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Most works on pyrochlore magnets deal with the interacting spin-1/2 local moments. We here study the spin-one
local moments on the pyrochlore lattice and propose a generic interacting spin model on a pyrochlore lattice. Our
spin model includes the antiferromagnetic Heisenberg interaction, the Dzyaloshinskii-Moriya interaction, and the
single-ion spin anisotropy. We develop a flavor wave theory and combine with a mean-field approach to study the
global phase diagram of this model and establish the relation between different phases in the phase diagram. We
find the regime of the quantum paramagnetic phase where a degenerate line of the magnetic excitations emerges
in the momentum space. We further predict the critical properties of the transition out of the quantum paramagnet
to the proximate orders. The presence of quantum order by disorder in the parts of the ordered phases is then
suggested. We point out the existence of degenerate and topological excitations in various phases. We discuss the
relevance with fluoride pyrochlore material NaCaNi2F7 and explain the role of the spin-orbit coupling and the
magnetic structures of the Ru-based pyrochlore A2Ru2O7 and the Mo-based pyrochlore A2Mo2O7.
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I. INTRODUCTION

Recently, there is a growing interest and effort in the
frustrated magnetic systems with spin-one local moments, and
interesting quantum phases and unconventional excitations
have been predicted for frustrated spin-one systems [1–8]. In
particular, a chiral liquid phase with a finite vector chirality or-
der has been obtained for the spin-one triangular lattice magnet
[8], Haldane phaselike symmetry-protected topological phases
have been suggested for three-dimensional spin-one systems
[5,9], spin liquid related physics and phenomenology has
been explored for the layered triangular material Ba3NiSb2O9

[10–16], and exotic excitations with degenerate band minima
were established for the spin-one diamond lattice antiferro-
magnet [6,17]. In this paper, we turn our attention to the
spin-one pyrochlore lattice antiferromagnet.

The pyrochlore antiferromagnet [18] is a stereotype of spin
systems with geometrical frustration and potential quantum
phases. In the last decade or so, most efforts in the field were de-
voted to the rare-earth pyrochlore magnets where the relevant
degrees of freedom are certain spin-orbital-entangled effective
spin-1/2 local moments [18–63]. Due to the geometrical
frustration and the bond-dependent anisotropic spin interaction
[19,20,25,64,65], interesting magnetic phases and phenomena,
quantum spin ice, and U (1) quantum spin liquid for example,
have been proposed and explored [22,25–27]. This field is
fertilized by the existence of the abundant rare-earth pyrochlore
magnets with different magnetic ions. Recently, a new family
of fluoride pyrochlore systems with the transition metal ions
Fe2+, Co2+, Ni2+, and Mn2+ has been synthesized [66–69].
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Unlike the rare-earth 4f electrons whose interactions are
usually quite small, these new systems, consisting of transition
metal ions, have much stronger spin interactions. Moreover,
spin-orbit coupling is less important in these systems, although
spin-orbit coupling sometimes becomes active and modifies
the local moment structure if there exists a partially filled t2g

shell for the magnetic ions [70].

FIG. 1. The phase diagram of our generic spin model for the
spin-1 pyrochlore system. Here, the Heisenberg exchange J is set to
be antiferromagnetic with J > 0. “Quant Para” refers to the quantum
paramagnetic phase. The details of the ordered phases are explained
in the main text. Two different but complementary methods, that are
detailed in Sec. III and Sec. IV, were used to obtain the phase diagram.
The (red) dot is the Heisenberg point of the model. A similar phase
diagram with the ferromagnetic Heisenberg exchange is found in
Appendix F.
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Just like the fundamental distinction between the half-
integer and the integer spin moments for one-dimensional
spin chains that was pointed out by F.D.M. Haldane [1,2],
the physical properties of the half-integer spin and the integer
spin moments on the pyrochlore lattice are expected to be
quite different. In fact, for the rare-earth pyrochlore magnets,
such a distinction has already been manifested in the Kramers
doublet system and the non-Kramers doublet system where the
non-Kramers doublet originates from integer spin and supports
magnetic quadrupolar order [25,27,33]. Since most works in
this field are dealing with effective spin-1/2 pyrochlores, it is
valuable to consider the physics of the spin-1 pyrochlores.

Among the existing fluoride pyrochlores, Co2+ and Mn2+

have half-integer spin moments while Ni2+ and Fe2+ have
integer spin moments [66–69]. From the conventional wis-
dom, when the spin moment is large, the system tends to
behave more classically. For geometrically frustrated systems,
however, the spin-one local moments may occasionally give
rise to quantum phenomena. Indeed, in the Ni-based fluoride
pyrochlore NaCaNi2F7, spin-ordering-related features were
not found in the thermodynamic measurement down to the spin
glassy transition at 3.6 K that is attributed to the possible bond
randomness, although the system has the Curie-Weiss temper-
ature −129 K [66]. Apart from this new material, the spin-one
pyrochlores have already been suggested for the Ru-based
pyrochlore A2Ru2O7 and the Mo-based pyrochlore A2Mo2O7,
despite the fact that the stronger spin-orbit coupling of the 4d

electrons may be more important in these two systems. Partly
motivated by these experiments and more broadly about the
physics of the spin-one moments, in this paper, we study the
generic spin model and the magnetic properties of the spin-one
local moments on the pyrochlore lattice.

We point out that, in addition to the Heisenberg model that is
usually assumed for the 3d transition metal ions and sometimes
for the 4d transition metal ions, there exist the on-site single-ion
spin anisotropy and the antisymmetric Dyzaloshinskii-Moriya
interaction. Our phase diagram is summarized in Fig. 1. In
our approach, we start from the quantum paramagnetic ground
state in the strong single-ion spin anisotropic limit and explore
the instability of this quantum state as the Heisenberg exchange
and the Dyzaloshinskii-Moriya interaction are switched on.
Mostly relying on a flavor wave theory, we access the phase
transitions out of this quantum paramagnetic state and ex-
plore the properties of criticalities. Inside the ordered phases,
we implement the usual mean-field theory and establish the
phase diagram on the ordered side. We further identify the
region on the ordered side where there exist continuous degen-
eracies of the ground state manifold at the mean-field level. The
quantum fluctuation is studied and lifts the continuous degen-
eracies. The magnetic excitations in different phases are also
discussed.

The following parts of the paper are organized as follows. In
Sec. II, we introduce the model Hamiltonian. In Sec. III, we use
the flavor wave theory and study the magnetic excitation and
the instability of the quantum paramagnetic phase. In Sec. IV,
we focus on the ordered side and study the magnetic properties
of the magnetic orders. Finally in Sec. V, we summarize
the theoretical prediction and the physical properties of the
phase diagram, discuss the materials’ relevance, and make an
extension to spin-3/2 pyrochlores.

FIG. 2. (a) The four sublattices and the unit cell of the pyrochlore
lattice. (b) The (blue) arrows define the local z or 〈111〉 axis. (c) The
electron configuration of the Ni2+ ion in NaCaNi2F7. While the eg

orbitals remain degenerate under the D3d point group, the t2g orbitals
would be broken into a1g and twofold degenerate e′

g orbitals. The
relative energies of a1g and e′

g orbitals are unknown, and we place a1g

at a higher energy in the figure. The S = 1 nature of the Ni2+ local
moment holds for either distribution of the a1g and e′

g orbitals.

II. MODEL HAMILTONIAN

We start from the local moment physics of the Ni2+ ion
in NaCaNi2F7. Although the starting point here is specific to
NaCaNi2F7, the physical model itself applies broadly to other
spin-one pyrochlore systems, and we merely present the model
through the specific case of NaCaNi2F7. The Ni2+ ion has
a 3d8 electron configuration. In the octahedral crystal field
environment of NaCaNi2F7, the six electrons occupy the lower
t2g orbitals, and the remaining two electrons occupy the upper
eg orbitals and form a spin S = 1 local moment. There is no
orbital degeneracy here. We propose the following spin model
for the interaction between the local moments. The minimal
spin Hamiltonian is given as [65],

H =
∑
〈ij〉

[J Si · Sj + Dij · (Si × Sj )] +
∑

i

Dz(Si · ẑi)
2, (1)

where Dij is the bond-dependent vector that defines the
antisymmetric Dzyaloshinskii-Moriya interaction [71]. For the
01 bond in Fig. 2(a), we have

D01 =
(

0,
D√

2
, − D√

2

)
, (2)

and Dij ’s on other bonds are readily obtained from the lattice
symmetry. The Dz term is the single-ion spin anisotropy
allowed by the D3d point group symmetry of the pyrochlore
lattice, and ẑi is the local 〈111〉 axis that is defined locally for
each pyrochlore sublattice. Even though the Dzyaloshinskii-
Moriya interaction arises from the first order effect of the spin-
orbit coupling and the single-ion spin anisotropy arises from
the second order effect of the spin-orbit coupling, it does not
necessarily indicate the single-ion anisotropy is weaker than
the Dzyaloshinskii-Moriya interaction. In fact, ignoring the
effect from Hund’s coupling, one has the following results [72]

|Dij |/J ∼ O(λ/�), (3)

|Dz|/� ∼ O(λ2/�2), (4)

where λ is the spin-orbit coupling and � is the crystal electric
field splitting between the t2g and the eg manifolds and can be
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much larger than the superexchange interaction J . As a result,
whether λ appears as the linear order or as the second order
cannot be used to argue for the relative magnitudes of |Dij |
and Dz. We include both couplings in our model Hamiltonian.
We have neglected the pseudodipolar interactions, as they
are subleading compared to the Dzyaloshinskii-Moriya
interaction for the 3d transition metal ions without any orbital
degeneracy [73]. The pseudodipolar interactions, however,
may become important for the 4d transition metal ions.

