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The surface scattering of free electrons strongly modifies the electromagnetic response near the interface. Due
to the inherent anisotropy of the surface scattering that necessarily reverses the normal to the interface component
of the electron velocity while its tangential component may remain the same, a thin layer near a high-quality
interface shows strong dielectric anisotropy. The formation of the resulting hyperbolic dispersion layers near the
metal-dielectric interface strongly modifies the local density of states, and leads to orders of magnitude changes
in all associated phenomena.
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Light incident on a conducting material changes the dynam-
ics of the free charge carriers near the interface. The resulting
surface plasmon-polariton excitations [1] increase the local
photonic density of states, leading to a dramatic change in
a broad range of related phenomena—from the enhancement
of the spontaneous emission rates near the interface [2], to
surface-enhanced Raman scattering [3], to subwavelength light
localization and confinement [1]. While most of these phenom-
ena can be understood, at least at the qualitative level, within the
framework of the effective local dielectric permittivity of the
metal, this approach becomes progressively more problematic
when the plasmon fields change on a scale that is compatible
to the electron mean free path. The importance of an accurate
account of the inherent mobility of free charge carriers is
now well understood [4–7], and the corresponding “spatial
dispersion” formalism was successfully used for a quantitative
description of surface plasmon polaritons in metallic nanos-
tructures [4–7].

However, the inherent mobility of the free charge carriers
not only leads to an essentially nonlocal theoretical description
(the fundamental property which is equally important both at
the bulk and near the surface of the conducting medium), but
also qualitatively changes the nature of the electromagnetic
response near the metal-dielectric interface. For a high-quality
surface, the electron reflection will reverse normal to the sur-
face component of the momentum, while leaving its tangential
projection intact. As a result, while the specular reflection at the
interface will not strongly affect the electromagnetic response
in the tangential direction, its component that is normal to
the metal surface will be substantially altered. Even in the
presence of substantial surface roughness [8], the effect of
the surface scattering on the momentum transfer from the free
carriers to the interface (and thus the entire sample as a whole)
is still very different in the normal and tangential directions.
As a result, the free carrier electromagnetic response near the
conductor-dielectric interface will show strong anisotropy.

In this thin interfacial layer, while a diffuse component of
the surface scattering leads to an increased loss, the tangen-
tial dielectric permittivity retains its negative sign. However,
the electronic contribution to the normal to the interface

permittivity is strongly suppressed (as the free carrier current
density at the interface in this direction is exactly zero,
regardless of the magnitude of the electric field). As a result, the
interface layer has an essentially hyperbolic electromagnetic
response.

The formation of the hyperbolic layer near the metal-
dielectric interface will no longer support direct resonant
coupling from the incident field to the free electrons in the
“bulk” metal, leading to a suppression of the conventional
plasmon resonance via the hyperbolic blockade. While the
conventional surface plasmon-polariton mode is still present
in the system, it can no longer reach the extreme values of the
wave numbers predicted for a “direct” (lossy) metal-dielectric
interface. At the same time, the hyperbolic layer leads to an
additional surface wave, the so-called “hyperplasmon,” that
can now coexist with the standard plasmon polariton [9].

As a result, the local photonic density of states (PDOS)
at the metal-dielectric interface is strongly modified. First,
the peak near the surface plasmon resonance frequency is
strongly suppressed, and the corresponding density of states
is substantially reduced, while at other frequencies when
the hyperplasmon waves are present, it can be substantially
enhanced. Second, the photonic density of states now shows
a very different behavior as a function of the distance to
the metal-dielectric interface d. When it is much larger than
the thickness of the hyperbolic layer d∗, the latter is not
“resolved”—and the density of states is close to the value
calculated from the “bulk” properties of the metal (albeit with
the nonlocal corrections [4]). However, for d � d∗, it is now the
hyperbolic layer that determines the density of states, leading
to a crossover to a different behavior.

