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Correlation-driven Lifshitz transition and orbital order in a two-band Hubbard model
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We study by dynamical mean-field theory the ground state of a quarter-filled Hubbard model of two bands
with different bandwidths. At half-filling, this model is known to display an orbital selective Mott transition, with
the narrower band undergoing Mott localization while the wider one being still itinerant. At quarter-filling, the
physical behavior is different and to some extent reversed. The interaction generates an effective crystal field
splitting, absent in the Hamiltonian, that tends to empty the narrower band in favor of the wider one, which
also become more correlated than the former at odds with the orbital selective paradigm. Upon increasing the
interaction, the depletion of the narrower band can continue till it empties completely and the system undergoes
a topological Lifshitz transition into a half-filled single-band metal that eventually turns insulating. Alternatively,
when the two bandwidths are not too different, a first order Mott transition intervenes before the Lifshitz’s one.
The properties of the Mott insulator are significantly affected by the interplay between spin and orbital degrees
of freedom.
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I. INTRODUCTION

Orbital degrees of freedom in correlated materials have
witnessed a revived interest in recent years mainly motivated
by the physics of ruthenates [1,2], of iridates and other
transition metal compounds with strong spin-orbit coupling
[3,4], and of iron pnictides [5–7]. Realistic lattice Hamiltonians
are characterized by tight-binding parameters generically not
invariant under orbital O(3) rotations. However, the sensitivity
to such orbital symmetry breaking terms depends significantly
on the degree of correlations, quantified by the strengths both of
the monopole Slater integral, i.e., the conventional Hubbard U ,
as well as of the higher order multipoles responsible of Hund’s
rules. For instance, the distinction between different orbitals
brought about by the hopping integrals and the crystal field
can be amplified by strong correlations, leading to pronounced
orbital differentiation [7–10], and eventually to the so-called
orbital-selective Mott transitions (OSMT) [11–26] where the
orbitals with the narrowest bandwidth localize while the others
are still itinerant. In addition, orbital degrees of freedom
are expected to play an important role in determining which
symmetry-broken phase is more likely to accompany the Mott
transition when correlations grow at integer electron density.
This issue has been studied quite intensively deep inside the
Mott insulator, where one can map the Hamiltonian onto
a Kugel-Khomskii type [27–30] of spin-orbital Heisenberg
model [3], while it is to a large extent unexplored right at the
Mott transition.

In this work, we tackle this issue and analyze how orbital
degrees of freedom affect the zero temperature Mott transition
in the simple two-band Hamiltonian where OSMT was first
observed [11], though at quarter [31] rather than at half-filling
[32–34]. We will show that, despite its simplicity, this model
acquires quite a rich phase diagram thanks to the orbital
degrees of freedom and their interplay with the spin ones.

The paper is organized as follows. In Sec. II, we introduce
the model and anticipate its possible phases by simple weak
and strong coupling arguments. In Secs. III and IV, we present
the solution of the model on a Bethe lattice with infinite
coordination number through the dynamical mean-field theory.
In particular, in Sec. III, we discuss the results obtained by
preventing magnetic long-range order, which we instead allow
in section IV. Finally, Sec. V is devoted to concluding remarks.

II. THE MODEL

We consider the Hubbard model of two orbitals with
different hopping integrals

H = − 1√
z

∑
〈RR′〉,σ

2∑
a=1

ta(c†Raσ cR′aσ + H.c.)

+ U

2

∑
R

nR
(
nR − 1

) − μ
∑

R

nR, (1)

on a Bethe lattice of coordination number z that we shall
eventually send to infinity. In (1), the operator cRaσ (c†Raσ )
annihilates (creates) an electron at site R in orbital a = 1,2
with spin σ =↑ , ↓, nR = ∑

aσ nRaσ = ∑
aσ c

†
Raσ cRaσ is the

number operator at site R, μ the chemical potential, and ta a
nearest-neighbor hopping integral, diagonal in the orbital index
a. Hereafter we shall assume t1 � t2 and define the hopping
anisotropy parameter α = t2/t1 ∈ [0,1].