III. FLAVOR WAVE THEORY
FOR QUANTUM PARAMAGNET

Our minimal model contains three different interactions.
The quantum ground state of the Heisenberg model is one of
the hardest problems in quantum magnetism, so it is not so
profitable to start from there. Instead, we start from the strong
single-ion spin anisotropy limit with Dz > 0 where the ground
state is a simple product state of the quantum paramagnet with

|quantum paramagnet〉 =
∏

i

|Sz
i ≡ Si · ẑi = 0〉. (5)

This state is impossible for the half-integer spin local moments
as there is always Kramers’ degeneracy. From this well-
understood limit, we turn on the exchange interaction and study
the evolution of the magnetic excitation and the instability.

For our convenience, we first rewrite the spin Hamiltonian
in the local coordinate basis since the single-ion anisotropy
is defined locally. Under the local coordinate systems that are
defined in Appendix B, our spin model reduces to [65]

H =
∑
〈ij〉

[
JzzS

z
i S

z
j + J±(S+

i S−
j + H.c.) + J±±(γijS

+
i S+

j

+ γ ∗
ij S

−
i S−

j ) + Jz±
(
ξijS

z
i S

+
j + ξijS

+
i Sz

j + H.c.
)]

+
∑

i

Dz

(
Sz

i

)2
, (6)

where these spin operators, Sz
i ,S

+
i ,S−

i , are defined in the local
coordinate system for each sublattice. Note that the exchange
part of the model has the general form as the one for the
Kramers doublet on the pyrochlore lattice. The bond dependent
phase variable γij takes 1,ei2π/3,e−i2π/3 for the bonds on differ-
ent planes and ξij = −γ ∗

ij . The model in Eq. (6) contains two
more couplings than our model in Eq. (1). This is because the
subleading pseudodipolar interactions have been neglected in
Eq. (1). The relation between the couplings in the above equa-
tion and the couplings in Eq. (1) is listed in Appendix B. In the
following, we will focus our analysis on this form of the model.

A. Flavor wave representation

This quantum paramagnet has no long-range magnetic
order, and the conventional Holstein-Primarkoff spin-wave
theory cannot be directly applied at all. For our purpose, we
invoke so-called flavor wave theory, that was first developed in
Ref. [74] for the SU (4) spin-orbital model [75], and properly
adjust the formulation to our case. We define the states in the
Hilbert space as

|m〉i ≡ |Sz
i = m〉, (7)

where m = 0,±1, and the elementary operator is then given as
Sn

m(i) ≡ |m〉i〈n|i . For the quantum paramagnet, we introduce
the following flavor-wave representation,

S0
0 (i) = 1 − a

†
1(i)a1(i) − a

†
1̄(i)a1̄(i), (8)

S0
1 (i) = a

†
1(i)[1 − a

†
1(i)a1(i) − a

†
1̄(i)a1̄(i)]

1
2 , (9)

S0
1̄ (i) = a

†
1̄(i)[1 − a

†
1(i)a1(i) − a

†
1̄(i)a1̄(i)]

1
2 , (10)

S1
1̄ (i) = a

†
1̄(i)a1(i), (11)

S1
1 (i) = a

†
1(i)a1(i), (12)

S 1̄
1̄ (i) = a

†
1̄(i)a1̄(i), (13)

where a
†
1(i),a†

1̄(i) create magnetic excitation from |0〉i to
|1〉i ,|−1〉i , respectively. Here we have introduced two flavors
of the boson operators. This is very different from the usual
Holstein-Primakoff transformation where only one boson is
introduced to describe the quantum fluctuation of the magnetic
order. The underlying reason is due to the particular form of
the Hamiltonian and the quantum paramagnetic ground state
that allow the excitations of the |1〉i ,|−1〉i states to be equally
important. As a consequence, the excitation spectra for this
quantum paramagnet should have eight bands, rather than the
four bands in the usual Holstein-Primakoff spin wave theory.
Moreover, since the model has no continuous symmetry, the
magnetic excitation should be fully gapped.

B. Linear flavor wave theory

To carry out the actual calculation of the excitation spectra,
we replace the physical spin operators using the flavor wave
transformation and keep the Hamiltonian to the quadratic
orders in the boson operators. The resulting flavor wave
Hamiltonian is given as

Hfw =
∑

k

�
†
kM(k)�k, (14)

where

�k ≡ (ak01,ak01̄,ak11,ak11̄,ak21,ak21̄,ak31,ak31̄,

× a
†
k̄01

,a
†
k̄01̄

,a
†
k̄11

,a
†
k̄11̄

,a
†
k̄21

,a
†
k̄21̄

,a
†
k̄31

,a
†
k̄31̄

)T ,

(15)

and M(k) is a 16 × 16 matrix. Here k̄ ≡ −k. Due to the choice
of notation, M(k) can be written in block form as

M(k) =
(

M1(k) M2(k)

M∗
2 (k) M∗

1 (k)

)
, (16)

where M1(k) and M2(k) are 8 × 8 matrices and satisfy
M

†
1(k) = M1(k), MT

2 (k) = M2(k). The detailed matrix ele-
ments are listed in Appendix C.

In Fig. 3, we plot the linear flavor wave dispersion for
the specific choices of the couplings within the quantum
paramagnetic phase. As we expect, there are eight bands of the
magnetic excitations that are fully gapped. Besides the doubled
number of the bands, we notice other unusual properties of the
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FIG. 3. The (gapped) magnetic excitations in the quantum para-
magnetic phase from the linear flavor wave theory. Notice the
existence of the triply degenerate nodes (red circle) in the spectrum,
see the main text for detailed discussion. In the inset of (a), the
twofold degenerate bands are split artificially for demonstration. The
parameters are (a) D = −0.14J,Dz = 5J ; (b) D = 0.14J,Dz = 5J .
The high symmetry momenta in the Brillouin zone are defined as
� = (0,0,0), X = (0,2π,0), W = (π,2π,0), L = (π,π,π ).

excitations. We find that, in the D < 0 region of the quantum
paramagnetic phase, the minima of the magnetic excitations
develop a line of degeneracies from � to L in the momentum
space and a threefold degeneracy in the spin space at the
� point. In the D > 0 region of the quantum paramagnetic
phase, the band minima of the two lowest bands touch at the
� point with an accidental twofold degeneracy in the spin
space. Both the momentum space degeneracy and the spin
space degeneracy are not protected by any symmetry of the
spin Hamiltonian. We expect the emergent degeneracy to be
lifted when we go beyond the linear flavor wave theory and
include the interaction between the flavor bosons.

C. Critical properties from flavor wave theory

As we further increase the exchange interaction from the
quantum paramagnet, the gap of the magnetic excitations
gradually diminishes. Eventually, as the gap is closed, phase
transition happens and the system develops magnetic orders.
To understand the critical properties, we examine the transition
from the flavor wave theory. In the D < 0 region, the degen-
erate modes along the momentum line from � to L become
critical at the same time as the gap is closed, see Fig. 4(a).
Because of the line degeneracy, there is an enhanced density of
states at low energies at the criticality, and we would expect the

FIG. 4. The magnetic excitations on the phase boundary of the
quantum paramagnet, obtained from the linear flavor wave theory.
The excitation gap is closed. The parameters are (a) D = −0.17J ,
Dz = 5J ; (b) D = 0.17J , Dz = 5J .

specific heat Cv ∼ T 2 behavior at low temperatures from the
mean-field theory. The zero-temperature limit of the specific
heat should be modified because the fluctuations break the
momentum space degeneracy and lead to discrete degeneracy.
In the D > 0 region, as the system approaches the criticality,
only the � point becomes critical, see Fig. 4(b), and we expect
a simple Cv ∼ T 3 at the mean-field level and a logarithmic
correction when the fluctuations beyond the mean field are
included. The critical modes also contain information on the
proximate magnetic orders out of the quantum paramagnetic
phase, which is discussed and compared with the mean-field
theory from the ordered phase side in the next section (see Sec.
IV G).

