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Coulomb excitations in ABC-stacked trilayer graphene
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The layer-based random-phase approximation is further developed to investigate electronic excitations in
trilayer ABC-stacked graphene. All layer-dependent atomic interactions and Coulomb interactions are included
in the dynamic charge screening. There exist rich and unique (momentum, frequency)-excitation phase diagrams,
in which the complex single-particle excitations and five kinds of plasmon modes are dominated by unusual
energy bands and doping carrier densities. The latter frequently experience significant Landau damping due to
the former, leading to coexistence or destruction in the energy-loss spectra. Specifically, the dispersion of the only
acoustic plasmon in the pristine case is dramatically changed from linear to square root, even at very low doping.
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Few-layer graphenes are one of the mainstream two-
dimensional (2D) materials since their discovery by me-
chanical exfoliation on Bernal graphite in 2004 [1]. Such
systems have unique geometric structures, nanoscaled thick-
nesses, a honeycomb lattice with two sublattices, a lay-
ered structure, and distinct stacking configurations. They
are very suitable for studying diverse physical phenomena,
such as massless/massive fermions [2,3], Coulomb excita-
tions/deexcitations [4–14], quantized Landau levels [15–17],
magneto-optical selection rules [17,18], and quantum Hall
effects [19]. Specifically, the electronic excitations arising from
the electron-electron (e-e) interactions play critical roles in
the energy and width of quasiparticle states. Graphene-related
systems have great potential as next-generation plasmonics
for terahertz to midinfrared applications because of their
unique and tunable collective excitations [20–24]. This Rapid
Communication is focused on the rich Coulomb excitation
spectra of ABC-stacked trilayer graphene. The relationship
between the momentum-frequency phase diagram and the
Fermi energy is investigated in detail.

Up to now, the stacking configurations identified in syn-
thesized graphene systems cover ABC [25–28], ABA [27],
AAB [29], and AAA [30]. They are the critical factor in
determining the essential low-energy properties, e.g., the 2pz-
orbital-inducedπ -electronic structures. Among them, the ABC
stacking, being predicted to have the lowest ground-state
energy [31], is frequently observed in experimental syntheses.
This system presents very rich band structures under the
various vertical and nonvertical interlayer atomic interactions.
For example, trilayer ABC stacking possesses three pairs of
weakly dispersive, sombrero-shaped, and linear energy bands
[Fig. 1(a)]. Such energy dispersions will be directly reflected
in other physical properties, e.g., the optical spectra [17,28]
and low-frequency plasmon modes.
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Many theoretical [4–8] and experimental [9–14] studies
on the Coulomb excitations of graphene-related systems have
been conducted. The single-particle and collective excitations
(SPEs and plasmons) are very sensitive to the stacking con-
figurations, the number of layers, the electric and magnetic
fields, and the dimensions. An intrinsic monolayer graphene
only possesses interband single-particle excitations (SPEs) at
zero temperature because of the zero-gap semiconductor [32].
Three plasmon modes are revealed in bilayer AA stacking,
but not in bilayer AB stacking [6,7]. The fact that the former
has a sufficiently high free-carrier density due to the interlayer
atomic interactions accounts for this important difference. In
extrinsic few-layer graphenes the doping-free carriers can cre-
ate rich SPEs and plasmon modes [5–7]. However, most of the
theoretical predictions only consider the electronic excitations
arising from the first pair of valence and conduction bands
nearest to the Fermi level (EF ). The fully dynamic charge
screening due to all the pairs of energy bands are included in the
current calculations, so that diverse Coulomb excitation spectra
can be presented in momentum- and frequency-dependent
phase diagrams.