At half-filling, i.e., an average occupation of two electrons
per site, 〈nR〉 = 2, the Hamiltonian (1) was first studied as the
simplest toy model to uncover the physics of OSMT [11–13].
The interaction U makes the narrower band more correlated
than the wider one, as one would naively expect, to such an
extent that band 2 may become Mott localized despite band 1
is still itinerant. This phenomenon is paradigmatic of many
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physical situations, the best known examples being heavy
fermions [35] and ruthenates [1].

Here we shall instead focus on the quarter-filled density
case, i.e., 〈nR〉 = 1. We consider an interaction term [see (1)],
which includes the monopole Slater integral U > 0, but not
the Coulomb exchange J responsible of Hund’s rule. This
term corresponds to the density-density part of the Kanamori
interaction [6,36] with no Hund’s coupling.

We introduce the local spin and orbital pseudospin opera-
tors, σ R and τR, respectively, through

σ R =
∑
aσσ ′

c
†
Raσ σ σσ ′ cRaσ ′ ,

τR =
∑
σab

c
†
Raσ σ ab cRbσ ,

where σ = (σx,σ y,σ z), with σx,y,z being the Pauli matrices.
The Hamiltonian (1) is invariant under global spin-SU(2)
rotations. On the contrary, orbital SU(2) symmetry holds only
at α = 1, while for any α < 1, the symmetry is lowered down
to U(1), which corresponds to uniform rotations around the
orbital pseudospin z axis. It follows that a finite expectation
value of the z component of the uniform pseudospin operator,
which defines the orbital polarization

τ z = 1

V

∑
Rσ

〈 nR1σ − nR2σ 〉 , (2)

V being the number of lattice sites, is allowed by symmetry,
while a finite expectation value of σ R and of τ

x,y

R would break
a Hamiltonian symmetry, the spin SU(2) and the orbital U(1),
respectively. We underline that when α = 1 the symmetry of
the model is enlarged to SU(4) [37], but in what follows, we
shall not consider such special point.

A. DMFT solution

We study the model Hamiltonian (1) by means of dynamical
mean-field theory (DMFT). This is a nonperturbative method
that provides an exact solution in the limit of infinite lattice
coordination z → ∞ [38,39]. The noninteracting density of
states corresponding to nearest-neighbor hopping ta/

√
z, a =

1,2, reads

Da(ε) = 2

πD2
a

√
D2

a − ε2 , (3)

where Da = 2ta is half the bandwidth. Hereafter, we shall
take D1 = 1 as energy unit, so that D2 = α � 1. We observe
that, since the Bethe lattice is bipartite and the Hamiltonian
is not frustrated, the most likely spatial modulation breaks the
symmetry between the two sublattices, which we shall label
as sublattice � = A and � = B. Within DMFT, the lattice
model is mapped onto two distinct effective impurity problems,
one for each sublattice. Each impurity is coupled to a self-
consistent bath, which is described by a frequency dependent
matrix Weiss field Ĝ−1

0�(iωn), whose matrix elements refer to
spin and orbital indices. Each Weiss field is determined self-
consistently by requiring the impurity problems to reproduce
the local physics of the lattice model, which corresponds to the
self-consistency equation:

Ĝ−1
0 (iωn) = Ĝ−1

loc(iωn) + 	̂(iωn), (4)

FIG. 1. Orbital polarization τ z as function of α for the noninter-
acting (U = 0) case.

where Ĝloc is the local interacting Green’s function of the lat-
tice model, and 	̂(iωn) the impurity self-energy matrix. In this
work, we shall employ zero-temperature exact diagonalization
as impurity solver [40,41], with a total number Ns = 10 of
sites. This corresponds to a discretization of the bath of the
effective Anderson model in Nb = 8 levels.1

B. Weak and strong coupling analyses

We can actually anticipate some features of the phase
diagram by simple arguments in the weak and strong coupling
regimes, respectively.

