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We present a microscopic theory of a photon drag effect that appears in a Bose-Einstein condensate of neutral
particles, considering indirect excitons in a double quantum well nanostructure under the action of a polarized
electromagnetic field. It is shown that the dynamical polarization of excitons results in a resonant behavior of the
exciton photon drag flux when the frequency of light is close to the gap between two energy levels of internal

exciton motion. Specifically, we consider the ground and first excited energy states characterized by the angular
momentum difference 1, and thus, the helicity of light matters. We show that the resulting drag current is caused
by both Bose-condensed particles and the particles in the excited states. As a result, the total current represents a
superposition of thresholdlike and resonant contributions—a property which can be used in frequency-selective

photodetection.
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Introduction. The photon drag effect (PDE) owes its ap-
pearance to photon translational momentum, and it serves
as a paramount manifestation of radiation pressure [1-3].
Conventionally, when atoms in a gas [4] or free carriers of
charge, such as conduction band electrons and valence band
holes, absorb radiation while interacting with electromagnetic
waves, they start to move in a direction predefined by the
momentum of the photons. This effect has been widely studied
in semiconductors [5], dielectrics [6], metals [7] including
thin films [8] and bulk tellurium [9], monolayer and multi-
layer graphene [10,11], carbon nanotubes [12], topological
insulators [13], semiconductor microcavities [14], and two-
dimensional electron gas [15-17], where the first theories of
the PDE were developed for germanium and polar crystals in a
model based on electron—photon—acoustic phonon interaction
[18,19].

One of the possible extensions of the PDE is the circular
photon drag effect (CPDE), which occurs when light simul-
taneously transfers both translational and angular momenta
to electrons [20] (or holes). This effect manifests itself in
the helicity-dependent photon drag current of light [21,22],
observed in multiple two-dimensional systems such as meta-
materials and graphene [23,24].

It is important to specify that interaction of electrons and
holes with an electromagnetic field (EMF) is due to the
presence of electric charge. The situation is more complicated
in the case of neutral particles, such as atoms or excitons. Due
to absence of charge, their interaction with the EMF is usually
much weaker. However, in some cases the light pressure can
reach significant values. This phenomenon is referred to as the
resonant light pressure [25]. Qualitatively, it can be explained
as follows. When a neutral particle is exposed to an EMF,
it acquires an induced dipole moment, which in the linear
limit (of not very strong fields) has the structure p = a¢(w)E,
where a(w) is the dynamical polarizability of the atom. The
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energy of interaction of the dipole moment with the EMF
reads U = —pE. As a result, the particle experiences the
influence of constant force F = —VU = a(w)V(E?), where
the angular brackets stand for the time average. Clearly, this
force strongly depends on frequency through «(w). Indeed, as
follows from a standard perturbation theory analysis, the tensor
of polarizability reads [26]

aij(a)) — Z ((di)gn(dj)ng + (dj)gn(di)ng)’

Wpg — @ Wpg + @

n

where d is the operator of dipole moment of the atom, and
wng = E, — E, is the energy difference between the ground
|g) and excited |n) states. Due to the resonant character of the
polarizability, the force acting on the particle can dramatically
increase at various frequencies w ~ wy, when such transitions
are allowed by the selection rules (when the matrix element
of the transistion dipole moment is nonzero). This mechanism
explains the physics of resonant light-matter interaction.

An analogous effect can take place if we apply the up-
coming arguments to quasiparticles in solid-state systems. For
instance, indirect excitons, which represent Coulomb coupled
electron-hole pairs where electrons and holes reside in separate
parallel layers, have a discrete energy spectrum and possess a
dipole moment. They can be resonantly coupled to light at
normal incidence to the structure; moreover, Bose-Einstein
condensation (BEC) and superfluidity have been experimen-
tally observed in these systems [27,28]. Beside fundamental
interest, indirect excitons can be used in various applications
based on the Hall effect [29], room-temperature transport [30],
hybrid Bose-Fermi systems [31], and ballistic spin transport
[32]. It should be noted, however, that since excitons are neutral
particles, the resonant light pressure results in a particle current
rather then electric current in the system. In what follows

©2018 American Physical Society
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FIG. 1. (a) Dipolar exciton gas in an external electromagnetic
field. (b) Energy spectrum of excitons in the BEC regime. / indicates
the angular momentum of the internal exciton motion, &, is the
kinetic energy of the exciton center of mass, and w, is a Bogoliubov
quasiparticle dispersion. Numbers I (green) and II (red) characterize
the two principal processes of light absorption.

we will call the particle current caused by the resonant light
pressure the resonant photon drag effect (RPDE).