For the ABC-stacked trilayer graphene, the band-structure
and Coulomb interactions are, respectively, evaluated from
the tight-binding model and random-phase approximation
(RPA). Specifically, the intralayer and the interlayer atomic
interactions and Coulomb interactions are fully taken into
consideration; furthermore, layer-based polarization functions
and dielectric functions are built from sublattice-dependent
tight-binding functions. Many kinds of SPE channels and
plasmon modes are explored in detail, especially for the strong
dependence of electronic excitations on the magnitude of trans-
ferred momentum (q) and EF . The predicted results could be
verified by high-resolution electron-energy-loss spectroscopy
(EELS) [11,12] and inelastic light scattering spectroscopy
[13,14].

As shown in Fig. 1(a), the ABC-stacked trilayer graphene
has significant interlayer atomic interactions (β1–β5) in ad-
dition to an intralayer one (β0) [33]. The former creates
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FIG. 1. (a) Geometric structure and (b) low-energy bands of
ABC-stacked trilayer graphene. The Fermi level of the pristine
graphene is set to be zero. (c) Imaginary and (d) real parts of P

(1)
11

at EF = 0 and EF = 0.1 eV for different q’s. (e) and (f) correspond
to those of P

(1)
22 . (g)–(j) are related plots for q = 0.01 at various EF ’s.

φ is the angle between q and
−−→
�M .

the layer-dependent Coulomb excitation behavior. The π -
electronic Hamiltonian is built from six 2pz-dependent tight-
binding functions. There are three pairs of valence and con-
duction bands, corresponding to the weakly dispersive (Sc,v

1 ),
sombrero-shaped (Sc,v

2 ), and linear (Sc,v
3 ) dispersions, as shown

in Fig. 1(b). The first pair belongs to surface-localized states,
since they mainly come from the top and bottom layers. The
electronic structures of ABC-stacked trilayer graphenes have
been verified by angle-resolved photoemission spectroscopy
(ARPES) [34]. Specifically, the presence of surface-localized
states has been clarified for the partially flat subbands centered
at the K point. This will induce unusual electronic excitations,
compared with other stacking systems. Each wave function
is composed of six sublattice-based tight-binding functions,
indicating the theoretical framework of the layer-dependent
RPA.

When an electron beam is incident on the ABC-stacked
trilayer graphene, the charge density distribution is assumed to
be uniform inside each layer. The π electrons on distinct layers
will screen the time-dependent external potentials [Vll′ (q)’s;
the lth layer] via e-e interactions, leading to the induced charges

and potentials. Within the linear response, the induced charge
density is proportional to the effective Coulomb potentials
[V eff

ll′ (q, ω )’s; ω is the transferred frequency during charge
screening]. By using the layer-based RPA, the relationship
among the effective, external, and induced Coulomb potentials
is characterized by the Dyson equation [7],

ε0V
eff
ll′ (q, ω) = Vll′ (q) +

∑
m,m′

Vlm(q)P (1)
m,m′ (q, ω)V eff

m′l′ (q, ω),

(1)
where ε0 (=2.4) is the background dielectric constant. The
external potential Vll′ (q) is expressed as vqe

−q|l−l′ |Ic , where
vq (= 2πe2/q) is the 2D bare Coulomb potential of a 2D
electron gas, and the layer distance Ic is set as 3.35 Å−1 [31].
Apparently, the induced potential in the third term reveals
the complicated dynamic screening due to the intralayer and
interlayer Coulomb interactions. The layer-dependent bare
polarization function, being determined by energy bands and
wave functions, is expressed as

P
(1)
mm′ (q, ω) = 2

∑
k

∑
n,n′

∑
h,h′=c,v

(∑
i

uh
nmi (k)uh′∗

n′m′i (k + q)

)

×
(∑

i ′
uh∗

nm′i ′ (k)uh′
n′m′i ′ (k + q)

)

× f
(
Eh

n (k)
) − f (Eh′

n′ (k + q))