1. Weak coupling

When U = 0, the system describes a quarter-filled two-
band metal (2BM) with uniform orbital polarization τ z = 0 at
α = 1 that increases monotonically as α decreases (see Fig. 1).
A finite U � α, small enough to justify the Hartree-Fock
approximation, introduces an effective crystal-field splitting
between the two bands:

H → HHF = − 1√
z

∑
〈RR′〉,σ

2∑
a=1

ta(c†Raσ cR′aσ + H.c. )

−
∑

R

(
μHF nR + 
eff

R (n1R − n2R)
)

, (5)

where [42,43]


eff
R = U

2
〈 n1R − n2R 〉 = U

2
τ z ,∀ R , (6)

which, for any α < 1, favors the occupation of the band 1
that has larger bandwidth. If such mean-field result remained

1We performed calculations with different number of bath sites for
selected points in the phase diagram in order to check the convergence
of our results. We observed that qualitatively and quantitatively
identical results are obtained already for Nb = 8. We stress that the
bath parameters are determined self consistently in order to fulfill the
DMFT self consistency equations, so they are adaptive. This reduces
a lot the finite size effects on the solution of the problem, making this
approach accurate already with relatively few bath levels.
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valid even at sizable U , we would expect a topological Lifshitz
transition from a quarter-filled 2BM into a half-filled one-band
metal (1BM). We note that, as long as the model remains in
a quarter-filled 2BM phase, it is stable towards a Stoner-like
instability with modulated magnetic and/or orbital ordering,
which, in the present case, is expected to corresponds to a
translational symmetry breaking where the two-sublattice be-
come inequivalent. On the contrary, the half-filled 1BM phase
should become immediately unstable towards such symmetry
breaking [44], turning the metal phase into an insulating one
with magnetic and/or orbital ordering. In particular, since the
hopping is diagonal in the orbital index, we expect a magnetic
order that corresponds to a simple Néel antiferromagnet,
where, because of spin SU(2) invariance, symmetry can be
broken along any spin direction. Conversely, the Hamiltonian
for any α < 1 is only invariant under orbital U(1) rotations
around the pseudospin z axis. Therefore the possible orbital
orderings cannot be anticipated as simply as for the spin ones,
and we must resort to some more sophisticated calculation.
However, since all transitions are expected to occur at finite
U , there is no guarantee that the above mean-field arguments
hold, and thus the need of DMFT that is able to provide accurate
results for any interaction strength.

2. Strong coupling

In order to foresee which orbital ordering is most likely to
occur, we can still perform some simple analysis. Deep in the
Mott insulator, i.e., at strong coupling U 
 1, we can map the
lattice model Eq. (1) onto an effective Kugel-Khomskii spin-

orbital Heisenberg Hamiltonian H U
1−→ HKK [27,45], where

HKK = 1

z

∑
〈RR′〉

{
1

16U
(1 + σ R · σ R′ )

[
(1 + α2)

+ (1 − α2)
(
τ z

R + τ z
R′

) + (1 + α2) τ z
R τ z

R′

+ 2α
(
τ x

R τ x
R′ + τ

y

R τ
y

R′
)]

− 1

8U
(1 − α2)

(
τ z

R + τ z
R′

) − 1

4U
(1 + α2)

}
. (7)

We can solve this hamiltonian at the mean-field level factoris-
ing the wave function into a spin part, | ψσ 〉, and an orbital
pseudospin one, | ψτ 〉. We assume that the expectation value
on the spin wave function

〈ψσ | σ R · σ R′ | ψσ 〉 = −ε ∈ [−1,1] . (8)

Let us briefly comment about the meaning of Eq. (8). In a
generic lattice,

〈σ R · σ R′ 〉 = 〈σ R〉 · 〈σ R′ 〉 + O
(

1

z

)
, (9)

so that in the limit of infinite coordination, z → ∞, the
parameter ε in Eq. (8) is finite as long as spin SU(2) symmetry is
broken, in which case the mean-field approximation predicts an
antiferromagnetic spin configuration, ε = 1, and a ferro-orbital
(FO) one, with expectation value 〈ψτ | τ z

R | ψτ 〉 = 1, ∀ R.
On the contrary, if we were to discuss the mean-field phase
diagram of the Hamiltonian (7) in the paramagnetic sector and

FIG. 2. Schematic representation of the canted AFO phase, as-
suming that the U(1) symmetry is broken along x, i.e., φ = 0 in
Eq. (10). The arrows represent the configuration of the orbital pseudo-
spin vectors τ at the two sites (red dots) A and B in the unit cell. θ is
the angle between the z direction and the pseudospin τ on sublattice
A (on sublattice B the angle has the value −θ ).

