated QICDW ≈ 0.26 suggests either 4 × 4 or

√
13 ×√

13 periodicity. In the latter case, each unit cell contains an
odd number of electrons, and an insulating gap, as observed in
experiments, can only come from electron correlations. On
the other hand, the 4 × 4 cell could possibly be a normal

band insulator. We have therefore addressed both scenarios
by relaxing atomic positions (starting from randomized ones)
and lattice vectors in the two supercells.

For the 4 × 4 cell, we obtain an energy gain of 49 meV
per NbSe2 formula unit compared to the undistorted 1T phase
and a magnetically ordered metallic phase (see Supplemental
Material [39]), whereas for the

√
13 × √

13 cell, we obtain the
star-of-David phase with a larger energy gain of 69 meV/f.u.
and a Mott insulator phase (see next section). Another possi-
bility would be that the CDW remains incommensurate down
to zero temperature. However, incommensurate CDWs in the
dichalcogenides usually have a rather small effect on the
electronic structure so that it is unlikely that a gap of ∼0.4 eV
could be opened.

IV. MOTTNESS IN THE STAR-OF-DAVID PHASE

We now proceed to study the electronic structure of the
star-of-David phase at various levels of theory.

As one can see in Fig. 3(a), a very narrow band crossing
the Fermi level emerges in the GGA band structure. Spin-
polarized GGA already captures some correlation effects and

(a) (b) (c)

FIG. 3. (a) Electronic band structure of the
√

13 × √
13 CCDW phase of monolayer NbSe2 obtained from non-spin-polarized GGA

calculations. The dashed line corresponds to the Fermi level, set to zero. (b),(c) Electronic band structures obtained from spin-polarized (b)
GGA and (c) GGA+U (U = 3.02 eV) calculations. The arrow marks the flatlike lower Hubbard band. The up- and down-spin bands are shown
in red and blue, respectively.
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U = 0.0 eV Ve 9.0 = UVe 1.0 = U

FIG. 4. (a) Three-band model chosen for the DMFT calculations with the orbital weight of the type-I Wannier function color coded. (b)
Ball-and-stick representation of the star-of-David phase with an isovalue plot of the type-I Wannier function. Nb–Nb bonds are drawn to
facilitate the visualization. (c) Spectra obtained by analytic continuation of the imaginary-time Green’s functions for U = 0.0, 0.1, and 0.9 eV.
The Fermi energy is set to zero.

can sometimes describe Mottness approximately (but not in
quantitative agreement with experiments [53]), together with
a magnetic solution. In Fig. 3(b), we observe a small band
gap of ∼20 meV at the spin-polarized GGA level with a total
magnetic moment of 1 μB per supercell that contains one David
star. The computed gap is clearly too small compared to the
experiments; therefore, we add an on-site Hubbard repulsion
U = 3.02 eV for Nb 4d orbitals. The calculated gap is now
∼0.3 eV [Fig. 3(c)], in better agreement with the experimental
data. However, the gap appears between the “uncorrelated”
bands rather than between the lower Hubbard band (LHB)
and the upper Hubbard band (UHB), as expected in Ref. [23].
We note that the flat LHB and UHB can still be distinguished
among the “uncorrelated” bands in Fig. 3(c).

To gain further insight, we derive a minimal three-band
(occupied by five electrons) tight-binding model in the basis
of maximally localized Wannier functions. We obtain, as can
be seen in Fig. 4, one Wannier function (type-I WF) localized
at the center of the star with a spread of 22 Å2, giving
rise to the narrow band and two Wannier functions (type-II
WFs; see Supplemental Material [39]) with larger spreads
and more weights on the outer Nb atoms of the David stars,
hybridizing very weakly with the type-I WF. This choice of
model allows one to capture the bands crossing the Fermi level
and to disentangle the narrow “correlated” band, constituting
therefore a minimal model to understand the opening of a
correlation gap. Treating only the type-I WF as correlated with
a single-variable on-site Hubbard parameter U , we solve the

model with DMFT in the paramagnetic phase with an inverse
temperature of 40 eV−1 (T ≈ 300 K).