Eh
n (k) − Eh′

n′ (k + q) + h̄ω + i�
. (2)

uh
nmi is the amplitude of the wave function on the ith sublattice

of the mth layer, arising from the valence/conduction state
(h = c and v) of the nth energy band. f (Eh

n (k)) = 1/{1 +
exp[(Eh

n (k) − μ(T ))/kBT ]} is the Fermi-Dirac distribution.
kB , μ(T ), and � stand for the Boltzmann constant, chemical
potential, and the energy width due to various deexcitation
mechanisms, respectively. Moreover, the layer-dependent di-
electric function is defined by the linear relationship between
the effective and external potentials,

εll′ (q, ω) = ε0δll′ −
∑
m

Vlm(q)P (1)
m,l′ (q, ω). (3)

Using Eq. (3), one can express Eq. (1) as a linear tensor
equation. The effective potential tensor is the inverse of the
dielectric function tensor multiplied by the external potential
tensor. The dimensional energy-loss function is useful in
understanding the inelastic scattering probability of the EELS
measurement [7,35],

Im[−1/ε] ≡
∑

l

Im
[ − V eff

ll (q, ω)
]/(∑

l,l′
Vll′ (q)/3

)
. (4)

Equations (1)–(4), which cover all the atomic and Coulomb
interactions, are applicable to any layered graphene systems.

The dynamic Coulomb response displays SPEs and col-
lective excitations as the transferred q and ω are conserved
during e-e interactions. These two types of excitations are,
respectively, characterized by the bare response function
P

(1)
ll′ (q, ω) and energy-loss function Im[− 1

ε
]. P

(1)
ll′ (q, ω) de-

scribes the dynamic charge screening and directly reflects
the main features of the band structure. The imaginary part
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P
(1)
ll′ (q, ω) represents the strength of the SPEs and is respon-

sible for the Landau damping. Im[− 1
ε
] is used to classify

the plasmons in the screened Coulomb excitations. Collective
excitations, or plasmons, appear at certain (q, ω) regions,
where Im P

(1)
ll′ (q, ω) is small, indicating the weak Landau

damping. As shown in Figs. 1(c)–1(j), the interlayer polar-
izations (l = l′) and intralayer polarizations (l �= l′) exhibit
special structures associated with the critical points in the
energy bands. In response to the dynamic Coulomb potential,
Re[P (1)

ll′ (q, ω)] and Im[P (1)
ll′ (q, ω)] are linked to each other via

the Kramers-Kronig relations [35]. The divergent singularities
of Im[P (1)

ll′ (q, ω)] correspond to the van Hove singularities in
the density of states (DOS). In ABC-stacked trilayer graphene,
the 3 × 3 polarization function P

(1)
ll′ (q, ω) depends on the

symmetry of the wave function on each layer. Revealing
the corresponding excitations, the intralayer and interlayer
polarizations have similar structures, while their signs are
determined by the phases of the wave functions. It is deduced
that P

(1)
11 = P

(1)
33 , P

(1)
12 = P

(1)
23 , and P

(1)
11 � |P (1)

13 | due to the
geometric inversion symmetry in the ABC configuration. For
EF = 0 [black curves in Figs. 1(c)–1(f)], interband excitations
give rise to divergent singularities of Im P

(1)
ll′ (q, ω) (indicated

by the dashed gray lines). The square-root peaks from the
quasi-1D SPE channels, Sv

1 → Sc
1 and Sv

2 → Sc
2, appear as a

result of the nearly isotropic energy dispersions near the K

point [17]. Excitations from Sv
1 → Sc

2 (Sv
2 → Sc

1) and Sv
2 → Sc

3
(Sv

3 → Sc
2) exhibit a logarithmic form and display a relatively

weak response. In particular, the surface-localized states play
an important role for the low-energy polarizations. Near the
Fermi level, the prominent square-root divergent structures of
Im[P (1)

11 (q, ω)] arise from the major low-energy excitations on
the outmost layers, while the empty Im[P (1)