in the limit z → ∞, we should, strictly speaking, set ε = 0.
In this case, the mean-field approximation for any 0 < α < 1
predicts two degenerate pseudo spin configurations, one, which
we denote as antiferro-orbital (AFO), characterized by the
finite expectation value 〈ψτ | τ z

R | ψτ 〉 = (−1)R , and the other,
which we denote as canted antiferro-orbital (canted AFO), see
Fig. 2, with nonzero expectation values

〈ψτ | (
cos φ τx

R + sin φ τ
y

R

) | ψτ 〉 = (−1)R τ || ,

〈ψτ | τ z
R | ψτ 〉 = τ z , (10)

where τ z = cos θ = (1 − α)/(1 + α), τ || = sin θ and φ is free,
signaling breaking of the orbital U(1) symmetry. This result
does not agree with DMFT, see below, which suggests that
higher-order terms in 1/U , not included in Eq. (7), split the
above accidental degeneracy. As a matter of fact, the actual
DMFT phase diagram can be still rationalized through the
mean-field treatment of the simple Hamiltonian (7), proviso a
finite ε is assumed even in the paramagnetic sector and despite
z → ∞.

For the above reason, we shall hereafter take ε as a free
parameter, in terms of which the phase diagram as function
of α is that shown in Fig. 3. Whenever ε < 0 (ferromagnetic
correlations) and α < 1, the system is in an AFO state. When
instead ε > 0, as physically expected, we find either a FO
state for α < ε or a canted AFO one otherwise. The transition
between the two phases is continuous within mean field.
Finally, for ε = 0, as we mentioned, the canted AFO and the
AFO are accidentally degenerate. The transition between them
is first order.

III. PARAMAGNETIC DMFT RESULTS

We now turn to exact DMFT and start by analyzing the
model (1) searching for paramagnetic solutions. However,
since the Hamiltonian is not orbital pseudospin invariant, we
cannot avoid orbital ordering.

We first consider an intermediate value of the bandwidth
ratio α = 0.5 and we show how the weakly interacting 2BM is
driven to a Mott insulating state by increasing the interaction
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FIG. 3. Mean-field phase diagram of the strong coupling Hamilto-
nian Eq. (7) as a function of α and of the phenomenological parameter
ε, defined in Eq. (8). The diagram shows three distinct phases: a ferro-
(FO) and an antiferro- (AFO) orbital state along the z direction of the
pseudospin and a canted AFO. The AFO phase is connected to the
canted AFO through a first order transition (dashed line). The FO
phase is separated from the canted AFO by a continuous transition
(solid line). When ε > 0 (ε < 0) the system has antiferromagnetic
(ferromagnetic) correlations. Along the line α = 1, the model is SU(4)
invariant, and our simple mean-field approximation does not apply
any more.

strength U . Such a phase transition is revealed by the evolution
of the quasiparticle residue

Za =
(

1 − ∂Re	aa(ω)

∂ω

)−1

|ω=0

, (11)

which quantifies the degree of Mott’s localization of quasipar-
ticles, being Za → 1 in the noninteracting limit and Za → 0
at the Mott transition.

The results for Za are reported in Fig. 4. In the weakly
interacting regime, the effects of the interaction are nearly

FIG. 4. The quasiparticle residues Za as function of U , for α =
0.5. Both Z1 and Z2 vanish at U = Uc2 � 2.80 signaling transition to
the Mott insulator. (Inset) Hysteretic behavior of Za near the critical
point. Filled (open) symbols are obtained continuing the solution from
small (large) values of U .

FIG. 5. The spectral functions Aa(ω) for α = 0.5 and sublattice
� = A. Data for a = 1 (a = 2) are reported on the left (right) column.
The results are for increasing values of U : U = 0.0 [(a) and (b)],
U = 2.1 < Uc1 [(c) and (d)], U = 3.1 > Uc2 [(e) and (f)].

identical on the two bands, i.e., Z1 � Z2. However, upon
increasing U , the two quantities start differentiating, with
the wider band becoming more correlated than the narrower
one, i.e., Z1 < Z2 [46], at odds with the paradigm of the
orbital selective Mott transition [11]. At a critical value of
U , the electrons on both bands localize, as signalled by the
simultaneous vanishing of Z1 and Z2. We find that the metal-
insulator Mott transition is first order. In the inset of Fig. 4, we
show that Za at the transition suddenly jump to zero, and we
also observe a clear hysteresis loop. The coexistence region
extends between Uc1 � 2.20 and Uc2 � 2.80.