Since the band derived from type-I WFs is nearly flat with
a bandwidth of ∼30 meV, it splits into a LHB and a UHB upon
any small interaction, explaining why the GGA functional
can already capture the gap opening. With a sufficiently large
Hubbard U , a gap opens between the type-II bands and the
UHB (charge transfer insulator) and the orbital population of
the type-I WF changes from 1.18 in GGA to 1.0 in DMFT.
A Hubbard parameter U ∼ 0.9 eV gives a gap between the
type-II bands and the UHB, consistent with the GGA+U

calculation. We note that the spectra obtained from DMFT
agree qualitatively with the simpler spin-polarized GGA+U

calculations, although the Hubbard parameter used needs to
be much smaller. It is clear that the Hubbard parameter in
DMFT is only loosely related to that of DFT + U , as it captures
the on-site repulsion associated by double occupancy of a
type-I WF function rather than an atomic 4d orbital. Since this
Wannier function is much more spread than an atomic orbital,
it is expected that the Hubbard term should be smaller.

We note that in the GGA+U band structure [Fig. 3(c)],
while a flat UHB is easily recognizable, the LHB appears to
further hybridize with other bands, even if a flatlike band is seen
at ∼0.5 eV below the valence-band maximum. This suggests
that it would be interesting to compare this minimal three-band
model with more elaborate models containing more bands and
to take into account charge self-consistency, but this is beyond
the scope of the present work.
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V. MAGNETIC PHASES

In Mott insulators, the low-energy degrees of freedom are
localized spins whose interactions lead to long-range magnetic
order below a characteristic temperature, unless prevented by
strong fluctuations (i.e., a QSL state). It is therefore natural to
study the mean-field magnetic solutions obtained from DFT to
anticipate the character of magnetic correlations expected in a
material.

In Fig. 5, we present an isovalue plot of the spin-polarization
density obtained from the GGA+U calculations. While the
total magnetic moment is 1 μB per star of David (S = 1/2 Mott
insulator), the absolute magnetization is found to be close to
3 μB /star. This is an effect of the on-site Hubbard repulsion
since, in the GGA case, the latter is close to one (1.19 μB /star).
In the GGA+U solution, the Nb atom at the center of the
star acquires a larger magnetic moment (0.8 against 0.2 μB),
while its six nearest-neighbor Se atoms, as well as the six
outer Nb atoms, acquire small opposite magnetic moments,
as can be seen in the spin-polarization plot. Our GGA+U

solution therefore bears a resemblance to ferrimagnetism.
However, we stress that the opposite magnetic moments are
the consequence of a spin splitting of the lower bands induced
by the magnetic moment associated with the LHB in GGA+U .
Focusing on the global properties of the system, we address the
question of whether the total spins on neighboring stars couple
ferromagnetically or antiferromagnetically [53]. We therefore
consider the 2

√
13 × √

13 and
√

3
√

13 × √
3
√

13 supercells,
containing two and three stars per supercell, respectively. By
choosing suitable initial conditions for the spin polarizations,
we can ensure that the solution of the self-consistent procedure
in DFT calculations converges to the one where the total
moments of different stars in the supercell are either parallel
or antiparallel. By comparing the total energies of the different
configurations, we can then extract effective nearest-neighbor
and next-nearest-neighbor Heisenberg exchange couplings J1

and J2, as illustrated in Fig. 5, assuming that further couplings
can be neglected. We stress that we are aware that DFT can

J1

J2

FIG. 5. Spin-polarization density in monolayer NbSe2 obtained
at the GGA+U level in the ferromagnetic phase. A small isovalue of
0.0025 a−3

0 was chosen to visualize the opposite polarization on the
outer star-of-David atoms. The definitions of nearest-neighbor (J1)
and next-nearest-neighbor (J2) exchange couplings are indicated.