Recently by some of the authors of this Rapid Communi-
cation it was suggested to use the phenomenon of radiation
pressure to quantize the system response in the presence of
a BEC [33]. In this Rapid Communication, we describe the
RPDE in a BEC of neutral particles represented by dipolar
indirect excitons. We show that RPDE of excitons results
in a particle current that possesses a number of intriguing
peculiarities.

System and Hamiltonian. We start from the Hamiltonian
describing a single exciton in a double quantum well (DQW)
interacting with an EMF:

(pn — %Ah)z N (pe + fAe)2
2mh 2me

H =

+ Uc(re - rh)- (1)

Here, m., is the effective mass of the electron (hole) and e > 0
is the hole charge. U .(r. —ry) is electron-hole interaction
energy, and A(r,r) = Age 1" + Afe K+l g the EMF
vector potential, where k is the in-plane component of the
EMF wave vector Q (see Fig. 1).

Introducing the relative r =r, —r, and center-of-mass
R = (m.r, + myr,)/M coordinates, and the corresponding
momentum operators p = —idg and q = —id, (thus p, =
m.p/M — q and p;, = m;p/M + q) where M = m, + my, is
full exciton mass, we can rewrite the Hamiltonian (1) in the
dipole approximation as H = Hy + U.(r) + U, where

2 2 2
p q e e,

H=2 +3. y-_“q4 2

T oM + 2m mcq + 2mc? @

Here, m~' = m;' +m, " is the reduced exciton mass, and

from now on A = A(R,?) acts on the center-of-mass dynamics
of the exciton only. In Eq. (2), Hy + U.(r) describes both the
center-of-mass exciton motion and the relative motion of the
electron and hole constituting the exciton.

The general form of electron-hole interaction energy poten-
tial, U, (r), depends on the type of semiconductor alloy consti-
tuting the DQW. While the most widespread DQW employed
to study dipolar exciton BEC is based on a GaAs/AlGaAs
heterostructure, it should be noted that recently, double-layered
van der Waals heterostructures based on dichalcogenide mono-
layers have become popular, especially in view of dipolar ex-

citon BEC. In particular, the critical condensation temperature
in such structures is predicted to reach 300 K.

The potential U, (r) has a general property which plays a
crucial role independent of its particular form: it is axially
symmetric. Thus, the wave functions of internal exciton motion
are characterized by the angular momentum quantum number
[ and the radial quantum number n, with the eigenenergies of
internal motion ¢, ; and eigenstates |n,/). Total exciton energy
is then E, ;(p) = &, + &(p), where g(p) = p2/2M is exciton
center-of-mass kinetic energy. The nonzero matrix elements of
momentum g couple the states in which the angular momentum
quantum numbers differ by =£1. In particular, if an indirect
exciton is initially in the ground state, |0,0), transitions to
states |n,%+1) are possible. Hereafter, we will consider the
optical transitions between the |0,0) and |0,41) states with
corresponding energy difference A = gy 11 — &¢,0, assuming
that field frequency w is close to this energy (w ~ A). For
further reference, we introduce the notations [see Fig. 1(b)]

exp) = A+ &p. 3)

Resonant Photon drag current. Now we consider a zero-
temperature limit, where exciton BEC forms in the lowest
exciton state. We assume an initial equilibrium condensate at
e1(p = 0) and an empty excited state at &,(p). We also assume
that the external electromagnetic wave excites the excitons
from the condensate to &;(p), with an exciton density at this
level much less than BEC density n..

Consequently, we disregard exciton-exciton interaction be-
tween the BEC and excited excitons, thereby keeping only
the exciton-exciton interaction in the BEC. Thus, the exciton
system can be described by the two-component spinor wave
function [x = (R,1)]:

W(x) = (7 (), 95 ()", “
which satisfies the equation

(13[ —e(P) +u— gyl
Q1 A

e1(p) = &p,

—qu- A
10; — &2(p)

where p is exciton BEC chemical potential, and g is exciton-
exciton interaction strength. Here we disregard the terms ~ A2
which also appear in Eq. (2).

We take the external electromagnetic field to be circularly
polarized, and thus it can be characterized by the polarization
degree 0 = £1. Then the matrix elements of the momentum
of relative motion q;, can be calculated over the ground and
excited exciton states as i = (0,0|q|0,£1). They can be
expressed through the matrix elements of the internal exciton
coordinate operator as p;, = iAmrj;.