In the quantitative theory of this Rapid Communication, we
focus on the calculation of the spontaneous emission rate for
a small emitter (such as a dye molecule or a quantum dot)
in proximity to the metal-dielectric interface. While directly
connected to the local density of states via the Fermi golden
rule, and thus offering a probe into the local PDOS, the
spontaneous emission rate is also an important quantity for
both the interpretation of experimental data [10–12] and for
technological applications [13].
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FIG. 1. The spontaneous emission rate near the dielectric-
conductor interface, as a function of the distance d from the emitter to
the surface (see the inset). The emission rate is normalized to its value
in infinite dielectric �0. Solid lines show the exact solution obtained
in the present work, while the corresponding dotted lines represent the
results of the calculation based on the local theory. Different colors
correspond to different frequencies and emission polarizations: The
dipole moment m ‖ n̂ at ω = 0.5ωsp (red), m ⊥ n̂ at ω = ωsp (green),
m ‖ n̂ at ω = 2ωsp (blue), where ωsp is the surface plasmon resonance
frequency and n̂ is a unit vector along the normal to the interface. In
this calculation, the electron scattering time τ = 18.84/ωp , the crystal
lattice permittivity of the conductor ε∞ = 12.15, the permittivity of
the dielectric εd = 10.23, and the Fermi velocity vF = 0.009 35c �
2.8 × 106 m/s; for the plasma wavelength λp ≡ 2πc/ωp = 10 μm,
these parameters correspond to the AlInAs/InGaAs material system
of Ref. [29].

In the weak-coupling limit [2,14], for an emitter located at
the distance d from a planar interface (see Fig. 1), we obtain

� = �0 + η 	�, (1)

with
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where η < 1 is the quantum efficiency [14] that accounts
for other (nonradiative) decay channels of the excited state
in the emitter, kz ≡

√
εd (ω/c)2 − k2, ω is the emitted light

frequency, and εd is the permittivity of the dielectric medium
at z > 0, while mτ and mn are the tangential and normal to the
metal-dielectric interface projections of the unit vector m that
indicates the direction of the dipole moment of the emitter (see
the inset to Fig. 1). Note that Eqs. (1) and (2) define the total
radiative linewidth that includes both the far-field emission
and the radiation into the lossy modes of the metal-dielectric
interface. Unless special measures are taken to outcouple the
latter back into the free space, the emission into lossy modes
leads to the Joule heating of the sample, while the detected
far-field intensity corresponds to only a fraction of the total
radiative linewidth (1) and (2).

We emphasize that (1) and (2) imply no assumption on the
nature of the material on the other side of the interface: The
medium can be metallic, hyperbolic, or dielectric, with either
a local or nonlocal electromagnetic response, as long as it has
translational symmetry parallel to the interface, and at least a

uniaxial symmetry along the normal to the surface. Under these
conditions, the incident s and p polarizations are not mixed up
upon reflection, and can be described by the corresponding
reflection amplitudes rs and rp.

The original mathematical formalism for the description of
the electromagnetic field reflection from free charge carriers
[8,15,16] was developed in the context of the anomalous
skin effect [17,18], when the electron mean free path is
longer than the effective “skin depth” [8]. However, in optical
experiments with plasmonic media at room temperatures, the
field penetration depth generally exceeds the electronic mean
free path [19], which does not allow a direct application of
these results to plasmonic systems.

When the distance to the interface d is much larger than de
Broglie wavelength of the free charge carriers,

d � λ̄, (3)

the integral in (2) is dominated by the waves with in-plane wave
numbers k � 1/d 	 1/λ̄. The free charge carrier response at
such wave numbers can be treated within the semiclassical
framework, via the Boltzmann kinetic equation [8]

∂fp

∂t
+ vp · ∇fp + eE · vp

∂f0

∂εp
= −fp − f0

τ
, (4)

where fp(r,t) is the charge carrier’s distribution function with
its equilibrium (Fermi-Dirac) limit f0, εp is the electron energy
for the (Bloch) momentum p, vp ≡ ∂εp/∂p is the correspond-
ing electron group velocity, and τ is the effective relaxation
time defined by the bulk scattering (due to, e.g., phonons,
impurities, etc.). The local equilibrium distribution function
f0 is defined by the actual time-dependent local density rather
than its time-averaged value [20], if the scattering process
does not locally create or annihilate charge carriers. However,
when the electromagnetic field frequency ω � 1/τ , the local
correction to the equilibrium distribution function can be
neglected [21,22].

For a high-quality interface along one of the symmetry
planes of the crystal, the surface leads to specular reflec-
tion of the charge carriers [8], which can be accounted
for by the boundary condition on the distribution function
[8,15,16,23,24],

fp− (rs) = fp+ (rs), (5)

where rs corresponds to any point at the interface, and p+ and
p− are connected by the specular reflection condition.

