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A typical quantum state obeying the area law for entanglement on an infinite two-dimensional (2D) lattice can
be represented by a tensor network Ansatz, known as an infinite projected entangled pair state (iPEPS), with a
finite bond dimension D. Its real-imaginary time evolution can be split into small time steps. An application of
a time step generates a new iPEPS with a bond dimension k times the original one. The new iPEPS does not
make optimal use of its enlarged bond dimension kD; hence, in principle, it can be represented accurately by
a more compact Ansatz, preferably with the original D. In this work we show how the more compact iPEPS
can be optimized variationally to maximize its overlap with the new iPEPS. To compute the overlap we use
the corner-transfer-matrix renormalization group. By simulating sudden quench of the transverse field in the
2D quantum Ising model with the proposed algorithm, we provide a proof of principle that real-time evolution
can be simulated with iPEPS. A similar proof is provided with the same model for imaginary-time evolution of
purification of its thermal states.

DOI: 10.1103/PhysRevB.98.045110

I. INTRODUCTION

Tensor networks are a natural language to represent quan-
tum states of strongly correlated systems [1,2]. Among them
the most widely used Ansätze are a matrix product state
(MPS) [3] and its two-dimensional (2D) generalization: the
projected entangled pair state (PEPS) [4], also known as a
tensor product state. Both obey the area law for entanglement
entropy. In one dimension matrix product states are efficient
parametrizations of ground states of gapped local Hamiltonians
[1,5,6] and purifications of thermal states of one-dimensional
(1D) local Hamiltonians [7]. MPS is the Ansatz optimized
by the density-matrix renormalization group (DMRG) [8,9],
which is one of the most powerful methods to simulate not
only ground states of 1D systems but also their exited states,
thermal states, and dynamic properties [10,11].

PEPSs are expected to be an efficient parametrization of
ground states of 2D gapped local Hamiltonians [1,2] and were
shown to be an efficient representation of thermal states of 2D
local Hamiltonians [12], although in two dimensions there are
limitations to the assumed representability of area-law states
by tensor networks [13]. Furthermore, tensor networks can be
used to represent efficiently systems with fermionic degrees of
freedom [14–17], which was demonstrated for both finite [18]
and infinite PEPSs [19,20].

PEPS was originally proposed as a variational Ansatz for
ground states of 2D finite systems [4,21], generalizing earlier
attempts to construct trial wave functions for specific 2D
models using 2D tensor networks [22]. Efficient numerical
methods enabling optimization and controlled approximate
contraction of an infinite PEPS (iPEPS) [23–26] became
the basis for promising new methods for strongly correlated
systems. Among the recent achievements of those methods are
the solution of a long-standing magnetization plateau problem
in the highly frustrated compound SrCu2(BO3)2 [27,28] and

obtaining the coexistence of superconductivity and striped
order in the underdoped regime of the Hubbard model, a
result which is corroborated by other numerical methods
(among them is another tensor network approach, DMRG
simulations of finite-width cylinders), apparently settling one
of the long-standing controversies concerning that model [29].
Another example of a recent contribution of iPEPS-based
methods to condensed-matter physics is the problem of the
existence and nature of the spin-liquid phase in the kagome
Heisenberg antiferromagnet for which new evidence in support
of a gapless spin liquid was obtained [30]. This progress was
accompanied and partly made possible by new developments
in iPEPS optimization [31,32], iPEPS contraction [33–35],
energy extrapolations [36], and universality-class estimation
[37–39]. These achievements encourage attempts to use iPEPS
to simulate the broad class of states obeying the 2D area-law-
like thermal states [35,40–46], states of dissipative systems
[47], and exited states [48].

Among alternative tensor network approaches to strongly
correlated systems are methods of direct contraction and
renormalization of a three-dimensional tensor network repre-
senting a density operator of a 2D thermal state [49–55] and
the multiscale entanglement renormalization Ansatz (MERA)
[56,57], which is technically challenging yet able to represent
critical states with subleading logarithmic corrections to the
area law, and its generalization, the branching MERA [58,59].
Progress in using DMRG to simulate cylinders with finite
width has also been made in recent years. Such simulations
are routinely used alongside iPEPS to investigate 2D system
ground states (see, e.g., Ref. [29]) and were applied recently
to thermal states [60,61].