A direct insight into the solution is obtained by the evolution
of the spectral functions Aa(ω) = − 1

π
ImGaa

loc(ω) with a =
1,2, shown in Fig. 5. At U = 0, the spectral functions have
the typical semi-elliptical shape of the Bethe lattice. Upon
increasing the interaction, see Figs. 5(c) and 5(d), we observe at
high-energy the gradual formation of the Hubbard sidebands,
coexisting with the low-energy quasiparticle peaks. For U >

Uc2, the system undergoes a transition into a Mott insulator. The
corresponding spectral functions show a large gap around the
Fermi level (ω = 0) and the two Hubbard sidebands centered
at about ω = ±U/2. We note that in the Mott insulator the
band 2 has still weight below the Fermi level, namely, unlike
the mean-field expectation, we do not find a transition into a
one-band model with maximum orbital polarization. In Fig. 6,
we show the values of the uniform orbital polarization, τ z,
and staggered one, τ ||, as function of U across the Mott
transition. We always find a finite uniform polarization, but
also an antiferro-orbital polarization in the xy plane, which we
have denoted as canted AFO state. This result suggests that the
observed degeneracy between the AFO along the z direction
and the canted AFO mentioned in Sec. II B 2 is removed in
favor of the canted AFO state.

In the noninteracting limit, τ || = 0 while the uniform orbital
polarization along z is finite, due to the different bandwidths of
the two orbitals. In agreement with mean field, upon increasing
U the wide band population grows at expenses of the narrow
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FIG. 6. Orbital polarization τ z (a) and staggered in-plane compo-
nent of the pseudospin τ || (b) as function of the interaction strength U .
Data are for α = 0.5. The arrow indicate the direction in the hysteresis
cycle.

one, thus leading to an increase of τ z while τ || remains zero.
However, this tendency does not proceed till a 2BM-to-1BM
transition, i.e., till τ z → 1; before that happens a first-order
Mott transition takes place. At the transition, we find a sudden
increase of τ || to an almost saturated value τ || ≈ 0.9, and,
consequently, τ z suddenly drops to a very small value, only
slightly larger than the noninteracting one.

We now consider a smaller value of the bandwidth ratio,
α = 0.1. The large mismatch between the two bandwidth
greatly enhances the occupation imbalance among the two
orbitals, already in the uncorrelated regime. We start by the
behavior of the quasiparticle residues Za , shown in Fig. 7.
Differently from the previous α = 0.5 case, the two bands
have distinct Za already at relatively small values of U , now
with the narrower band more correlated than the wider one.
This behavior is reversed at U � 1.2, at which the wider more
populated band 1 becomes also the most correlated one. Further
increasing the correlation strength eventually drives the system
into a Mott insulating state, as before through a first-order
transition at which both quasiparticle residues drop to zero.

FIG. 7. Quasiparticle residues Za as function of U and for α =
0.1. (Inset) The same quantities near the first order transition. The
arrows indicate the hysteresis cycle.

FIG. 8. Uniform orbital polarization, τ z, and staggered one, τ ||,
as a function of U . Data are for α = 0.1. The arrows indicate the
hysteresis cycle near the Mott transition.

It is useful to compare the behavior of Za with the evolution
of the orbital polarisations τ z and τ ||, shown in Fig. 8. For very
small U , the system is characterized by a large value of uniform
polarization, τ z, and vanishing staggered one, τ ||. By slightly
increasing the interaction strength, the orbital polarisation
rapidly saturates to τ z = 1. Concomitantly, the narrower band
empties while the wider one reaches half-filling. Therefore
correlation drives in this case a continuous topological Lifshitz
transition from a 2BM to a 1BM, as predicted by the Hartree-
Fock approximation. Interestingly, the narrower band keeps a
high degree of correlations, as demonstrated by the decreasing
behavior of Z2, see Fig. 7. In other words, although essentially
empty, the band 2 is not completely decoupled from band 1.