22 (q, ω)] demon-
strates the absence of excitations on the middle layer. Based on
the Kramers-Kronig relations, the square-root and logarithmic
peaks in Re[P (1)

ll′ (q, ω)] correspond to the square-root and step
discontinuities in Im[P (1)

ll′ (q, ω)].
When EF is higher, more electronic excitation channels are

triggered with the increasing free carriers under the influence
of the interlayer atomic interactions and Coulomb interactions.
Consequently, this leads to complicated polarization functions.
At EF = 0.1 eV [Figs. 1(c)–1(f)], the interlayer and intralayer
polarizations have a similar structure, in which the first log-
arithmic singularity of Im[P (1)

ll′ (q, ω)], shifting to higher ω

with q, is mainly dominated by the SPEs within the Sc
1 → Sc

1
intraband region. This channel determines the low-frequency
excitation spectrum. On the other hand, the electronic states
excited from the Sc

1 subband induce new SPEs reaching up to
� 0.8 eV (within the original interband region). It is claimed
that when the energies of these SPEs coincide with those
of plasmons, the plasmon intensity is weakened due to the
Landau damping in the vicinity of the interband SPEs (dashed
gray lines) [36]. When EF is increased from 0.3 to 0.8 eV
[Figs. 1(g)–1(j)], the polarization functions obviously display
strong responses, and the intraband components gradually
get more predominant than the interband ones. This implies
that due to the interplay between interband and intraband
excitations, the electronic excitation spectra can be diversified,
and various plasmon modes are presented with a variation of
q and EF .

FIG. 2. Energy-loss spectra for (a) different q’s, and (b) different
EF ’s.

The energy-loss function Im[− 1
ε
] is used to describe col-

lective excitations, as shown in Fig. 2. Due to the screening
effect, the plasmon frequency is in general higher than the
corresponding SPE frequency. The peaks in Im[− 1

ε
] are re-

ferred to as plasmons. For EF = 0 and q = 0.005 Å−1, there
are two intrinsic plasmon peaks, labeled by ω1st

p and ω2nd
p , in

the screened excitation spectrum of the pristine ABC-stacked
trilayer graphene [black curve in Fig. 2(a)]. Identified from
the specified interband channel, i.e., Sv

1 → Sc
1, the plasmon

energies correspond to the weak Landau damping given by
the imaginary parts of the bare response function in Fig. 1.
Responsible for the high DOS of the surface-localized states
[26], the interband plasmon mode with ω up to 0.25 eV is
classified as the first kind of plasmon, ω1st

p . In the energy region
ω � 0.32 eV, the intensity decrease of Im[− 1

ε
] is attributed to

the Landau damping that matches the energies of the Sv
1 → Sc

2
SPEs. Modulated by the electron doping level, the loss function
is enhanced for EF = 0.1 eV by both intraband and interband
excitations [blue curve in Fig. 2(a)]. There are three extrinsic
plasmon modes, ω1st

p , ω2nd
p , and ω3rd

p . The first plasmon mode
ω1st

p (�0.1 eV) is attributed to the Sc
1 → Sc

1 intraband excitation
channel, leading to a relatively prominent plasmon intensity.
The latter two modes ω2nd

p and ω3rd
p near 0.3 eV mainly

correspond to the Sc
1 → Sc

2 and Sv
1 → Sc

1 interband excitations,
respectively; however, the higher excitations also make consid-
erable contributions. With an increment of q, more available
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SPE channels are triggered and the enhanced Landau damping
quickly reduces the plasmons. The two plasmon modes decline
and broaden as q increases from 0.005 to 0.02 Å−1. On the
other hand, the free-carrier excitations at a higher EF lead to
a dramatic change of the plasmon modes, as the doping level
is higher than the critical point of the subbands Sc

2 and Sc
3

[Fig. 2(b)]. At EF = 0.4 eV, the large suppression of the first
peak implies the significant Landau dampings resulting from
induced interband SPEs. On the other hand, there are two new
types of plasmon modes, ω4th

p and ω5th
p , which are ascribed to

the multimode excitations of various intraband and interband
channels. Under a sufficiently large EF , e.g., EF = 0.5, and
0.8 eV, there exists only one prominent peak, ω5th

p , of which the
intensity and frequency are highly dependent on the densities
of the free carriers. It should be noted that the dispersion of
each plasmon mode is highly dependent on the boundaries of
SPE channels and, moreover, for most interband excitations,
plasmons and SPEs can coexist in a certain (q, ω) region.