In this work we test an algorithm to simulate either real-
or imaginary-time evolution with iPEPS. The algorithm uses
second-order Suzuki-Trotter decomposition of the evolution
operator into small time steps [62–64]. A straightforward
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application of a time step creates a new iPEPS with a bond
dimension k times the original bond dimension D. If not trun-
cated, the evolution would result in an exponential growth of
the bond dimension. Therefore, the new iPEPS is approximated
variationally by an iPEPS with the original D. The algorithm is
a straightforward construction direct from first principles with
a minimal number of approximations controlled by the iPEPS
bond dimension D and the environmental bond dimension χ in
the corner-transfer-matrix renormalization group (CTMRG). It
uses CTMRG [26,65–67] to compute the fidelity between the
new iPEPS and its variational approximation. The calculation
of fidelity between two close iPEPSs was shown to be tractable
only very recently [68]. In this work we go further and
demonstrate that the fidelity can be optimized variationally
effectively enough for time evolution.

A challenging application of the method is real-time evo-
lution after a sudden quench. A sudden quench of a parameter
in a Hamiltonian excites entangled pairs of quasiparticles
with opposite quasimomenta that move away from each other
crossing the boundary of the subsystem. Consequently, the
number of pairs that are entangled across the boundary (pro-
portional to the entanglement entropy) grows linearly with
time, requiring an exponential growth of the bond dimension.
Therefore, a tensor network is doomed to fail after a finite
evolution time. Nevertheless, matrix product states proved to
be useful for simulating time evolution after sudden quenches
in one dimension [69]. As a proof of principle that the same
can be attempted with iPEPS in two dimensions, in this work
we simulate a sudden quench in the transverse field quantum
Ising model.

Moreover, there are other (easier from the entanglement
point of view) potential applications of the real-time variational
evolution. For instance, a smooth ramp of a parameter in
a Hamiltonian across a quantum critical point generates the
entanglement entropy proportional to the area of the boundary
times a logarithm of the Kibble-Zurek correlation length ξ̂

that, in turn, is a power of the ramp time [70]. Thanks to
this dynamical area law, the required D instead of growing
exponentially with time saturates, becoming a power of the
ramp time. Even stronger limitations may apply in many-body
localization (MBL), where localized excitations are not able
to spread the entanglement. Tensor networks have already
been applied to 2D MBL phenomena [71]. Finally, after
vectorization of the density matrix, the unitary time evolution
can be generalized to a Markovian master equation with a
Lindblad superoperator, where local decoherence limits the
entanglement, making the time evolution with a tensor network
feasible [47,72].

Another promising application is imaginary-time evolution
generating thermal states of a quantum Hamiltonian. By
definition, a thermal Gibbs state maximizes entropy for a given
average energy. As this maximal entropy is the entropy of
entanglement of the system with the rest of the universe, then
by the monogamy of entanglement, there is little entanglement
left inside the system. In more quantitative terms, both thermal
states of local Hamiltonians and iPEPS representations of
density operators obey the area law for mutual information,
making an iPEPS a good Ansatz for thermal states [73]. In
this paper we evolve a purification of thermal states in the
quantum Ising model, obtaining results convergent to the

variational tensor network renormalization (VTNR) intro-
duced and applied to a number of models in [35,43–45]. This
test is a proof of principle that thermal states can be obtained
with the variational imaginary-time evolution.

This paper is organized as follows. In Sec. II we introduce
the purification of a thermal state to be evolved in imaginary
time. In Sec. III we introduce the algorithm in the more
general case of imaginary-time evolution of a thermal-state
purification. A modification to real-time evolution of a pure
state is straightforward. In Sec. III A we show Suzuki-Trotter
decomposition of a small time step and represent it by a tensor
network. In Sec. III B we outline the algorithm, whose further
details are refined in Secs. III C, III D, and the Appendix. In
Sec. IV the algorithm is applied to simulate imaginary-time
evolution generating thermal states. The results are compared
with VTNR. In Sec. V the real-time version of the algorithm
is tested in the challenging problem of time evolution after a
sudden quench. Finally, we conclude in Sec. VI.