More insights can be gained by the behavior of the spectral
functions, shown in Fig. 9. The large orbital occupation
imbalance is already visible in the noninteracting limit, with

FIG. 9. Spectral functions for α = 0.1 and fixed spin on sublattice
A. Data are for increasing values of U : U = 0.0 [(a) and (b)], 1.2 [(c)
and (d)], and 3.3 [(e) and (f)]. Note the different scales in the y axis.
Arrows in panel (f) indicate tiny spectral weight below the Fermi level
for narrow band.
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FIG. 10. Uniform orbital polarization τ z and staggered in-plane
component of the pseudospin τ || as function of α. Data are for U =
5.0.

the wider band being nearly centered around the Fermi level
and, correspondingly, the narrower one nearly empty. Upon
increasing the interaction U , the narrower band 2 gets shifted
entirely above the Fermi level, yet it still shows spectral weight
at high energy resulting from correlation effects. Simultane-
ously, the wider band recovers a particle-hole symmetric shape
characterized by a three-peaks structure, with a renormalized
central feature flanked by the two precursors of the Hubbard
sidebands. For U > Uc2, a spectral gap opens in the half-filled
wider band signaling the onset of a Mott insulating state.
Notably, also the previously empty narrow band shows the
formation of a Mott gap which separates a large spectral feature
above the Fermi level from a tiny spectral weight below it, see
the arrows in Fig. 9(f). The systems is thus characterized by
Z1 = Z2 = 0 when it enters into the Mott state, see Fig. 7. As
for the larger values of α, the resulting insulating state has a
finite in-plane staggered polarization, τ ||, and a reduced value
of the uniform one, τ z, see Fig. 8.

In order to ascertain the strong-coupling picture of
Sec. II B 2, we study the evolution of the orbital order in the
Mott insulator at large U . In Fig. 10, we report the behavior of
both uniform, τ z, and staggered, τ ||, polarisations as function
of α for U = 5. When α → 0, τ z → 1, and τ || → 0, while
the opposite occurs for α → 1. The evolution between these
two limits is continuous, namely, the critical αc = 0. We
note that those results do not change by decreasing or in-
creasing the interaction strength, provided the system remains
within the insulating regime. This result further confirms the
larger stability of the canted AFO with respect to the AFO
along the z direction in the paramagnetic domain.

We summarize all previous results in the U -α phase-
diagram of Fig. 11. We find three distinct phases: a metallic
state at small U and large enough α in which both bands
are occupied (2BM); a metallic phase at small U and α

with a half-filled wider band and an empty narrower one
(1BM); a canted AFO ordered Mott insulator at large enough
interaction. The two metallic phases are connected through a
continuous Lifshitz transition [47] associated to the correlation
induced emptying of the narrow band. For a generic value
of α, increasing the interaction U drives the system into a

FIG. 11. The nonmagnetic phase diagram of the model in the U -α
plane. Three different phases are present: a two-bands metal (2BM)
at small U and large enough α; a one-band metal (1BM) for small
α and small U ; and a Mott insulator with canted AFO order. The
2BM phase is connected to the 1BM through a continuous topological
Lifshitz transition (diamonds). The transition to the canted AFO
ordered Mott insulator is of first order. The spinodal lines (filled circles
and squares) delimitate the coexistence region. The first-order critical
line (filled triangles) is computed from the energy crossing of the two
solutions. A tricritical point is present at the merging of the transition
line.

Mott state through a first-order transition. This transition is
associated with a large coexistence region (grey shaded area)
for Uc1 < U < Uc2 [48]. The merging of the Mott and the
Lifshitz transition lines is a tricritical point [49]. Interestingly,
the insulator and the 1BM spinodal lines show a residual de-
pendence on α. This reveals the strong entanglement between
the two bands. Thus, although in the 1BM phase the wider
band is half-filled and particle-hole symmetric, its description
can not be simply reduced to that of a single-band Hubbard
model.

This description is recovered only in the limit α → 0, where
just the broader band is filled for each value of the interaction
strength. We emphasize that the quarter filling condition
〈nR〉 = 1 differentiates this model from the Falicov-Kimball
one [50]. We find that the 1BM to Mott insulator transition at
α = 0 takes place continuously at Uc = Uc2, as in the DMFT
description of the Mott transition in the single-band Hubbard
model [39]. However, for any nonzero α a finite staggered
in-plane polarization appears, and thus both bands are partially
occupied.