D. Flavor wave excitations

In the flavor wave excitation spectrum, there exist triply
degenerate nodes along �-X and symmetry equivalent momen-
tum directions, indicated by red circles in Fig. 3. In the insets
of Fig. 3, we sketch that there are twofold degenerate bands
near the triply degenerate nodes. This twofold band degeneracy
is protected by a glide symmetry, which can be realized
by a reflection in the (100) plane followed by a fractional
translation (1/2,1/4,3/4) in our origin choice [see Fig. 2(a)].
This symmetry operation keeps the �-X line invariant and
permutes the sublattices as 0 ↔ 1 and 2 ↔ 3. Since a generic
field removes the glide symmetry and lifts the twofold band
degeneracy, one can apply an external magnetic field to open
a gap in the position of a triply degenerate node.
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The triply degenerate nodes have been previously discussed
in the electronic systems [76–79]. Unlike the cases for the
electronic systems where the modes at the nodes become
unconventional quasiparticles if the Fermi level is tuned to the
nodes, these excitations occur at finite energies for the bosonic
flavor waves.

We mention that in Fig. 3(b), there exist doubly degen-
erate touchings along �-X, W-L, and symmetry equivalent
momentum directions. These touchings belong to a nodal
surface rather than being isolated nodes; we will discuss their
properties in future works.

IV. MEAN-FIELD THEORY

To study the proximate magnetic order out of the quantum
paramagnetic phase, one natural approach would simply follow
the flavor wave theory that we have introduced in the previous
section and study the condensation of the critical flavor wave
modes. This is certainly feasible and requires including the
interactions between the flavor wave modes that lift the
degeneracy of the low-energy modes. We, however, implement
a mean-field theory in this section. This is justified since the
system develops magnetic orders in the parameter regimes
that we are interested. This mean-field approach works best
deep on the ordered side. This mean-field approach would
miss certain intermediate states that intervene between ordered
phases and the quantum paramagnet and may be stabilized by
the interaction between the critical favor modes [8].

In the mean-field theory, we simply replace the spin operator
with the mean-field order parameter and optimize the mean-
field Hamiltonian,

〈H 〉 =
∑
〈ij〉

J mi · mj+Dij · (mi × mj ) +
∑

i

Dz(mi · ẑi)
2,

(17)

under the local constraint |mi |2 = S2. The mean-field ground
state can then be found using the simple Luttinger-Tisza
method. Our results are summarized and displayed in Fig. 1
and Fig. 5. All of these orders support an ordering wave vector
Q = 0 where the magnetic unit cell coincides with the crystal
unit cell. In the following, we describe the magnetic orders
in detail. Since we are interested in magnetic orders in this
section, our results will be presented from bottom to top and
from left to right in the phase diagram of Fig. 1.

A. All-in all-out AFM

In the lower left region of the phase diagram, the “all-in all-
out” magnetic order is stabilized. This is understood as follows.
The easy-axis anisotropy favors the spins to be aligned with
the local ẑ direction, and the Heisenberg interaction requires
the vector addition of the spins from the four sublattices to be
zero. The Dzyaloshinskii-Moriya interaction is less obvious
but naturally favors noncollinear spin configurations. Simple
diagonalization of the Dzyaloshinskii-Moriya interaction term
directly gives the “all-in all-out” spin configuration. Therefore,
all three interactions in the Hamiltonian are optimized by the
“all-in all-out” spin configuration. Since the Dzyaloshinskii-
Moriya interaction favors this ground state, this “all-in all-out”
state extends further into the easy-plane anisotropic regime

with Dz > 0. As the local ẑ direction is a threefold rotational
axis, this symmetry operation does not generate new ground
states, and the ground state spin configuration merely has a Z2

degeneracy from the time-reversal transformation.

B. Splayed FM

In the lower right region of the phase diagram, the “splayed
ferromagnet” (“splayed FM”) is stabilized. One such spin
configuration is given in Fig. 5(b) and parameterized as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m0 = (
sin α√

2
, sin α√

2
, cos α

)
,

m1 = (− sin α√
2

, sin α√
2

, cos α
)
,

m2 = (
sin α√

2
,− sin α√

2
, cos α

)
,

m3 = (− sin α√
2

,− sin α√
2

, cos α
)
,

(18)

where mμ refers to the magnetic order on the μth sublattice,
and the “splay angle” α is found to be

α = arctan
D′

z − [8D2
z + D′

z
2]

1
2

2
√

2Dz

, (19)

where D′
z ≡ Dz − 12J − 3

√
2D. There is a ferromagnetic

component cos α along the global ẑ direction.
Other equivalent ground state spin configurations can be

obtained by lattice symmetry operations, and we have the other
ground states as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m0 = (
sin α√

2
, cos α, sin α√

2

)
,

m1 = (− sin α√
2

, cos α, sin α√
2

)
,

m2 = (− sin α√
2

, cos α,− sin α√
2

)
,

m3 = (
sin α√

2
, cos α,− sin α√

2

)
,

(20)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m0 = (
cos α, sin α√

2
, sin α√

2

)
,

m1 = (
cos α, − sin α√

2
, − sin α√

2

)
,

m2 = (
cos α, − sin α√

2
, sin α√

2

)
,

m3 = (
cos α, sin α√

2
, − sin α√

2

)
.

(21)

Together with the time reversal symmetry, there exists a
Z3 × Z2 degeneracy. This state supports a weak ferromag-
netism along one cubic axis and antiferromagnetism in the
remaining two directions. Clearly, when |Dz| is dominant, the
spins should be aligned with the local ẑ direction, and
the Dzyaloshinskii-Moriya interaction then favors “two-in
two-out” spin configurations in this case.

In the strong Dz limit [80], the splay angle α ≈ 54.7◦,
and the ground state is exactly the “two-in two-out” spin ice
configurations. In contrast, in the weak Dz limit, α = 90◦ and
the ground state becomes coplanar. This means the “two-in
two-out” spin ice configurations are smoothly connected to
coplanar states in this “splayed FM” regime.

In general, in this parameter regime, the interactions cannot
be optimized simultaneously. However, taking three inter-
actions together, we are able to find the “splayed FM” as
the ground state. This “splayed FM” was actually proposed
for the well-known quantum spin ice candidate materials
Yb2Sn2O7 and Yb2Ti2O7 [81,82], so we adopt the name
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FIG. 5. Representative configurations of the magnetic ordered phases in the phase diagram of Fig. 1. (a) All-in-all-out. (b) Splayed FM. The
splay angle is labeled by α. For this configuration, α = 74.2◦. (c) Coplanar XY AFM1. (d) Coplanar XY AFM2. (e) Noncoplanar XY AFM.

from there. We note that the splay angle α can only take
value from 54.7◦ to 90◦ for the “splayed FM” regime with
antiferromagnetic Heisenberg exchange. When the Heisenberg
exchange becomes ferromagnetic, α can take value in a larger
range (see Appendix F).

C. Coplanar XY AFM1

In the upper left region of the phase diagram, we obtain
a coplanar antiferromagnetic spin ground state and dub it
“coplanar XY AFM1.” Here ‘XY’ refers to the xy plane of
the local coordinate system. One such spin state is depicted in
Fig. 5(c) and is given as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m0 = 1√
2
(1,1̄,0),

m1 = 1√
2
(1̄,1̄,0),

m2 = 1√
2
(1,1,0),

m3 = 1√
2
(1̄,1,0).

(22)

The spins are perpendicular to the local ẑ direction of the
relevant sublattice and orient antiferromagnetically within the
same plane globally. This explains the use of the “coplanar
XY AFM1.” This “coplanar XY AFM1” ground state occurs
when Dz >

√
2|D| as one further increases the easy-plane

anisotropy from the “all-in all-out” phase. This “coplanar XY
AFM1” phase is in the easy-plane anisotropic limit, and the
spins prefer to orient in the local xy plane. The in-plane
spin configuration is able to content both the easy-plane
spin anisotropy and the Heisenberg exchange, since it is
known from the previous subsection that the Dzyaloshinskii-
Moriya interaction is optimized by the “all-in all-out” state for
D < 0. The particular spin configuration of the “coplanar XY
AFM1” state is obtained because the easy-plane anisotropy
wins over the Dzyaloshinskii-Moriya interaction such that
the Dzyaloshinskii-Moriya interaction is optimized within the
manifold of coplanar spin configurations only.