II. PURIFICATION OF THERMAL STATES

We will exemplify the general idea with the transverse field
quantum Ising model on an infinite square lattice

H = −
∑
〈j,j ′〉

ZjZj ′ −
∑

j

(hxXj + hzZj ). (1)

Here Z,X are Pauli matrices. At zero longitudinal bias, hz = 0,
the model has a ferromagnetic phase with a nonzero sponta-
neous magnetization 〈Z〉 for sufficiently small transverse field
hx and sufficiently large inverse temperature β. At hx = 0
the critical β is β0 = − ln(

√
2 − 1)/2 ≈ 0.441, and at zero

temperature the quantum critical point is h0 = 3.04438(2)
[74].

In an enlarged Hilbert space, every spin with states s = 0,1
is accompanied by an ancilla with states a = 0,1. The space
is spanned by states

∏
j |sj ,aj 〉, where j is a lattice site. The

Gibbs operator at an inverse temperature β is obtained from its
purification |ψ(β)〉 (defined in the enlarged space) by tracing
out the ancillas,

ρ(β) ∝ e−βH = Trancillas|ψ(β)〉〈ψ(β)|. (2)

At β = 0 we choose a product over lattice sites,

|ψ(0)〉 =
∏
j

∑
s=0,1

|sj ,sj 〉, (3)

to initialize the imaginary-time evolution

|ψ(β)〉 = e− 1
2 βH |ψ(0)〉 = U (−iβ/2)|ψ(0)〉. (4)

The evolution operator U (τ ) = e−iτH acts in the Hilbert space
of spins. With the initial state (3) Eq. (2) becomes

ρ(β) ∝ U (−iβ/2)U †(−iβ/2). (5)

Just like a pure state of spins, the purification can be represented
by an iPEPS (see Fig. 1).

III. THE METHOD

We introduce the algorithm in the more general case of
thermal-state simulation by imaginary-time evolution of their
purification. To be more specific, we use the example of
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FIG. 1. (a) An elementary rank-6 tensor A of a purification. The
top orange index indicates ancilla states a = 0,1, the bottom red index
indicates spins states s = 0,1, and the four black bond indices have a
bond dimension D. (b) An iPEPS representation of the purification.
Here pairs of elementary tensors at NN lattice sites were contracted
through their connecting bond indices. The whole network is an
amplitude for a joint spin and ancilla state labeled by the spin and
ancilla indices. Reducing the dimension of ancilla indices to 1 (or
simply ignoring the ancilla lines), we obtain a well-known iPEPS
representation of a pure state.

the quantum Ising model. Modification to real-time evolution
amounts to ignoring any ancilla lines in the diagrams. For the
sake of clarity, in the main text we fully employ the symmetry
of the Ising model, but we do our numerical simulations with
a more efficient algorithm, described in the Appendix, that
breaks the symmetry by applying two-site nearest-neighbor
(NN) gates. That algorithm can be generalized to less sym-
metric models in a straightforward manner.

A. Suzuki-Trotter decomposition

In the second-order Suzuki-Trotter decomposition a small
time step is

U (dτ ) = Uh(dτ/2)UZZ(dτ )Uh(dτ/2), (6)

where

UZZ(dτ ) =
∏
〈j,j ′〉

eidτZj Zj ′ , Uh(dτ ) =
∏
j

eidτhj (7)

are elementary gates and hj = hxXj + hzZj .
In order to rearrange U (dτ ) as a tensor network, we

use singular-value decomposition to rewrite a two-site term
eidτZj Zj ′ acting on a NN bond as a contraction of two smaller
tensors acting on a single site:

eidτZj Zj ′ =
∑

μ=0,1

zj,μzj ′,μ. (8)