The electromagnetic field in the system is defined by the
self-consistent solution of the kinetic equation and the surface
scattering boundary condition together with the Maxwell
equations. The corresponding electron charge and current
densities are then given by

ρ(r) = 2
∫

dp
(2πh̄)3

· [fp(r) − f0(εp)], (6)

j(r) = 2
∫

dp

(2πh̄)3 · e vpfp(r). (7)

Following the mathematical approach described in Ref. [9],
this problem can be solved exactly, and for the reflection
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coefficient in the s polarization we obtain

rs = −1 + 2kz(kz +
√

ετ (k) · (ω/c)2 − k2)−1, (8)

where

ετ (k) = ε∞ + 2e2

π2h̄3ω

∫
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y

ω + kvy + i/τ
· ∂f0

∂εp
. (9)

For a degenerate electron gas the integration in (9) yields
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with
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2x
log

1 + x

1 − x
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where vF is the electron Fermi velocity, ε∞ is the “background”
permittivity of the crystal lattice in the conductor, and ωp is the
standard plasma frequency [1]. Note that the expression ετ (k)
in Eq. (10) is consistent with the other models of nonlocal free
carrier responses used in the recent literature [4,25].

For the p polarization, we find
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2
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For a degenerate electron gas [26], analytical integration over
the electron momentum p reduces Eqs. (14) and (15) to

εx(k,q) = ε∞ − 3ε∞
2

ω2
p
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2
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ωτ
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where

Fν(x) = 1

x2
+

(
1

3
− 1

x2

)
F0(x). (19)

FIG. 2. The frequency dependence of the spontaneous emission
rate near the conductor-dielectric interface. As in Fig. 1, solid lines
show the exact solution, while the dotted curves correspond to
the calculations using the local response model, for m ‖ n̂ at d =
0.01c/ωp (red) and d = 0.1c/ωp (blue). The material parameters are
the same as in Fig. 1. Note the suppression of the plasmon resonance
due to the hyperbolic blockade, together with an order of magnitude
enhancement of the spontaneous emission rate above the plasmon
resonance frequency, seen for d = 0.1c/ωp (red curve).

Together, Eqs. (12) and (16)–(19) define the reflection coeffi-
cient rp.

The electromagnetic field near the interface with a con-
ducting medium can also be represented in terms of the surface
impedance Z that defines the ratio of the tangential components
of the electric and magnetic fields at the interface [8,15,16,21].
The values of Z for the s and p polarizations calculated from
Eqs. (8)–(19) are consistent with the earlier results of Kliewer
and Fuchs [21], up to a small correction [22] only relevant at
low frequencies (ω 	 1/τ ) that originates from a difference
in the representations of the collision integral in the kinetic
equation (4).

The resulting spontaneous emission rate can be calculated
by substituting our analytical expressions for the reflection
coefficients rs and rp into the general equation (2). In Fig. 1 we
compare the resulting values (solid lines) with the predictions
of the standard local theory (dashed lines) that describe the
conductor as an effective medium with the (Drude) permittivity

εm(ω) = ε∞(1 − ω2
p

ω(ω+i/τ ) ). As the distance to the interface
is reduced, the local approximation initially underestimates
the density of states, which is consistent with the results of
Ref. [4]. However, at a smaller distance d < d∗, this behavior
is reversed: The actual density of states is now smaller than the
local estimate. This is the result of the hyperbolic blockade:
The hyperbolic layer “blocks” the coupling to conventional
surface plasmon polaritons, and the photonic density of states
is reduced. Also note the strong frequency dependence of
d∗: The distance corresponding to the crossover between the
two different regimes nonmonotonically changes with the
electromagnetic wavelength.

The frequency dependence of the spontaneous emission
rate for a given distance to the interface, presented in Fig. 2,
shows further evidence of the hyperbolic blockade. Note
the suppression of the plasmon resonance, especially at the
smaller distance to the interface. Furthermore, the coupling
to hyperplasmons—the new surface waves that originate from
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the hyperbolic layer [9]—manifests itself in the enhancement
of the spontaneous emission rate, seen in Fig. 2 at higher
frequencies.

This behavior should be contrasted to the prediction of the
existing theories of spontaneous emission near an interface
of a nonlocal medium [27]. While starting from the surface
impedance approach [15,16,21] that also relies on a semiclas-
sical framework, the authors of Ref. [27] then introduced the
hydrodynamic approximation that does not accurately account
for the hyperplasmon modes [9]. As a result, aside from the
quantitative inaccuracy of the spontaneous emission rate at
small distances to the interface, the predictions of Ref. [27]
were limited to the reduction of the width of the excited state
due to spatial dispersion.