Applying the lattice symmetry operations, we generate two
equivalent spin configurations with⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m0 = 1√
2
(0,1,1̄),

m1 = 1√
2
(0,1̄,1),

m2 = 1√
2
(0,1̄,1̄),

m3 = 1√
2
(0,1,1),

(23)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m0 = 1√
2
(1,0,1̄),

m1 = 1√
2
(1̄,0,1̄),

m2 = 1√
2
(1̄,0,1),

m3 = 1√
2
(1,0,1).

(24)

Again from the time reversal symmetry, we have a Z3 × Z2

degeneracy for the ground state. In the literature on quantum
spin ice, the same classical state is referred to as “Palmer-
Chalker” state or “�4” state [83,84].

D. Coplanar XY AFM2

In the upper right region (both the “coplanar XY AFM2”
and “noncoplanar XY AFM”) of the phase diagram, we find an
extensively degenerate mean-field ground state, and all three
interactions are optimized at the same time. The extensive
degeneracy is parametrized by a U (1) angular variable θ , and
the ground state spin configuration is given as

mμ = x̂μ cos θ + ŷμ sin θ, (25)

with θ ∈ [0,2π ). Our spin Hamiltonian does not have any
continuous symmetry, thus the continuous degeneracy is not
the symmetry property of the Hamiltonian but is accidental.
We expect this continuous degeneracy to be lifted by quantum
fluctuation. This quantum order by disorder effect has been
previously explored in the effective spin-1/2 pyrochlore mate-
rial Er2Ti2O7 [85–87]. We here study this quantum mechanical
effect in the spin-1 pyrochlore system. We first introduce the
Holstein-Primakoff transformation for the spin operators,

Si · mi = S − b
†
i bi , (26)

Si · ẑi =
√

2S

2
(bi + b

†
i ), (27)

Si · (mi × ẑi) =
√

2S

2i
(bi − b

†
i ). (28)

Substituting the spin operators with the Holstein-Primakoff
bosons and keeping the boson terms up to quadratic order, we
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FIG. 6. Order by quantum disorder in the upper right region of
the phase diagram. Coplanar XY AFM2 and noncoplanar XY AFM
are separated by different order by quantum disorder results. (a) In
coplanar XY AFM2, the minima of zero point energy are realized
at θ = nπ/3 + π/6 for n ∈ Z. (b) In noncoplanar XY AFM, the
minima of zero point energy are realized at θ = nπ/3 for n ∈ Z. The
parameters are (a) D = 0.1J,Dz = 0.7J ; (b) D = J,Dz = 0.5J .

have the linear spin wave Hamiltonian (see Appendix E),

Hsw =
∑

k

∑
μν

[
Dz

2
δμν + Aμν(k)b†kμbkν

+ (Bμν(k)b†kμb
†
−kν + H.c.)

]
+ Emf, (29)

where μ,ν = 0,1,2,3 label the sublattices and Emf is the mean-
field energy of the ground state. The quantum zero point energy
is found to be

�E =
∑

k

∑
μ

1

2
[ωμ(k) − Aμμ(k) + Dz], (30)

where ωμ(k) is the μth spin wave excitation. In Fig. 6, we plot
the quantum zero point energy and find that the minima are
realized at

θ = nπ

3
+ π

6
, (31)

for n ∈ Z, see Fig. 6(a). One such spin configuration is
displayed in Fig. 5(d), and all the spins orient antiferromagnet-
ically within the same plane. We dub this phase “coplanar XY
AFM2.” The same classical state is referred to as “�3” state in
the literature on quantum spin ice [84].

E. Noncoplanar XY AFM

In the remaining part of the upper right region in the phase
diagram, quantum fluctuation leads to different ground state
spin configurations. As we plot in Fig. 6(b), the minima of the
zero-point energy are realized at

θ = nπ

3
(32)

for n ∈ Z. One such spin configuration is displayed in Fig. 5(e),
and all the spins orient antiferromagnetically but are not in the
same plane. This phase is dubbed “noncoplanar XY AFM.”
The same classical state is referred to as “�2” state in the
literature on quantum spin ice [84].

F. Phase boundaries between ordered phases

Here we explain the phase boundaries between different
ordered phases. The phase boundary between “coplanar XY

AFM2” and “noncoplanar XY AFM” is numerically deter-
mined by finding the minima of the quantum zero-point
energy. The other phase boundaries are determined by energy
competition between different interactions at the mean-field
level and understood from the connection to the Heisenberg
point. Since the order parameter is disconnected between
different ordered phases, all the phase transitions across the
boundaries are expected to be first order.

We start from the phase boundary between “all-in all-out”
and “splayed FM.” This boundary is defined by the curve

|Dz| = 9D(D − √
2J )

2
√

2D − J
. (33)

“All-in all-out” and “coplanar XY AFM1” are separated by
the line Dz = √

2|D|. The remaining two boundaries are the
line D = 0,Dz > 0, separating “coplanar XY AFM1” from
“coplanar XY AFM2” and “noncoplanar XY AFM”, and the
line Dz = 0,D > 0, separating “coplanar XY AFM2” from
“splayed FM”. There is enlarged mean-field ground state
manifold on these three lines. If the spin configurations of
two neighboring phases, say m1

i and m2
i , respectively, are

orthogonal with m1
i · m2

i = 0 for each sublattice, one can
readily construct a ground state manifold withU (1) degeneracy
on the phase boundary, written as

mi = cos ϕm1
i + sin ϕm2

i , (34)

where ϕ ∈ [0,2π ) is an angular variable. In Appendix G, we
discuss the ground state and the order by quantum disorder
effect on these phase boundaries. Finally, we mention that
these phase boundaries would be slightly altered if the quantum
fluctuations are fully taken into account, which is beyond the
mean-field result.

G. Phase boundaries to the quantum paramagnet

As we have explained in the beginning of this section,
there are two approaches to establish the magnetic orders
of this system. One approach is to start from the quantum
paramagnet by condensing the flavor wave boson. The other
approach is to implement the mean-field theory and is adopted
in this section. To build the connection between the proximate
magnetic orders with the quantum paramagnet within the latter
approach, one could apply the Weiss type of mean-field theory
by assuming the proximate magnetic order as the mean-field
ansatz and examine the disappearance of the magnetic orders.
This treatment necessarily finds a direct transition between the
proximate magnetic order and the quantum paramagnet and
does not provide more qualitatively new information than the
former approach. The current phase boundary is established
from the former approach and is found as Dz = 4J + 4

√
2|D|.

Intermediate phases such as the chiral liquid phase with a finite
vector chirality order may be stabilized by the flavor wave
interaction that is not considered in this paper.

For the current phase diagram, we explain the connection
between the proximate orders and the quantum paramagnet.
On the upper left part of the phase diagram, as we show in
the previous section, the flavor wave excitation has a line
degeneracy in the momentum space from � to L. But only
a magnetic order with wave vector Q = 0 can be constructed
on the phase boundary using the threefold zero modes at the �
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FIG. 7. Spin wave excitations of the ordered phases. The pa-
rameters are chosen as (a) D = −J,Dz = 0 (all-in all-out); (b)
D = J,Dz = −0.3J (splayed FM, the ferromagnetic component
is set along the global ẑ direction); (c) D = −0.3J,Dz = 0.6J

(coplanar XY AFM1, the configuration is set on the global xy

plane); (d) D = 0.1J,Dz = J,θ = π/3 (noncoplanar XY AFM); (e)
D = 0.5J,Dz = 0.1J,θ = 5π/6 (coplanar XY AFM2). We plot the
Brillouin zone of the pyrochlore lattice and indicate the high symmetry
lines in (f). Green circles in (b), (d), and (e) indicate band touchings
belong to certain nodal lines, shown in Fig. 8.

point, under the requirement that the magnitudes of the ordered
moments at each sublattice are uniform. This magnetic order is
exactly the coplanar XY AFM1 state that is discussed in Sec.
IV C. The same line degeneracy in momentum space is also
found in the mean-field treatment from the ordered phase side
if one softens the local constraint for the magnetic orders, and
again only the coplanar XY AFM1 state survives under the
local constraint, which is consistent with the result obtained
from the flavor wave approach.

On the upper right part of the phase diagram, the band
minimum of the flavor wave excitation in the quantum para-
magnet appears at the � point and has two degenerate modes.
The degenerate modes, when they are condensed, lead to the
magnetic order with a continuous U (1) degeneracy, which is
precisely theU (1) degeneracy that is discussed in Sec. IV D and
Sec. IV E. The detailed construction of the proximate orders
from the flavor wave approach can be found in Appendix D.