Here μ is a bond index, and zj,μ ≡ √
�μ (Zj )μ, �0 = cos dτ ,

and �1 = i sin dτ . Now we can write

U (dτ ) =
∑
{μ}

∏
j

⎡
⎣eidτhj /2

⎛
⎝∏

j ′
zj,μ〈j,j ′ 〉

⎞
⎠eidτhj /2

⎤
⎦. (9)

Here μ〈j,j ′〉 is a bond index on the NN bond 〈j,j ′〉, and {μ}
is a collection of all such bond indices. The square brackets
enclose a Trotter tensor T (dτ ) at site j [see Fig. 2(a)]. It is a
spin operator depending on the bond indices connecting its site
to its four NNs. A contraction of these Trotter tensors is the

FIG. 2. (a) An elementary rank-6 Trotter tensor T with two red
spin indices and four black bond indices, each of dimension 2. (b) A
layer of Trotter tensors representing a small time step U (dτ ). (c) The
time step U (dτ ) is applied to spin indices of the purification. (d) The
tensors T and A can be contracted into a single new tensor A′. A layer
of A′ makes a new iPEPS that looks like the original one in Fig. 1(b)
but has a doubled bond dimension 2D.

gate U (dτ ) in Fig. 2(b). The evolution operator is a product of
such time steps, U (Ndτ ) = [U (dτ )]N .

B. Variational truncation

The time step U (dτ ) applied to the state |ψ〉 yields a new
state,

|ψ ′〉 = U (dτ )|ψ〉 (10)

[see Figs. 2(c) and 2(d)]. If |ψ〉 has a bond dimension D, then
the new iPEPS has twice the original bond dimension 2D.

In order to prevent exponential growth of the dimension
in time, the new iPEPS has to be approximated by a more
compact one, |ψ ′′〉, made of tensors A′′ with the original bond
dimension D. The best |ψ ′′〉 minimizes the norm

||ψ ′′〉 − |ψ ′〉|2. (11)

Equivalently, up to normalization of |ψ ′′〉, the quality of the
approximation can be measured by a global fidelity,

F = 〈ψ ′′|ψ ′〉〈ψ ′|ψ ′′〉
〈ψ ′′|ψ ′′〉 . (12)

After a rearrangement in Sec. III C, it becomes an efficient
figure of merit.

The iPEPS tensor A′′, which is the same at all sites, has to be
optimized globally. However, the first step towards this global
optimum is a local preupdate. We choose site j and label the
tensor at this site A′′

j . This tensor is optimized while all other
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tensors are kept fixed as A′′. With the last constraint the norm
(11) becomes a quadratic form in A′′

j . The quadratic form is
minimized with respect to A′′

j by Ã, which solves the linear
equation

GÃ = V. (13)

Here

G = ∂2〈ψ ′′|ψ ′′〉
∂(A′′

j )∗∂(A′′
j )

, V = ∂〈ψ ′′|ψ ′〉
∂(A′′

j )∗
(14)

are, respectively, a metric tensor and a gradient. Further details
on the local preupdate can be found in Sec. III D.

The global fidelity (12) is not guaranteed to increase when
the local optimum Ã is substituted globally, i.e., in place of
every A′′ on every lattice site. However, Ã can be used as an
estimate of the most desired direction of the change in A′′. In
this vein, we attempt an update

A′′ = A cos ε + Ã sin ε, (15)

with an adjustable parameter ε ∈ [−π/2,π/2] using an algo-
rithm proposed in Ref. [31], for which a simplified version was
introduced in Refs. [75,76]. This update was successfully used
in a similar variational problem of minimizing the energy of
an iPEPS as a function of A in Ref. [31], to which we refer the
reader for its detailed account. Here we just sketch the general
idea.

To begin with, the global fidelity F0 is calculated for the
“old” tensor A′′ = A with ε = 0. For small ε the optimization
is prone to get trapped in a local optimum. That is why large
ε = π/2 is tried first, and if F > F0, then A′′ = Ã is accepted.
Otherwise, ε is halved as many times as necessary for F to
increase above F0, and then A′′ = Ã is accepted. Negative ε

are also considered in case the global F does not increase for
a positive ε.