IV. ANTIFERROMAGNETIC DMFT RESULTS

In the previous section, we artificially prevented the DMFT
solution to spontaneously break spin-SU(2) symmetry and
order magnetically, specifically into a simple Néel antiferro-
magnetic configuration since the lattice is bipartite and the
Hamiltonian not frustrated. Here, we shall instead leave the
system free to order also magnetically, and study the interplay
between spin and orbital orderings. Because of spin SU(2)
symmetry, all symmetry breaking directions are equivalent,
and thus we choose for convenience the z axis and define the
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FIG. 12. Uniform orbital polarization τ z (a) and staggered spin
magnetization m (b) as functions of the interaction U . Data are for α =
0.4. The system undergoes a first-order transition from the 2BM to an
antiferromagnetic (AFM) state, with finite m. The orbital polarization
saturates to τ z = 1 corresponding to a ferro-orbital (FO) ordering of
the AFM state. The arrows indicate the directions of the solutions in
the coexistence region UAFM

c1 = 0.9 < U < 1.2 = UAFM
c2 .

staggered magnetization of orbital a = 1,2 as

ma = 1

V

∑
R∈A

〈 nRa↑ − nRa↓ 〉 − 1

V

∑
R∈B

〈 nRa↑ − nRa↓ 〉 ,

and the full staggered magnetization as m = m1 + m2.
We start taking α = 0.4. In Fig. 12, we show the evolution

of the uniform orbital polarization τ z and staggered magne-
tization m as function of U . By increasing the interaction
from U = 0, τ z slowly increases, but the system remains a
paramagnetic 2BM, thus m = 0. For U = UAFM

c2 � 1.2, we
find a first-order transition to an antiferromagnetic (AFM)
ordered state, signalled by the sudden increase of the staggered
magnetization m. Concurrently, the uniform orbital polariza-
tion saturates, τ z = 1. We thus find that the magnetic transi-
tion appear simultaneously with the emptying of the narrow
band, as expected by the Stoner instability of a half-filled
single band.

We can gain insight into the nature of the AFM phase at
large U by looking at the spin resolved spectral functions of
the two orbitals, shown in Fig. 13. The wider band 1 has a
particle-hole symmetric spectrum. Conversely, the narrower
band lies entirely above the Fermi level.

We now study how the phase diagram changes with α. In
Fig. 14, we show the dependence upon α of the staggered
magnetization and polarization, m and τ ||, respectively, and
of the uniform orbital polarization τ z, deep in the insulating
phase at U = 4.5. For α � 0.7, we find the same behavior
as at α = 0.4, m � 1, τ z � 1 and τ || = 0. Surprisingly, at
α � 0.7, we observe a second-order transition, above which
also the orbital U(1) symmetry breaks spontaneously and
the model develops a finite staggered polarization τ ||. The
staggered magnetisation remains almost saturated, but now
has contribution from both bands. Indeed, since for α < 1 the
solution corresponds to a canted AFO ordering, the system has
a finite FO component along the z direction of τ , ultimately
giving rise to AFM correlations similar to the one-band case.

FIG. 13. Spin-resolved spectral functions for α = 0.4, sublattice
� = A, corresponding to majority spin up, and U = 1.6. Data for the
wide band are in (a) and (b), those for the narrow band in (c) and (d).

To get further insight in the nature of the AFM phase for
α > 0.7, we show in Fig. 15 the spin- and orbital-resolved
spectral functions at α = 0.9. It is instructive to compare these
data with those reported in Fig. 13. For this larger value of the
bandwidth ratio, the two orbitals have almost indistinguishable
spectral functions, unlike below the transition at α � 0.7.

We summarize our findings in the magnetic phase-diagram
drawn in Fig. 16. We find three distinct phases. At small
U , the 2BM is stable. For larger U , an AFM ordered in-
sulator sets in. The magnetic transition is first-order, with a
coexistence region that shrinks on approaching α = 0. The
magnetic transition takes place for any α and for values of
U smaller than those required in the absence of magnetism,
i.e., UAFM

c < Uc. In particular, as expected by comparison
with the single-band Hubbard model, the 1BM region gets
completely suppressed by the onset of AFM order. Moreover,
the AFM phase is cut in two by a second-order transition line

FIG. 14. (a) Uniform orbital polarization, τ z, and staggered one,
τ ||, as a function of α. (b) Total and orbital-resolved staggered
magnetization, m, m1, and m2, as function of α. Data are for
U = 4.5. The solution displays a continuous transition from the
ferro-orbital antiferromagnetic state to a canted antiferro-orbital but
still antiferromagnetic state at α � 0.7.