H. Topological magnons and spin wave excitations
of the ordered phases

In Fig. 7, we plot the spin wave excitation of each or-
dered phase along high symmetry lines in the Brillouin zone.
As expected, the spectra in Figs. 7(a), 7(b) and 7(c) are
fully gapped while in Figs. 7(d) and 7(e), there are gapless
pseudo-Goldstone modes at �, reflecting the continuous U (1)
degeneracy in the mean-field ground state manifold. Since the

FIG. 8. The nodal lines and Weyl nodes of the spin wave exci-
tation. (a) For the same parameters as in Fig. 7(b), there is a nodal
contour on the (001) plane (gray) of the reciprocal space. The band
touching shown in Fig. 7(b) is indicated by a green dot here. Moreover,
there exists a pair of Weyl nodes along the z axis, indicated by red
dots. (b) For the same parameters as in Fig. 7(d), there is a nodal
contour on the (001) plane (gray) of the reciprocal space too. Again
the band touching shown in Fig. 7(d) is indicated by a green dot. (c)
For the same parameters as in Fig. 7(e), the nodal lines form a cagelike
structure. One nodal contour is located on the (001) plane (gray) and
intersects with the other four nodal lines, of which two are located on
the (110) plane and the other two are located on the (11̄0) plane. The
two band touchings shown in Fig. 7(e) are indicated by green dots.

degeneracy is accidental, a small gap is expected when we go
beyond the linear spin wave approximation.

We further explore the topological spin wave modes in the
spectrum. Besides the Weyl nodes (see Fig. 8), we find extra
doubly degenerate band touchings, labeled by green circles
in Fig. 7. These touchings belong to certain nodal lines (see
Fig. 8). Since these magnon excitations are bosonic, they occur
at the finite energies. These topological magnons [88–95] are
magnetic analogues of the electronic topological semimetals
[96,97].

V. DISCUSSION

A. Summary of theoretical results

In this paper, we have proposed a generic spin model to
describe the interacting spin-one moments on the pyrochlore
lattice. We have established a global phase diagram with very
rich phases for this model using several different and comple-
mentary methods. The magnetic ordered states are understood
from both the mean-field theory and the instability of the
quantum paramagnetic phase. The relations between different
phases are further clarified. Both the magnetic structures of the
ordered phases and the corresponding elementary excitations
are carefully studied. We point out the existence of degenerate
and topological excitations. While these results are valid within
the approximation that we made, we would like to point out
the caveat of our theoretical results. We expect that our results
break down when the system approaches the Heisenberg limit.
Thus, the phases in the vicinity of the Heisenberg model of
Fig. 1 are expected to be altered, and more quantum treatment is
needed. The ground state for the pyrochlore lattice Heisenberg
model is one of the hardest problems in quantum magnetism.
The early theoretical attempts provide insights for the classical
limit [98,99]. Due to the extensive classical ground state
degeneracy, the quantum fluctuation is deemed to be very
strong when the quantum nature of the spins is considered.
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Moreover, there should be fundamental distinctions between
the spin-1/2 and the spin-1 Heisenberg models.

B. Survey of spin-one pyrochlore materials

There have already been several spin-one pyrochlore ma-
terials in the literature. We start with the Ni-based pyrochlore
material NaCaNi2F7 [66]. This material has a −129 K Curie-
Weiss temperature, and no features of spin orderings are ob-
served in the thermodynamic measurement until a spin glassy
transition at 3.6 K. The spin glassy transition is evidenced
by the bifurcation in the magnetic susceptibility between
the zero-field-cooled and field-cooled results. The magnetic
entropy saturates to Rln2 when the temperature is increased
to 70 K [66]. The highest temperature 70 K in the entropy
measurement is probably not too large to exhaust the actual
magnetic entropy as the Curie-Weiss temperature is −129 K.
If one takes this entropy result, this magnetic entropy differs
from the simple expectation for the spin-1 local moment and in-
dicates a significant easy-axis spin anisotropy that reduces the
total magnetic entropy. In this case, based on our phase diagram
in Fig. 1, there would be magnetic orders. It is possible that the
exchange randomness becomes important at low temperatures
and drives the system into a spin glassy state instead. Since
the glassy transition occurs at very low temperatures, the spin
physics and dynamics at higher temperatures and energy scales
are probably less influenced by the exchange randomness. If
the current entropy result is not reliable due to the small upper
temperature limit, one could extend the entropy measurement
further in the temperature to see if one can exhaust the spin-1
magnetic entropy. In any case, to test the relevance of the model
Hamiltonian, it can be helpful to measure the spin correlation
in the momentum space with neutron scattering and compare
with the theoretical results. Since our spin model contains
the spin space anisotropy in addition to the momentum space
due to the single-ion anisotropy and Dzyaloshinskii-Moriya
interaction, it is also quite useful to carry out the polarized
neutron scattering measurement on the single-crystalline sam-
ple to detect the spin correlation function in the spin space.
A very recent neutron scattering experiment was actually
implemented on a single crystal sample. The general features of
the spin correlation seem to be well captured by the first neigh-
bor Heisenberg model with much weaker further neighbor
interactions [121].

In fact, there exists a simple and useful recipe to estimate the
Dzyaloshinskii-Moriya interaction but not the single-ion spin
anisotropy. The effective magnetic moment of the Ni ion in
NaCaNi2F7 is found to be 3.7 μB from the susceptibility data
from 5 K to 300 K [66]. This deviates from 2.82 μB for the
pure S = 1 moment in the atomic limit, and this deviation is
due to the spin-orbit coupling. It is known that the deviation �g

of the Landé g factor is related to the Dzyaloshinskii-Moriya
interaction [73] with �g/g ∼ |Dij |/J . This suggests that the
Dzyaloshinskii-Moriya interaction may be up to 20–30% of the
Heisenberg exchange in NaCaNi2F7. This suggestion seems to
be inconsistent with the conclusion that the system is described
by the Heisenberg model in Ref. [121]. If the latter is true, there
should be an unknown cancellation mechanism in the exchange
paths that suppress the Dzyaloshinskii-Moriya interaction. If

FIG. 9. The orbital occupations for 4d4 electron configuration.
Under the trigonal distortion, the threefold degenerate t2g orbitals
are splitted into a1g and twofold degenerate e2g states. There are two
electron occupation configurations here. (a) has an unquenched orbital
degree of freedom. The orbital degree of freedom is quenched in (b).

the Dzyaloshinskii-Moriya interaction is sizable, its effect
would appear in the low-temperature magnetic properties.

Other existing spin-1 pyrochlore materials are the Ru-based
pyrochlore A2Ru2O7 and the Mo-based pyrochlore A2Mo2O7.
Both of them are discussed and summarized in a very nice
review paper [18] by Gardner, Gingras, and Greedan. In both
systems, the A site can be a rare-earth ion or a nonmagnetic
ion with no moments. In the former case, the coupling between
the rare-earth moments and the Ru/Mo moments may be
important, and the rare-earth magnetism also contributes to the
magnetic properties of the system. If the Ru-Ru interaction is
the dominant one, one may first consider the magnetic physics
of the Ru subsystem. In the latter case and also for A=Eu, one
only needs to consider the Ru/Mo magnetism.

The Ru4+ ion has a 4d4 electron configuration, and the
electrons occupy the lower t2g orbitals. Although the atomic
spin-orbit coupling is still active due to the partially filled
t2g manifold, the Hund’s coupling could suppress the effect
from the spin-orbit coupling for the 4d4 electron configuration.
If the spin-orbit coupling is truly dominant over the Hund’s
coupling, a quenched local moment would be obtained. Since
these are 4d electrons, we expect the spin-orbit coupling could
just be moderate compared to the Hund’s coupling. From the
experimental result of a spin-1 moment for the Ru4+ ion, it is
reasonable to take the view of a moderate spin-orbit coupling.
Moreover, as we show in Fig. 9, there can be two different
occupation configurations after one includes the trigonal dis-
tortion. Figure 9(a) has an orbital degeneracy, while Fig. 9(b)
has no orbital degeneracy. The prevailing view of spin-only
moment [18] for the Ru4+ ion supports the choice of Fig. 9(b).
Moreover, due to different orbital occupation configurations
and the realization of the spin-orbit coupling for the Ru4+ ion,
although the model stays the same as Eq. (1), the single-ion
anisotropy and the Dzyaloshinskii-Moriya interaction would
have different relations from the ones in Eqs. (3) and (4).

As we show in Table I, almost all materials in the A2Ru2O7

family develop magnetic orders except Tl2Ru2O7. We start
from the materials with pure Ru moments. The noncollinear
AFM state, that was found for Y2Ru2O7 in Ref. [100], is simply
the coplanar XY AFM1 state in Fig. 5. It is thus of interest
to search for topological magnons in this material. Tl2Ru2O7

experiences a structural transition at 120 K that breaks the cubic
symmetry, so our model does not really apply here. Eu2Ru2O7

was suggested to develop Ru sublattice orders at 118 K and
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TABLE I. A list of candidate spin-one pyrochlore materials. The null entries mean that the data is not available.