Once A′′ in (15) is accepted, the whole procedure, beginning
with a solution of (13), is iterated until F is converged. The
final converged A′′ is accepted as a global optimum.

C. Efficient fidelity computation

In the limit of an infinite lattice, the overlaps in the fidelity
(12) become

〈ψ ′′|ψ ′〉 = lim
N→∞

nN, 〈ψ ′′|ψ ′′〉 = lim
N→∞

dN, (16)

where N is the number of lattice sites. Consequently, the
fidelity becomes F = limN→∞ f N , where

f = nn∗

d
(17)

is a figure of merit per site.
The factors n and d can be computed by CTMRG [68],

generalizing the CTMRG approach to compute a partition
function per site for 2D statistical models [65,77–79]. First
of all, each overlap, either 〈ψ ′′|ψ ′〉 or 〈ψ ′′|ψ ′′〉, can be
represented by a planar network in Fig. 3(c). With the help of
CTMRG [26,65–67], this infinite network can be effectively
replaced by a finite one, as shown in Fig. 4. Figure 5 shows
how to obtain n and d with the effective environmental tensors
introduced in Fig. 4.

FIG. 3. (a) Tensor A′ is contracted with a complex conjugate of
A′′ into a transfer tensor t ′ with a bond dimension d = 2D2. (b) Tensor
A′′ is contracted with its own complex conjugate into a transfer tensor
t ′′ with a bond dimension d = D2. (c) An infinite layer of tensors t ′

(t ′′) represents the overlap 〈ψ ′′|ψ ′〉 (〈ψ ′′|ψ ′′〉).

D. Local preupdate

In order to construct G and V from the effective envi-
ronmental tensors C and T , it is useful to note first that
a derivative of a contraction of two rank-n tensors f =∑

i1,...,in
Ai1,...,inBi1,...,in with respect to one of them gives the

other one: ∂f/∂Ai1,...,in = Bi1,...,in . Furthermore, we note that
both the optimized tensor A′′

j and its conjugate (A′′
j )∗ are

located at the same site j and they enter the overlap 〈ψ ′′|ψ ′′〉
(〈ψ ′′|ψ ′〉) only through the tensor t ′′ (t ′) defined in Fig. 3(a),
located at this site. We distinguish this tensor t ′′ (t ′) by an
index j and call it t ′′j (t ′j ). Therefore, the derivatives in Eq. (14)

FIG. 4. Left: planar version of Fig. 3(c). Right: its approximate
representation with corner tensors C and edge tensors E. Here C

effectively represents a corner of the infinite graph on the left, and E is
its semi-infinite edge. The environmental bond dimension χ controls
the accuracy of the approximation. Tensors C and E are obtained with
the corner-transfer-matrix renormalization group [26,65–67].
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FIG. 5. The environmental tensors introduced in Fig. 4 can be
used to calculate the figure of merit (17). This diagram shows a fourth
power of a factor q by which the diagram in Fig. 3(c) (or, equivalently,
the left panel of Fig. 4) is multiplied when four sites are added to
the network. Depending on the overlap in question, either 〈ψ ′′|ψ ′〉 or
〈ψ ′′|ψ ′′〉 (see Fig. 3), the factor is either n = q or d = q, respectively.
The diagram is equivalent to Fig. 13.9 in Baxter [77].

decompose into a tensor contraction of derivatives

G = ∂〈ψ ′′|ψ ′′〉
∂t ′′j

∂2t ′′j
∂(A′′

j )∗∂(A′′
j )

, (18)

V = ∂〈ψ ′′|ψ ′〉
∂t ′j

∂t ′j
∂(A′′

j )∗
. (19)

The derivatives of the overlaps with respect to t ′j (t ′′j ) are
represented by Fig. 6(a), where one tensor t ′j (t ′′j ) at site j was
removed from the overlap shown in Figs. 3(c) and 4. Indeed,
a contraction of the missing t ′j (t ′′j ) with its environment in
Fig. 6(a) through corresponding indices gives back the overlap.
Diagramatically, this contraction amounts to filling the hole in
Fig. 6(a) with the missing t ′j (t ′′j ). In numerical calculations, the
infinite diagram in Fig. 6(a) is approximated by an equivalent
finite one in away similar to that in Fig. 4.