Trilayer ABC-stacked graphene exhibits rich and unique
plasmon spectra. Various plasmon modes are presented in
the (q, ω)-excitation phase diagram (Figs. 3 and 4) under
the influence of dynamic Coulomb interactions. In general,
plasmons usually appear in specified domains of the (q, ω)
diagram, because the Landau dampings occur in the region
where the plasmon dispersion overlaps with the continuum
spectrum of electron-hole pairs (solid and dashed curves) [36].
Near EF = 0, there exists a strong SPE channel resulting
from the excitations between Sv

1 and Sc
1 partially flat subbands.

Under the screening effect, the corresponding collective exci-
tations account for the low-ω plasmon branch. The dispersion
relations of the intrinsic plasmons ω1st

p and ω2nd
p are shown in

Fig. 3(a). The interband SPEs create strong Landau dampings
near ω ∼ 0.35 and ∼ 0.65 eV. In particular, the first plasmon
ω1st

p is assigned to an acoustic mode, of which the frequency
approaches to zero as q → 0 [37], and behaves as a linear
dependence on q as a consequence of the collective excitation
mode of the surface-localized states. The intrinsic acoustic
mode at zero temperature is exclusive for multilayer graphene
systems with the specific ABC stacking configuration. The
linear plasmon dispersion, well defined up to 0.25 eV, is
describable by the band-structure effect. Distinct from the√

q dispersion of the 2D electron gas and from that of the
monolayer graphene, such a plasmon mode displays strong
damping and disappears at small q � 0.01 Å−1 (the SPE
boundary of Sv

1 → Sc
2 and Sv

1 → Sc
3). After this region, the

optical plasmon ω2nd
p is formed near ω � 0.32 eV, with the

plasmon dispersion similar to the ω1st
p one. These two modes

have a similar dispersion which is mainly attributed to the same
Sv

1 → Sc
1 interband excitation channel. Another prominent

characteristic of the ω2nd
p mode is that its frequency reaches

up to 0.6 eV. This can be manifested by fact that the high DOS
of the S

c,v
1 subbands prevents the coupling from other interband

excitations.
The plasmon modes are improved by doping to increase

the free charge density in the extrinsic condition. As EF is
increased, the interband and intraband excitations lead to new
plasmon modes and diversified phase diagrams. Plasmons with
different dispersion relationships are revealed at EF = 0.1 eV,
as shown in Figs. 3(b) and 3(c). They behave as acoustic and
optical modes in the low and middle (q, ω) regions enclosed

FIG. 3. (a)–(c) (q, ω)-excitation phase diagram of ABC-stacked
trilayer graphene for EF = 0 and 0.1 eV. (d)–(g) Low-energy plas-
mons for EF = 0.01, 0.03, 0.05, and 0.07 eV. The boundaries of SPE
channels are shown by solid and dashed curves, indicating the onset
and end energies of the intraband and interband transitions.

by the SPE boundaries. The acoustic mode is prominent in
the region without SPEs, while showing strong damping when
dispersing into the region of the Sv

1 → Sc
1 interband SPEs. Its

intensity quickly drops by more than one order of magnitude at
q � 0.017 Å−1 and disappears beyond q � 0.05 Å−1, a char-
acteristic being dominated by the nearest vertical interlayer
atomic interaction γ1. On the other hand, the optical mode
is separated into several parts, each of which appears with
different degrees of Landau damping in a specified domain. For
0.3 eV � ω � 0.4 eV, the plasmon dispersion is approximately
flat, reflecting the particular partially flat subbands. In addition
to the original interband channels, the induced free carriers also
contribute to the optical plasmon.