Materials Magnetic ions �CW Magnetic transitions Magnetic structure Refs

NaCaNi2F7 Ni2+(3d8) −129 K glassy transition at 3.6 K spin glass [66]
Y2Ru2O7 Ru4+(4d4) −1250 K AFM transition at 76 K noncollinear AFM Q = 0 [100]
Tl2Ru2O7 Ru4+(4d4) −956 K structure transition at 120 K gapped paramagnet [101]
Eu2Ru2O7 Ru4+(4d4) - Ru order at 118 K Ru order [102]
Pr2Ru2O7 Ru4+(4d4), Pr3+(4f 2) −224 K Ru AFM order at 162 K Ru AFM order [103,104]
Nd2Ru2O7 Ru4+(4d4), Nd3+(4f 3) −168 K Ru AFM order at 143 K Ru AFM order [105]
Gd2Ru2O7 Ru4+(4d4), Gd3+(4f 7) −10 K Ru AFM order at 114 K Ru AFM order Q = 0 [106]
Tb2Ru2O7 Ru4+(4d4), Tb3+(4f 8) −16 K Ru AFM order at 110 K Ru AFM order Q = 0 [107]
Dy2Ru2O7 Ru4+(4d4), Dy3+(4f 9) −10 K Ru AFM order at 100 K Ru AFM order [108]
Ho2Ru2O7 Ru4+(4d4), Ho3+(4f 10) −4 K Ru AFM order at 95 K Ru FM order Q = 0 [109,110]
Er2Ru2O7 Ru4+(4d4), Er3+(4f 11) −16 K Ru AFM order at 92 K Ru AFM order Q = 0 [111,112]
Yb2Ru2O7 Ru4+(4d4), Yb3+(4f 13) - Ru AFM order at 83 K Ru AFM order [110]
Y2Mo2O7 Mo4+(4d2) −200 K Mo spin glass at 22 K Mo spin glass [113–116]
Lu2Mo2O7 Mo4+(4d2) −160 K Mo spin glass at 16 K Mo spin glass [117]
Tb2Mo2O7 Mo4+(4d2), Tb3+(4f 8) 20 K spin glass at 25 K spin glass [118–120]

experience a glassylike transition at 23 K [102]. The precise
nature of the Ru order is not known.

The Ru materials with the unquenched rare-earth moments
contain richer physics than the ones with nonmagnetic rare-
earth moments. There are three energy scales to consider.
From high to low in the energy scales, we would list them
as Ru-Ru exchange interaction, f -d exchange between the
Ru moments and rare-earth moments, and the exchange and
dipolar interactions between the rare-earth moments. This
hierarchical energy structure arises from the different spatial
extension of the 4d electrons and the 4f electrons. Since the
Ru-Ru exchange interaction would be the dominant one, we
would expect the Ru moments to develop structures at higher
temperatures and influence the rare-earth moments via the f -d
exchange. The existing experiments support this view [18].

The experimental study on these rare-earth based Ru py-
rochlores has not been quite systematic yet. Only limited exper-
imental information is available. We here focus the discussion
on the systems with more known results. Ho2Ru2O7 was
studied using neutron scattering measurements in a nice paper
[109] by C.R. Wiebe et al. The authors revealed the Ru moment
order at ∼95 K and the Ho moment order at ∼1.4 K. The high
temperature Ru magnetic order is consistent with the splayed
FM with a splayed angle α ≈ 41◦. Under the internal exchange
field from the Ru order, the Ho moment further develops a
magnetic order at a lower temperature. Despite the agreement
between the experimental order and theoretical result, further
measurement of the magnetic excitation within the splayed FM
can be useful to identify nontrival magnon modes. Reference
[112] carried out a powder neutron scattering measurement
on Er2Ru2O7 and proposed a Q = 0 ordered state with a
collinear antiferromagnetic magnetic order along the 〈001〉
lattice direction for the Ru moments. Like the Ho2Ru2O7,
the Er moments develop a magnetic order at a much lower
temperature while the Ru moment ordering occurs at a higher
temperature and should be understood first. To stabilize the
collinear order for the Ru moments, one may need a biquadratic
spin interaction [122,123]. This collinear state is actually not
among the ordered states that we find. We suspect that one
ordered state in Fig. 5, especially the coplanar XY AFM2

state or the noncoplanar XY AFM state, may also explain the
existing data, e.g., observed magnetic reflection intensities, for
Er2Ru2O7. More experiments are needed to sort out the actual
magnetic order in this material.

Because the Ru spin-1 moments in these materials often or-
der at a higher temperature, it would be interesting to examine
the precise magnetic structure and the magnetic excitations
in the future experiments and compare with the theoretical
prediction. Future theoretical directions in these systems at
least include the understanding of the f -d exchange between
the rare-earth moments and the Ru moments and the magnetic
properties of the rare-earth subsystem [124]. Thef -d exchange
significantly depends on the nature of the rare-earth moment,
i.e., whether it is Kramers doublet, non-Kramers doublet, or
dipole-octupole doublet. As a result, the Ru molecular or
internal exchange field on the rare-earth subsystem not only
depends on the magnetic structure of the Ru subsystem but
also depends on the form of the f -d exchange. This may give
rise to rich magnetic structures and properties on the rare-earth
subsystems in the ordered phase of the Ru subsystems.

It is interesting to compare the spin-1 Ru pyrochlores
with the rare-earth osmates (A2Os2O7) and molybedates
(A2Mo2O7). The Os4+ ion has a 5d4 electron configuration,
and spin-orbit coupling is stronger than Ru4+. As a result,
rather than forming a S = 1 local moment, the magnetic
moment of the Os4+ ion is strongly suppressed by the spin-orbit
coupling that would favor a spin-orbital singlet in the strong
spin-orbit coupling limit [125–127]. Unlike the insulating
Ru-based pyrochlores, most Mo-based pyrochlore materials
are metallic [18]. The Mo4+ has a 4d2 electron configuration.
The metallic behavior is probably because the Hund’s coupling
suppresses the correlation effect and induces Hund’s metals
[128]. Instead of developing magnetic orders, the insulating
ones (Y2Mo2O7, Lu2Mo2O7, and Tb2Mo2O7) all show spin
glassy behaviors. The origin of the spin glass in these geometri-
cally frustrated pyrochlore molybedates remains a puzzle in the
field [18]. It is possible that the orbital occupation of the Mo4+

ion is not given by Fig. 10(a) and is instead given by Fig. 10(b).
In that case, the Mo local moment contains an unquenched
orbital degree of freedom, and the orbital and spin interact
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FIG. 10. The orbital occupations for 3d2/4d2 electron configura-
tion. Under the trigonal distortion, the threefold degenerate t2g orbitals
are splitted into a1g and twofold degenerate e2g states. There are two
electron occupation configurations here. (b) has an unquenched orbital
degree of freedom. The orbital degree of freedom is quenched in (a).

in a Kugel-Khomskii fashion [129] and are affected by the
lattice phonons. This spin-orbital physics has been suggested
for the spinel vanadate AV2O4 (A=Ca,Mg,Cd,Zn), where
V 3+ : 3d2 was expected to take the electron configuration in
Fig. 10(b) [130–135] and forms a spin-1 pyrochlore system
with additional orbital degree of freedom.

C. Extension to spin-3/2 pyrochlores

Although the major part of the paper deals with the spin-
1 pyrochlore materials, the same model actually applies to
the spin-3/2 pyrochlore materials. One similarity between
spin-3/2 and spin-1 moments is that the allowed single-ion
anisotropic terms for both cases are the same. Because it is
spin-3/2, there are no higher order terms allowed. Moreover,
the same type of arguments for the exchange part of the spin-1
model applies for the exchange part of the Hamiltonian for
spin-3/2 moments. On the other hand, the spin-3/2 moment is a
half-integer moment, and the effect of the local spin anisotropy
is quite different from the spin-1 moment. For the spin-3/2
moment one cannot construct a similar quantum paramagnetic
phase as that for the spin-1 moment, regardless of the easy-axis
or easy-plane anisotropy. In the strong easy-axis or easy-plane
anisotropic limit, the spin-3/2 moment reduces to an effective
spin-1/2 moment that can be described by the generic and
anisotropic model for the effective spin-1/2 moment. This
point of view has been suggested for the Co-based pyrochlore
materials NaCaCo2F7 and NaSrCo2F7 in Ref. [68]. Besides
this difference from the spin-1 moment, the magnetic orders, if
they occur in the spin-3/2 pyrochlore system, would be similar
to the spin-1 pyrochlore system, since the same mean-field
Hamiltonian applies to both systems. Moreover, the spin wave
excitation would have similar properties. For example, we
would expect the existence of the topological spin wave modes
such as Weyl magnons in the magnetic excitations of the
ordered spin-3/2 pyrochlore materials. In fact, the notion of
Weyl magnon was first proposed by our collaborators and us
in the context of the Cr-based spin-3/2 breathing pyrochlore
systems. The model Hamiltonian, that was used in Ref. [88],
did not include the Dzyaloshinskii-Moriya interaction. It was
also shown in Ref. [88] that the Weyl magnon is robust
against weak perturbation and extends to the regime of a
regular pyrochlore system. Besides the Co-pyrochlore and
Cr-spinel, the Mn-pyrochlore (A2Mn2O7) is another ideal

TABLE II. The local coordinate systems for the four sublattices.
The same choice can be found for the spin-1/2 Kramers doublet in
Ref. [47].