The rank-4 tensor in Fig. 6(a) is a tensor environment for
t ′j (t ′′j ). Each of its four indices is a concatenation of two
iPEPS bond indices, one from the ket and one from the bra
iPEPS layer, and has a dimension equal to D × D (2D × D).
After splitting each index back into ket and bra indices, this
environment can be used to calculate G (V ), as shown in
Fig. 6(c) [Fig. 6(b)]. In Fig. 6(b) the hole in Fig. 6(a) (with
split ket and bra indices) is filled with the second derivative
of t ′′j with respect to A′′

j and (A′′
j )∗. Similar to the derivative

of an overlap with respect to t ′′j , this derivative is obtained
from the tensor t ′′j in Fig. 3(b) by removing both A′′

j and (A′′
j )∗

from the diagram. In Fig. 6(c) the hole in Fig. 6(a) is filled
by the derivative of t ′j with respect to (A′′

j )∗. This derivative
is obtained from the tensor t ′j in Fig. 3(a) by removing (A′′

j )∗
from the diagram.

We have to keep in mind that the environmental tensors are
converged with limited precision that is usually set by demand-
ing that local observables are converged with precision 10−8.
This precision limits the accuracy to which the matrix G is
Hermitian and positive definite. In order to avoid numerical

FIG. 6. (a) Tensor environment for t ′ (t ′′). It is obtained by remov-
ing one tensor t ′ (t ′′) from the overlap in Fig. 3(c) or, equivalently, from
the right diagram in Fig. 4. The environment represents a derivative
of the overlap 〈ψ ′′|ψ ′〉 (〈ψ ′′|ψ ′′〉) with respect to t ′ (t ′′); see Eqs. (18)
and (19). This rank-4 tensor has four indices with dimension D × 2D

(D × D). (b) In the case of t ′′ [Eq. (18)] each of the four indices in (a) is
decomposed back into two indices, each of dimension D. The diagram
represents the metric tensor G. The red spin line is a Kronecker δ for
spin states and the orange ancilla line is a delta for ancillas. Therefore,
the metric can be decomposed as G = g ⊗ 1s ⊗ 1a , where g is the
tensor environment for t . (c) In the case of t ′ (19) each of the four
indices in (a) is decomposed back into two indices of dimension 2D

(top) and D (bottom). After contracting the upper indices with A′ the
diagram becomes the gradient V .

instabilities this error has to be filtered out by eliminating the
anti-Hermitian part of G and then truncating its eigenvalues
that are less than a fraction of its maximal eigenvalue. The
fraction is usually set at 10−8. To this end we solve the linear
equation (13) using the Moore-Penrose pseudoinverse

Ã = pinv(G)V, (20)

where the truncation is implemented by setting an appropriate
tolerance in the pseudoinverse procedure.

Another advantage of the pseudoinverse solution is that it
does not contain any zero modes of G. By definition, these zero
modes do not matter for the local optimization problem, but
they can make futile the attempt in (15) to use Ã as a significant
part of the global solution.

A possibility of further simplification occurs in Fig. 6(b),
where the open spin and ancilla lines represent two Kronecker
symbols. The symbols are identities in the spin and ancilla
subspace, and therefore, the metric G has a convenient tensor-
product structure G = g ⊗ 1s ⊗ 1a , where g is a reshaped
tensor environment for t ′′j and 1s and 1a are identities for
spins and ancillas, respectively. Therefore, after appropriate
reshaping of tensors, Eq. (20) can be reduced to

Ã = pinv(g)V, (21)

where only the small tensor environment g has to be pseudoin-
verted.