The acoustic plasmon deserves a closer examination in the
low-energy region. With an increment of EF , the collective
excitation channel is transformed from an interband (Sv

1 → Sc
1)

to intraband (Sc
1 → Sc

1). Accordingly, the acoustic plasmon
deviates from the linear dispersion of the pristine graphene
even in the case of weak doping, in Figs. 3(d)–3(g). The
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FIG. 4. (q, ω)-excitation phase diagrams of ABC-stacked trilayer graphene at (a) EF = 0.3 eV, (b) EF = 0.4 eV, (c) EF = 0.5 eV, and
(d) EF = 0.8 eV.

dispersion and intensity of the acoustic plasmon are enhanced,
because the intraband collective excitations gradually become
predominant in the plasmon spectra. Furthermore, the acoustic
mode extends over a wider (q, ω) range than in the case of zero
doping as the SPE boundaries shift to higher q and ω. The
existence of the acoustic plasmons with different dispersion
relationships indicates the effects of the band structure and the
doping carrier densities.

With a variation of EF , phase diagrams are dramatically
changed due to the conservation of the transferred momentum
q and the energy ω, as shown in Fig. 4. At EF = 0.3 eV
[Fig. 4(a)], the plasmon modes extend to a higher energy due to
the increasing free carriers. The most striking behavior of the
ω1st

p acoustic mode is its enhanced intensity and square-root
dispersion, which are in sharp contrast to the acoustic plasmon
in cases of zero and low dopings. Nevertheless, if the subbands
Sc

2 and Sc
3 are partially occupied, the plasmon modes are

drastically changed. At EF = 0.4 eV [Fig. 4(b)], the acoustic
plasmon arises from the three kinds of intraband excitations,
i.e., Sc

i → Sc
i (i = 1, 2, and 3). In addition, the interplay

between interband and intraband excitations also gives rise
to new plasmon modes and diversified phase diagrams. Ac-
cording to the band effects, the Landau damping is strong for
the induced interband SPEs, e.g., Sc

1 → Sc
2 and Sc

1 → Sc
3. In

the region of 0.2 eV � ω � 0.3 eV, the ω4th
p plasmon mode

has a concave upward dispersion; it has an onset energy of
negative dispersion about 0.3 eV and disperses upward for
q � 0.01 Å−1. The weak plasmon intensity indicates robust
Landau dampings associated with the particular partially flat
and sombrero subbands. On the other hand, the ω5th

p mode

is enhanced and shifted to higher ω by the induced collective
excitation channels. With a further increase of EF , the plasmon
is hardly affected by the Landau dampings associated with
the induced interband SPEs. At EF = 0.5 eV [Fig. 4(c)], the
various plasmons gradually merge into a long-range acoustic
mode, ω5th

p , because the collective excitations from the free
carriers dominate the electronic excitations. Under a heavy
doping condition, e.g., EF = 0.8 eV [Fig. 4(d)], there exists
only one strong acoustic mode, ω5th

p , over a wide region in the
(q, ω)-excitation phase diagram.

Trilayer ABC-staked graphene is predicted to exhibit rich
and unique Coulomb excitations. There are a lot of SPE
channels and five kinds of plasmon modes, mainly arising
from three pairs of energy bands and doping carrier densi-
ties. Their complicated relations create the diverse (q, ω)-
excitation phase diagrams. The plasmon peaks in the energy-
loss spectra might decline and even disappear under various
Landau dampings. The linear acoustic plasmon is related
to the surface states in pristine systems, while it becomes
a square-root acoustic mode at any doping. Specifically, all
the layer-dependent atomic interactions and Coulomb inter-
actions have been included in the polarization function and
dielectric function. The theoretical framework of the layer-
based RPA could be further generalized to study the e-e
interactions in emergent 2D materials, e.g., silicene [38] and
right germanene [8].

This work was supported in part by the Ministry of Science
and Technology of Taiwan, the Republic of China, under Grant
No. NSC 105-2112-M-006 -002 -MY3.
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