μ 0 1 2 3

x̂μ
1√
6
[2̄11] 1√

6
[2̄1̄1̄] 1√

6
[211̄] 1√

6
[21̄1]

ŷμ
1√
2
[01̄1] 1√

2
[011̄] 1√

2
[01̄1̄] 1√

2
[011]

ẑμ
1√
3
[111] 1√

3
[11̄1̄] 1√

3
[1̄11̄] 1√

3
[1̄1̄1]

spin-3/2 system. These materials were studied in the 1990s
after the discovery of giant magnetoresistance [18]. Since most
of these Mn-pyrochlores are well ordered, it would be exciting
to explore the topological magnons in these materials.
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APPENDIX A: DZYALOSHINSKII-MORIYA
INTERACTION

Below we list Dij vectors in the Dzyaloshinskii-Moriya
interaction [71] for bonds in Fig. 2:

D01 = 1√
2

(0,+D,−D), (A1)

D02 = 1√
2

(−D,0,+D), (A2)

D03 = 1√
2

(+D,−D,0), (A3)

D12 = 1√
2

(+D,+D,0), (A4)

D13 = 1√
2

(−D,0,−D), (A5)

D23 = 1√
2

(0,+D,+D). (A6)

APPENDIX B: TRANSFORMATION OF THE MODEL

We first define the local coordinate systems where Sz
i and

S±
i are defined. The choices of the local spin axes are listed in

Table II.
The relation between the couplings in Eq. (1) and the

couplings in Eq. (6) is given as

Jzz = 1
3 (2

√
2D − J ), J± = − 1

6 (
√

2D + J ),

J±± = − 1
3

(
D√

2
− J

)
, Jz± = 1

6 (D + 2
√

2J ). (B1)

045109-11



FEI-YE LI AND GANG CHEN PHYSICAL REVIEW B 98, 045109 (2018)

The bond-dependent phase variables γij and ξij can be written
in matrix form as

γ = −ξ ∗ =

⎛
⎜⎜⎜⎝

0 1 ei2π/3 e−i2π/3

1 0 e−i2π/3 ei2π/3

ei2π/3 e−i2π/3 0 1

e−i2π/3 ei2π/3 1 0

⎞
⎟⎟⎟⎠, (B2)

where the indices of the matrix label different sublattices.

APPENDIX C: FLAVOR WAVE HAMILTONIAN

The flavor wave Hamiltonian matrix defined in Eq. (14) can
be written in block form as

M(k) =
(

M1(k) M2(k)

M∗
2 (k) M∗

1 (k)

)
, (C1)

where M1(k) and M2(k) are 8 × 8 matrices and satisfy
M

†
1(k) = M1(k), MT

2 (k) = M2(k). M1(k) and M2(k) can be
further written in block form as⎛

⎜⎜⎝
m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

⎞
⎟⎟⎠, (C2)

where mμνs are 2 × 2 matrices.
For M1(k),

mμμ = 1

2

(
Dz 0
0 Dz

)
,

mμν(μ =ν) = 2 cos �μν

(
J± J±±γμν

J±±γ ∗
μν J±

)
. (C3)

For convenience, here and henceforth we define

�μν ≡ k · (rμ − rν), (C4)

where r0 = [000], r1 = 1
4 [011], r2 = 1

4 [101], r3 = 1
4 [110].

For M2(k),

mμμ =
(

0 0

0 0

)
,

mμν(μ =ν) = 2 cos �μν

(
J±±γμν J±

J± J±±γ ∗
μν

)
. (C5)

APPENDIX D: PROXIMATE ORDERS CONSTRUCTED
FROM THE FLAVOR WAVE THEORY

On the left boundary of the quantum paramagnetic phase
in Fig. 1, three eigenvectors of the matrix M(k) defined in
Eq. (14), corresponding to the zero modes at �, are found to be

ψ1 = (
ei 5

6 π , −ei 5
6 π , −ei π

6 ,ei π
6 ,0, −

√
3,

√
3,0,

−ei 5
6 π ,ei 5

6 π ,ei π
6 , −ei π

6 , −
√

3,0,0,
√

3
)T

,

ψ2 = (2i,i, −2i, −i,0, −
√

3,0,
√

3,

× i,2i, −i, −2i, −
√

3,0,
√

3,0)T ,

ψ3 = (
ei π

3 ,ei 2
3 π , −ei 2

3 π , −ei π
3 , −1,1,0,0,

× ei 2
3 π ,ei π

3 , −ei π
3 , −ei 2

3 π ,1, −1,0,0
)T

. (D1)

The condensate at � can be written as

〈�k=0〉 = c1ψ1 + c2ψ2 + c3ψ3, (D2)

where �k is defined in Eq. (15) and c1,2,3 are complex numbers
to be determined. The magnetic order is constructed from the
condensate, reads〈

Sz
μ

〉 = 〈a†
0μ1〉〈a0μ1〉 − 〈a†

0μ1̄〉〈a0μ1̄〉,〈
Sx

μ

〉 = 1√
2

(〈a†
0μ1〉 + 〈a0μ1〉 + 〈a†

0μ1̄〉 + 〈a0μ1̄〉),
〈
Sy

μ

〉 = 1√
2

(−i〈a†
0μ1〉 + i〈a0μ1〉 + i〈a†

0μ1̄〉 − i〈a0μ1̄〉). (D3)

The condensate must fulfill 〈a†
0μ1〉 = 〈a0μ1〉∗, 〈a†

0μ1̄〉 =
〈a0μ1̄〉∗ and we further require that the magnitudes of the
ordered moments at each sublattice, 〈Sμ〉, are uniform. The
solution of c1,2,3 gives the coplanar XY AFM1 state that is
discussed in Sec. IV C.

On the right boundary of the quantum paramagnetic phase
in Fig. 1, two eigenvectors of the zero modes at � are found to
be

ψ1 = (1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1)T , (D4)

ψ2 = (0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0)T . (D5)

The condensate at � can be written as

〈�k=0〉 = c1ψ1 + c2ψ2. (D6)

Applying the same procedure as previous, the solution of c1,2

gives the magnetic order with a U (1) degeneracy, which is
just the U (1) degeneracy that is discussed in Sec. IV D and
Sec. IV E.

APPENDIX E: SPIN WAVE HAMILTONIAN

The entries of the spin wave Hamiltonian in Eq. (29) are
given as

Aμμ = 2
√

2D + Dz + 2J,

Aμν(μ =ν) = cos �μν

3
(
√

2D − 2J )[1 + cos(2θ + φμν)],

Bμμ = 1
2Dz,

Bμν(μ =ν) = − 1
6 cos �μν[(

√
2D − 2J ) cos(2θ + φμν)

+ i(2D + 4
√

2J ) sin(θ − φμν) − 3
√

2D],

where the angle variable φμν is given as

φ =

⎛
⎜⎜⎜⎝

0 0 2π/3 −2π/3

0 0 −2π/3 2π/3

2π/3 −2π/3 0 0

−2π/3 2π/3 0 0

⎞
⎟⎟⎟⎠. (E1)

APPENDIX F: FERROMAGNETIC PHASE DIAGRAM

In Fig. 11, we show the ferromagnetic phase diagram of our
generic spin model defined in Eq. (1). In the phase diagram,
“quant. para.” refers to the quantum paramagnetic phase and
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FIG. 11. The phase diagram of our generic spin model with
ferromagnetic Heisenberg exchange (J < 0). The Heisenberg point
is indicated by a (blue) dot.

the other regions are ordered phases. “All-in all-out,” “coplanar
XY AFM1,” and “coplanar XY AFM2” are the same phases as
described in the antiferromagnetic phase diagram of Fig. 1.
The splayed ferromagnet is divided into “splayed FM1” and
“splayed FM2” according to the parameter regime of the splay
angle α, demonstrated in Fig. 12.