IV. THERMAL STATES FROM IMAGINARY-TIME
EVOLUTION

In this section we present results obtained by imaginary-
time evolution for two values of the transverse field, hx = 2.5
and hx = 2.9 (see Figs. 7 and 8), corresponding to critical
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FIG. 7. Thermal states for a transverse field hx = 2.5 with a
longitudinal bias hz = 0.01. The stars are results from variational
tensor network renormalization (VTNR), and the solid lines are from
the imaginary-time evolution. With increasing bond dimension D the
two methods converge on each other. (a) Longitudinal magnetization
〈Z〉 as a function of inverse temperature. (b) Energy per site E as a
function of inverse temperature.

temperatures βc = 0.7851(4) and βc = 1.643(2), respectively
[80]. We show data with D = 2,3,4,5. The stronger field is
closer to the quantum critical point at h0; hence, quantum
fluctuations are stronger, and a bigger bond dimension D is
required for convergence. For the evolution to run smoothly
across the critical point we added a small longitudinal bias,
hz = 0.01.

Figures 7(a) and 7(b) show the longitudinal magnetization
〈Z〉 and energy E for the two transverse fields. The data
from the evolution are compared to results obtained with the
VTNR [35,43–45]. With increasing D each of the two methods
converges, and they converge with each other. This is a proof
of principle that the variational time evolution can be applied
to thermal states.

The data at hand suggest that with increasing D the
evolution converges faster than VTNR. However, at least for
the Ising benchmark, the numerical effort necessary to obtain
results of similar accuracy is roughly the same. In both methods
the bottleneck is the corner-transfer-matrix renormalization
procedure. In the case of VTNR larger D is necessary, but
in the case of the evolution the environmental tensors need to
be computed more times.

The advantage of VTNR is that it targets the desired temper-
ature directly; there is no need to evolve from β = 0, and thus
no evolution errors are accumulated. In order to minimize the
accumulation when evolving across the critical regime, a small
longitudinal bias has to be applied. The critical singularity
is recovered in the limit of small bias that requires large D.

FIG. 8. Thermal states for a transverse field hx = 2.9 with a
longitudinal bias hz = 0.01. The stars are results from variational
tensor network renormalization (VTNR), and the solid lines are from
the imaginary-time evolution. With increasing bond dimension D the
two methods converge on each other. (a) Longitudinal magnetization
〈Z〉 as a function of inverse temperature. (b) Energy per site E as a
function of inverse temperature.

However, one big advantage of the variational evolution is that
unlike VTNR targeting the accuracy of the partition function,
it aims directly at an accurate thermal state. In some models
this may prove to be a major advantage.

V. TIME EVOLUTION AFTER A SUDDEN QUENCH

Next, we move to the simulation of a real-time evolution
after a quench in an unbiased model (1) with hz = 0. The initial
state is the ground state for hx � h0 with all spins pointing
along x. At t = 0 the Hamiltonian is suddenly quenched down
to finite hx = 2h0,h0,h0/10, which are, respectively, above,
at, and below the quantum critical point h0.

Figure 9 shows a time evolution of the magnetization 〈X〉
and energy per site E after the sudden quench for bond
dimensions D = 2,3,4. With increasing D the energy becomes
conserved more accurately for a longer time. This is an
indication of the general convergence of the algorithm.

Not surprisingly, the results are most accurate for hx =
h0/10. This weak transverse field is close to hx = 0 when
the Hamiltonian is classical and the time evolution can be
represented exactly with D = 2. At hx = 0 quasiparticles

045110-6



TIME EVOLUTION OF AN INFINITE PROJECTED … PHYSICAL REVIEW B 98, 045110 (2018)