045105-7



F. GRANDI, A. AMARICCI, M. CAPONE, AND M. FABRIZIO PHYSICAL REVIEW B 98, 045105 (2018)

FIG. 15. Spin-resolved spectral functions for α = 0.9 on sublat-
tice A, U = 4.5 for the wide band [(a) and (b)] and the narrow one
[(c) and (d)].

associated with a change in orbital ordering. For α < 0.7, the
AFM has a saturated uniform orbital polarization, in which
only the wide band is occupied and contributes to the magnetic
ordering. Increasing the bandwidth ratio above α � 0.7 leads
to spontaneous orbital-U(1) symmetry breaking, signalled by a
finite in-plane staggered orbital polarization. In this phase, both
bands are almost equally occupied and thus both contribute
to the AFM order. Interestingly, we find that this transition
is independent by the interaction strength U and that we
can reproduce it at the mean-field level by assuming a value
ε ≈ 0.7 for the spin-spin correlation parameter that appears in
Fig. 3.

We emphasize that the above results are valid as long as
α < 1. When α = 1 the enlarged SU(4) symmetry of the model

FIG. 16. Magnetic phase-diagram of the model in the U -α plane.
The phase diagram shows two main regions: a paramagnetic 2BM
for small values of the interaction U and an AFM insulator for
U > UAFM

c . The magnetic transition is of the first order. The (gray)
shaded area indicates the coexistence region. The AFM phase is
further divided in two by a continuous transition: an AFM with
a canted AFO order for α > 0.7, and an AFM with full orbital
polarization for α < 0.7.

may entail different type of spin-orbital orders [37] that we did
not analyze.

V. CONCLUSIONS

Despite its simplicity, two bands with different bandwidths
subject to a monopole Slater integral U and at quarter-filling,
the model (1) shows a remarkably rich phase diagram once the
interplay between orbital and spin degrees of freedom are fully
taken into account. In particular, because of the bandwidth
difference, the interaction U generates an effective crystal
field that tends to empty the narrower band. This shows that
correlations may not just enhance an existing crystal field, as
pointed out in Ref. [51] in connection with the physics of
V2O3, but even generate one despite its absence in the original
Hamiltonian. The depletion of the narrower band continues
till a topological Lifshitz transition occurs, above which only
the wider band remains occupied, and specifically half-filled.
In our case study, with a bipartite lattice and unfrustrated
Hamiltonian, as soon as the narrower band empties, a Stoner
instability takes place driving the half-filled wider band into
an antiferromagnetic insulator. This magnetic insulator still
shows an active role of the orbital degrees of freedom that can
drive a further phase transition between an insulator where
only the wider band is occupied into another one where a
canted antiferro-orbital order appears, and thus both bands
are populated. The physics of the magnetic insulator observed
at α ≈ 1 can describe some of the properties of the KCuF3

compound [52,53]. However, we would like to emphasize that
in the present work does not take into account the strong
directionality of the eg bands in d-orbital compounds, which
makes the comparison with realistic materials hard. Such
important effect is left for future work in this direction.

We argue that, in a generic situation where some degree of
frustration is unavoidably present, either geometric or caused
by longer range hopping integrals, the one-band metal, with
only the wider band occupied, might remain stable till a finite U

Mott transition, as we indeed found by preventing magnetism.
We thus expect that the generic phase diagram must include,
for not too strong repulsion U , a quarter-filled two-band metal
separated by an interaction-induced Lifshitz transition from a
half-filled one-band metal. Both metal phases must eventually
give way to a Mott insulator above a critical U , whose precise
magnetic and orbital properties will critically depend on
the degree of frustration. We end emphasising that, at odds
with the naive expectation that a narrower band must also be
the more correlated one, we here find right the opposite. This
effect is due to the effective crystal field 
eff that progressively
empties the narrow band and at the same time brings the broad
band closer and closer to the half-filling condition, enhancing
the correlation effect on the wider band.
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