APPENDIX G: ORDER SELECTION
ON THE PHASE BOUNDARIES

a. Dz = √
2|D|

On the line Dz = √
2|D|, one has three sets of the ground

states with U (1) degeneracy. Combining the “all-in all-out”
configuration and the configuration in Eq. (22), one set of the
ground states can be parametrized as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m0 = cos ϕ 1√
3
(1,1,1) + sin ϕ 1√

2
(1,1̄,0),

m1 = cos ϕ 1√
3
(1,1̄,1̄) + sin ϕ 1√

2
(1̄,1̄,0),

m2 = cos ϕ 1√
3
(1̄,1,1̄) + sin ϕ 1√

2
(1,1,0),

m3 = cos ϕ 1√
3
(1̄,1̄,1) + sin ϕ 1√

2
(1̄,1,0).

(G1)

FIG. 12. The parameter regime of the splay angle α in “splayed
FM1” and “splayed FM2.” For the splayed ferromagnet, the spin
on sublattice 0 can be parametrized as (sin α/

√
2,sin α/

√
2, cos α),

where we set the ferromagnetic component along the z direction. In
“splayed FM1” and for fixed D, when Dz is tuned from negative
infinity to positive infinity, the spin on sublattice 0 sweeps from (111)
to (1̄1̄2) and α takes value from 54.7◦ to −35.3◦. When α = 0, we
have a collinear ferromagnetic state. On the other hand, in “splayed
FM2” and for fixed D, the spin on sublattice 0 sweeps from (110) to
(111) when Dz is tuned away from 0. The splay angle α then takes
value from 90◦ to 54.7◦. When α = 90◦, we have a coplanar state.

FIG. 13. Order by quantum disorder on the line Dz = √
2|D|.

(a) Three ellipses represent three sets of the ground states with U (1)
degeneracy. Their intersection point corresponds to the “all-in all-
out” state. (b) For the parametrization in Eq. (G1), the minima of
the quantum zero-point energy are realized at ϕ = 0,π , selecting the
“all-in all-out” state (indicated by a red point). The parameters are
Dz = √

2|D| = 0.5J . Here and in Figs. 15 and 16, we adapt Fig. 7
of Ref. [71] to schematically represent the ground state manifold and
the order by quantum disorder effect. Note that each state and its time
reversal partner are represented by a single point on the ellipses or
circles.

The other two sets are symmetry equivalent and can be obtained
by a threefold rotation. For each set of the ground states,
the minima of the quantum zero-point energy are realized at
ϕ = 0,π , so the order by quantum disorder effect selects the
“all-in all-out” state, see Fig. 13.

b. D = 0,Dz > 0
When Dzyaloshinskii-Moriya interaction is switched off,

the model describes an anisotropic pyrochlore lattice antifer-
romagnet. Although the easy-axis anisotropy (Dz < 0) leads
to simple “all-in all-out” configuration in the mean-field level,
the easy-plane case (Dz > 0) has a rich structure of the ground
state manifold.

First, we have a U (1) ground state manifold defined as

mμ = x̂μ cos θ + ŷμ sin θ. (G2)

For convenience we now dub this manifold “XY0.”
Combining XY0 and the ground state configurations of “copla-
nar XY AFM1,” one can construct extra three sets of generally

FIG. 14. The way to construct ground states with discrete degen-
eracy. For clarity, we only depict the part of the spin configuration
given in Eq. (22) (green arrows). Starting from this state, the freedom
of simultaneously flipping the spins along any 0-3-0-3-. . . chain (red
dashed line) or 1-2-1-2-. . . chain (blue dashed line) leads to hugely
degenerate ground states.
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FIG. 15. Order by quantum disorder on the line D = 0,Dz > 0.
(a)[(c)], four circles represent four sets of ground states with U (1)
degeneracy and the red points indicate the states selected by quantum
fluctuation for Dz > 0.11J (Dz < 0.11J ). For the parametrization in
Eq. (G3), the minima of the quantum zero-point energy are realized
at (b) ϕ = 0,π with D = 0,Dz = 0.5J ; (d) ϕ = π/2,3π/2 with
D = 0,Dz = 0.1J .

noncoplanar XY AFM ground states with U (1) degeneracy,
dubbed “XY1,” “XY2,” and “XY3,” respectively.

For convenience, we define the local direction
n̂φ

μ ≡ x̂μ cos φ + ŷμ sin φ, where φ is a rotation angle in
the local xy plane. The XY1 ground states are parametrized as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0 = cos ϕn̂
π
3
0 + sin ϕ 1√

2
(1,1̄,0),

m1 = cos ϕn̂
π
3
1 + sin ϕ 1√

2
(1̄,1̄,0),

m2 = cos ϕn̂
π
3
2 + sin ϕ 1√

2
(1,1,0),

m3 = cos ϕn̂
π
3
3 + sin ϕ 1√

2
(1̄,1,0).

(G3)

FIG. 16. Order by quantum disorder on the line Dz = 0,D > 0.
(a) Four circles represent four sets of ground states with U (1)
degeneracy and the red points indicate the states selected by quantum
fluctuation. We refer to three sets of coplanar states as “xy,” “yz,” and
“zx” respectively. (b) For the parametrization in Eq. (G4), the minima
of zero-point energy are realized at ϕ = 0,π with Dz = 0,D = 0.5J .

The symmetry related XY2 and XY3 ground states can be
obtained by applying the space group symmetry operations.

Moreover, one can construct ground states with huge dis-
crete degeneracy [136]. This can be understood like this [136]:
To optimize the antiferromagnetic Heisenberg interaction, one
needs to arrange

∑
μ mμ = 0 in each tetrahedron, and to satisfy

Dz term mμ, the spins must orient within the local xy plane.
Starting from the state defined in Eq. (22) where for this
state m0 + m3 = 0 and m1 + m2 = 0 are satisfied in each
tetrahedron and each spin orients within the local xy plane, we
can simultaneously flip the spins along any 0-3-0-3-. . . chain or
1-2-1-2-. . . chain without changing the mean-field energy (see
Fig. 14). Repeating this process, one obtains 4N2/3

degenerate
states where N is the total number of the unit cells. These
states are coplanar states in the global xy plane and generally
have no translational symmetry. Similar coplanar states in the
global yz and zx plane can be readily obtained by applying a
threefold rotation.

Now we discuss the order by quantum disorder effect for
the ground state manifold with continuous degeneracy. There
is a boundary point Dz = 0.11J separating the “noncoplanar
XY AFM” and the “coplanar XY AFM2” along the D = 0 line,
and the order by quantum disorder effect naturally depends on
Dz. For Dz > 0.11J , the minima of the quantum zero-point
energy select the ground states of “noncoplanar XY AFM”
from the continuous manifold, see Figs. 15(a) and 15(b).
For Dz < 0.11J , the ground states of “coplanar XY AFM1”
and “coplanar XY AFM2” are selected ground states when
quantum fluctuation is included [see Figs. 15(c) and 15(d)].
We mention that all the mean-field ground states found here
still hold as ground states for an anisotropic antiferromagnetic
Heisenberg model on the breathing pyrochlore lattice, which
is previously discussed in Ref. [88].

c. Dz = 0,D > 0
When the anisotropy is absent, a negative Dzyaloshinskii-

Moriya interaction favors simple “all-in all-out” state, and a
positive Dzyaloshinskii-Moriya interaction leads to a ground
state manifold with continuous degeneracy. This regime has
been studied in the previous work by mean-field theory and
classical Monte Carlo [71]. We here explore the quantum effect
beyond the mean-field theory.

Besides the XY0 manifold, we have another three sets of
coplanar ground states in the case of a positive Dzyaloshinskii-
Moriya interaction. The “splayed FM” states become coplanar
when approaching the limit Dz = 0. One such state is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0 = 1√
2
(1,1,0),

m1 = 1√
2
(1̄,1,0),

m2 = 1√
2
(1,1̄,0),

m3 = 1√
2
(1̄,1̄,0).

(G4)

Combining this state with the proper state in the XY0

manifold, one can construct a set of coplanar ground states
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in the global xy plane, parametrized as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0 = cos ϕn̂
− π

6
0 + sin ϕ 1√

2
(1,1,0),

m1 = cos ϕn̂
− π

6
1 + sin ϕ 1√

2
(1̄,1,0),

m2 = cos ϕn̂
− π

6
2 + sin ϕ 1√

2
(1,1̄,0),

m3 = cos ϕn̂
− π

6
3 + sin ϕ 1√

2
(1̄,1̄,0).

(G5)

Again the other two sets of coplanar ground states, in the global
yz and zx plane, respectively, can be obtained by applying the
threefold rotation. When one includes quantum fluctuation, it
turns out that the minima of the quantum zero-point energy
select the ground states of “coplanar XY AFM1” from the
whole manifold, see Fig. 16.

The ground state structure of the line Dz = 0,D > 0 and
the order by disorder effect (quantum and thermal) have been
extensively studied [71,137,138]. We mention that it is more
natural to understand the four-set structure of the ground state
manifold by putting this line on the full phase diagram in Fig. 1.
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