TABLE I. Calculated nearest-neighbor (J1) and next-nearest-
neighbor (J2) ferromagnetic exchange couplings in Kelvins.

J1 (K) J2 (K)

GGA 2.38 0.12
GGA+U 4.77 0.04

sometimes give misleading results for magnetic properties, but
a more accurate wave-function method would be prohibitive
for this system and we therefore restrict ourselves to GGA and
GGA+U .

The estimated magnetic exchange couplings are reported
in Table I. We find a weak nearest-neighbor ferromagnetic
coupling and a negligible next-nearest-neighbor coupling.
This is rather unexpected since Mott insulators are usually
antiferromagnetic, with a few exceptions such as YTiO3 [54]
or Ba2NaOs6 [55]. We have also verified that introducing the
spin-orbit coupling does not affect the sign of the magnetic
exchange coupling parameters, even though it gives rise to
small anisotropies (see the Supplemental Material [39]). A
possible scenario for the occurrence of ferromagnetism in
multiband Hubbard models is the so-called flat-band ferro-
magnetism studied by Mielke and Tasaki [24–28]. Flat-band
ferromagnetism can emerge, for instance, on the Kagome
lattice with nearest-neighbor hoppings only [56–58]. While
a perfectly flat band requires fine tuning of the model pa-
rameters, which is unlikely to happen in any real material,
ferromagnetism is robust against some deviations [31,57] if the
(nearly) flat band is at half filling. In the monolayer 1T -NbSe2

case, the flat band has some dispersion and overlaps in energy
with two other bands. Intuitively, the direct antiferromagnetic
exchange is expected to be small because the correlated type-I
Wannier functions are at the center of the stars and have hence
small direct hoppings. Therefore, higher-order processes can
become dominant and ferromagnetic couplings can be enabled,
depending on the sign of the different hopping parameters.
It is expected that several mechanisms are involved, includ-
ing the effect of the spin polarization of the “uncorrelated”
bands, and that a quantitative model would likely be rather
complicated.

We point out that monolayer 1T -TaS2 seems even closer to
the ideal flat-band model since the narrow band is well isolated.
We have verified that in this system, the magnetic exchange
coupling is also ferromagnetic at the GGA and GGA+U

levels of theory (in agreement with Ref. [59]). We stress
that this is not in contradiction to the absence of magnetism
observed experimentally since all experimental studies of
magnetism so far were carried out on bulk materials, for
which both experiments and calculations suggest significant
dispersion between the layers and the existence of a Fermi
surface [20,59–61]. On the other hand, the ferromagnetic
scenario does not seem to agree with the recent proposal
of a quasi-2D quantum spin-liquid phase in 1T -TaS2 [22],
which could occur, e.g., in a J1-J2 antiferromagnetic model on
a triangular lattice with 0.08 � J2/J1 � 0.16 [62]. It would
therefore be interesting to address experimentally the possible
magnetic ordering in monolayer 1T -NbSe2 and 1T -TaS2 at low
temperatures.
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VI. CONCLUSIONS

In our work, we addressed, by means of first-principles
calculations, monolayer 1T -NbSe2 that was recently realized
experimentally. We found an instability against an incommen-
surate CDW and established the

√
13 × √

13 commensurate
CDW (CCDW) with the star-of-David distortion as the most
stable phase. Our calculations performed at the level of
DFT, DFT+U , and DMFT identify this configuration as a
Mott insulator. Finally, we suggested the possible existence
of ferromagnetic ordering in this star-of-David phase and
pointed out the resemblance with the so-called flat-band
ferromagnetism scenario. The emergence of the narrow band
close to the Fermi level in the CCDW phase leads to exotic

physics, making these materials unique in the family of the
TMDs.

Note added. Recently, a related work on monolayer
1T -NbSe2 was reported [63].
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