FIG. 9. Transverse magnetization 〈X〉 (left column) and energy
per site (right column) after a sudden quench from a ground state in
a strong transverse field, hx � h0, with all spins pointing along x

down to a finite hx = 2h0 (top row), hx = h0 (middle row), and hx =
h0/10 (bottom row). The quench is, respectively, within the same
phase, to the quantum critical point, and to a different phase. Energy
conservation shows systematic improvement with increasing bond
dimension D = 2,3,4. We see that for sufficiently small times seem-
ingly converged results for transverse magnetization can be obtained.
While approaching the limit of small entanglement (hx = h0/10), we
see that the convergence time is growing longer, as expected.

have a flat dispersion relation and do not propagate; hence,
even though they are excited as entangled pairs with opposite
quasimomenta, they do not spread entanglement across the
system. For any hx > 0, however, the entanglement grows with
time, and any bond dimension is bound to become insufficient
after a finite evolution time. However, as discussed in Sec. I,
there are potential applications where this effect is of limited
importance.

VI. CONCLUSION

We tested a straightforward algorithm to simulate real- and
imaginary-time evolution with infinite iPEPS. The algorithm is
based on variational maximization of the fidelity between a new
iPEPS obtained after direct application of a time step and its
approximation by an iPEPS with the original bond dimension.

The main result is the simulation of real-time evolution
after a sudden quench of a Hamiltonian. With increasing bond
dimension the results converge over increasing evolution time.
This is a proof-of-principle demonstration that simulation of
real-time evolution with a 2D tensor network is feasible.

We also applied the same algorithm to evolve purification of
thermal states. These results converge to the established VTNR
method, providing a proof of principle that the algorithm can be
applied to 2D strongly correlated systems at finite temperature.
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APPENDIX: TWO-SITE GATES

For the sake of clarity, the main text presents a straightfor-
ward single-site version of the algorithm. In practice it is more
efficient to implement the gateUZZ(dτ ) as a product of two-site
gates. To this end the infinite square lattice is divided into two
sublattices, A and B [see Fig. 10(a)]. On the checkerboard the
gate becomes a product,

UZZ(dτ ) = Ua
0 (dτ )Ua

1 (dτ )Ub
0 (dτ )Ub

1 (dτ ). (A1)

Here a and b are the Cartesian lattice directions spanned by ea

and eb,

Ua
s (dτ ) =

∏
mn

eidτZ2m+s−1,nZ2m+s,n , (A2)

Ub
s (dτ ) =

∏
mn

eidτZm,2n+s−1Zm,2n+s , (A3)

and Zm,n is an operator at site mea + neb.
Every NN gate in (A2) and (A3) is decomposed as in

(8). Consequently, when a gate, say, Ua
0 (dτ ), is applied to

the checkerboard AB iPEPS in Fig. 10(a), then every pair of
tensors A and B at every pair of NN sites (2m − 1)ea + neb and
2mea + neb is applied with the NN gate’s decomposition as in
Fig. 10(b). When the tensors A and B are fused with their re-
spective z, they become A′ and B ′, respectively, which are con-
nected by an index with a bond dimension 2D [see Fig. 10(c)].

FIG. 10. (a) The infinite square lattice is divided into two sublat-
tices with tensors A (lighter green) and B (darker green). (b) SVD
decomposition of a NN gate is applied to every pair A and B of
NN tensors. (c) When the tensors A and B are contracted with their
respective z, they become new tensors A′ and B ′ with a doubled bond
dimension 2D on their common NN bond. By variational optimization
the iPEPS made of A′ and B ′ is approximated by a new iPEPS made
of A′′ and B ′′ with the original bond dimension D.
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The action of the gate Ua
0 (dτ ) is completed when the A′B ′

iPEPS is approximated by a (variationally optimized) new
A′′B ′′ iPEPS with the original bond dimensionD at every bond.

Apart from the opportunity to use reduced tensors in the
variational optimization, the main advantage of the two-site
gates is that the enlarged bond dimension 2D appears only

on a minority of bonds. This speeds up the CTMRG for the
overlap 〈ψ ′|ψ ′′〉, which is the most time-consuming part of
the algorithm. The decomposition into two-site gates breaks
the symmetry of the lattice. Therefore, we use the efficient
nonsymmetric version of CTMRG [67] for the checkerboard
lattice.
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