When the distance from the emitter to the interface is much
smaller than the free-space wavelength, d 	 λ0, the analytical
expression for the spontaneous emission rate can be reduced
to

	� = 3

4
�0

m2
τ + 2 m2
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ε∞√

εd (εd + ε∞)2
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)2(ωp
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×
{

3

2ωτ
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+ c
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α
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(20)

where Q is related to the incomplete gamma function of zeroth
order,

Q(x) = exp (−x)�(0, − x), (21)

and

u1 = ζ (μ) + μ

ζ (μ)
, u2,3 = e± 2iπ

3 ζ (μ) + e∓ 2iπ
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with
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√
2iμ +

√
−μ3 − 4μ2, μ = 1

2

εd + εm(ω)

εd + ε∞
. (23)

In Fig. 3, we compare the predictions of Eq. (20) (colored
lines) with the corresponding results of the exact calculations
(colored dots), as functions of the distance to the interface, for
two different frequencies. Note the excellent agreement in the
entire parameter range shown in the figure.

Depending on the relative value of the distance d and the
“electronic” scale � ≡ vF min [τ,1/ω], the analytical expres-
sion (21) has the limiting behavior

	�

�0
= m2

τ + 2 m2
n

2|m|2
{
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FIG. 3. The spontaneous emission rate as a function of the
distance to the interface, in scaled coordinates. The red dots and the
red curve correspond to the exact solution and the approximation of
Eq. (20) for ω = 0.5ωsp, while the blue dots and the blue curve show
the exact solution and the approximation of Eq. (20) for ω = 2ωsp.
The dipole moment m ‖ n̂. The solid black line corresponds to the
interpolation (27), with the black dotted and dashed lines indicating
the d 	 d∗ and d∗ 	 d 	 λ0 limits of the exact solution. The inset
shows the frequency variation of d∗.

Equation (20) can therefore be further approximated by the
interpolating function

	�(d) = �∗

{
d∗/d, d � d∗,
(d∗/d)3, d � d∗,

(27)

where

�∗
�0

= m2
τ + 2 m2

n

2|m|2
9(c/vF )2ω2

sp

4(εd + ε∞)ω3τ

c√
εdωd∗

, (28)

and

d∗ = 1√
3

vF τ√
1 + (ωτ )2

(
1 − ω2

sp/ω
2
)2

. (29)

Here, ωsp is described by the standard expression for the fre-
quency of the surface plasmon resonance at the planar interface
of a dielectric with a Drude metal, ωsp = ωp/

√
1 + εd/ε∞.

The solid black line in Fig. 3 plots Eq. (27), while the dashed
and dotted lines correspond to γ∞(ω,d) and γ0(ω,d), respec-
tively. Although not sufficiently accurate at the quantitative
level, the interpolation (27) correctly represents the qualitative
behavior of the spontaneous emission rate and adequately
describes the crossover between the two regimes.

The inset of Fig. 3 shows the frequency dependence of the
hyperbolic layer thicknessd∗. Note its nonmonotonic variation,
noticed earlier in the context of the general behavior of the
spontaneous emission rate as a function of the distance to
the interface (see Fig. 1). The regime d < d∗ corresponds to the
suppression of the plasmon resonance due to the hyperbolic
blockade. Except for ω = ωsp when d∗ ∼ vF τ , as a function
of frequency d∗(ω) behaves as vF /ω at ω > ωp and as vF ω/ω2

p

for ω < ωp, with the characteristic scale given by the Thomas-
Fermi screening length ∼vF /ωp. For a good metal, in the
optical range d∗ is on the order of a nanometer. On the other
hand, in transparent conducting oxides such as indium tin oxide
(ITO) [28] or in doped semiconductors [29,30], we find d∗ on
the order of a few tens of nanometers—and the regime d < d∗
corresponds to the common situation of an active quantum
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well in close proximity to a doped semiconductor substrate.
In this case, the phenomenon of the hyperbolic blockade
and the theory introduced in the present work are essential
for an accurate accounting of the light emission from such
systems.

The predicted hyperbolic blockade and enhanced coupling
to hyperplasmonic surface modes are also expected to strongly
modify the surface-enhanced Raman scattering (SERS) at a
high-quality conductor-dielectric interface. While leaving a
detailed discussion of this effect to a future publication [31],
it should be noted that its general features are similar to the
behavior of the spontaneous emission rate: strong suppression

at and near the surface plasmon resonance frequency due
to the hyperbolic blockade, and the enhancement above the
surface plasmon resonance frequency due to the coupling
to hyperplasmonic modes. This should be contrasted to the
existing theories of the SERS at an interface of a nonlocal
medium [32,33], which generally focus on the decrease of the
SERS intensity due to nonlocality.
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