Exciton RPDE represents exciton flux, which appears in the
second order of the external field A(x), and can be character-
ized by surface density with a dimension of ps~' cm™!. It can
be found by time averaging the standard quantum-mechanical
expression

)‘I’(X) =0, ©

j=— A% /Y% ilts 6

=5y pa ZW RV, — ¥ VRYi) (6)
wherei = 1 corresponds to the contribution of the BEC [/ (x)
component of the spinor (4)], and i = 2 is the contribution of

the excited states [,(x)].
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FIG. 2. Feynman diagrams describing the components of current
(a) j. and (b) j,. The Green’s functions (straight lines) are given in
Eq. (9); wiggly lines stand for the photons (see text for details).

Considering here the EMF, A(x), as a perturbation, we can
replace ¥(x) — Yo + §¢¥1(x) and ¥r(x) — Sy (x), where
Yo describes the BEC state, with n. = |yl Linearizing
Eq. (5), we find the following system of equations:

G580 (x) = —iA(x)qsxh(x), )

&, sin(x) = _iAmq*[% +80) @®)

N qz 0 N Sy (x)
= ) 8 i = 5
a < 0 ‘ﬁz) yico <5Wi*(x)>

Ay <i8, —&p — &he —gn. )
go = . s
—10; — &p — gn.

where

—8Nc
= i, —ep— A 0
&, = . 9
0 < 0 —id, —ep— A ©

Current of the BEC. Substituting the formal solution of
Eq. (8) into (7), we come up with an integrodifferential
Gross-Pitaevskii equation that describes the BEC dynamics
accounting for the exciton transitions to the upper state:

2
Gy '8P (x) = (mic) A f dx; Bo(x — x1)

x A" Yo + 891 (x1)]. (10)

The corresponding homogeneous system of equations [in the
absence of the right-hand side of Eq. (10)], i.e., Gy '8¢/1(x) =
0, describes the Bogoliubov excitations with the dispersion
wp = spy/1 + (§p)?, where § = 1/(2Ms)is the healing length
and s = /gn./M is the sound velocity. It can be easily shown
that the term containing v, does not contribute to the drag
current. As for the term 81&1(x1), its contribution can be
represented via the Feynman diagrams in Fig. 2.

We analyze these diagrams in the framework of a linear
approximation of the bogolon dispersion, w, ~ sp, which is
feasible at§p < 1 (see Supplemental Material [34]). Account-
ing for the fact that indirect excitons in a BEC state are more
robust against impurity scattering [35], we find

e \? tk
jo=(— Al
J (mc> lq12 - Aol P

X (arctan[2t(w + A)] + arctan[27(w — A)]), (11)

where 7 is the exciton-impurity scattering time for the noncon-
densed excitons at the excited state, |1,£1). The coefficient
containing the vector potential, Ay, is connected with the
electric field amplitude E; as

2 2
eqi2 - Ay
———| = —ldin- K%, 12)
mc 1)
where d = —ef is the operator of the in-plane dipole moment

of the exciton.

Current of excited particles in the presence of BEC. The-
oretical derivation of the formula for the current of excited
particles (8y» component), j,, is given in the Supplemental
Material [34] (see also [36] for the drag current of indirect
excitons in normal state of the gas). It shows that the current
consists of two principal parts:

jn =jl +j2 (13)

The first component has a resonant structure as a function of
external field frequency,

2 2
e 2n.kt
(£ A2
J (mc) lq12 - Aol Mh

1 1
x [1 T4 — A2 1442w+ A)Z] a4
while the second component can be estimated using the
Feynman diagrams (Fig. 2); direct calculation shows that it
satisfies the relation j, = 4j., where j. is given in Eq. (11).
Summing up all the terms, we find the total current of excitons
in the system:

j :jc +jn = 5jc+j1~ (15)

Results and discussion. The results of calculations are
presented in Figs. 3 and 4. To build these plots, we used
the following parameters: A = 10 meV (see Supplemental
Material [34]) and M = 0.5m, where m is free electron mass.
For the matrix element of exciton transition in (12), we took
|dy> - Eg| = 0.01A. Evidently, this value can be controlled by
the amplitude of the external EMF as long as |d); - Eg| <
A, since the perturbation theory analysis used here is only
legitimate if the external light is not too strong.

Figure 3 demonstrates the influence of each component
constituting total current j. Both j. and j, increase with
exciton-impurity scattering time t, as expected. One can see
that j. has a clear thresholdlike behavior [processes II in
Fig. 1(b)], whereas j;, which is one of the components of j,,
has a resonant character [processes I in Fig. 1(b)]. Let us now
address the microscopic nature of each of the components. It
is well known that the second-order response functions in a
stationary regime can be expressed via the imaginary part of
the first-order response functions [37], or in other words, by the
light absorption coefficient. The first term, j;, demonstrating
resonant behavior, corresponds to the standard process of light
quantum absorption by a BEC particle accompanied by the
transition of this particle to the upper excited state, obey-
ing the energy conservation law w = ep4 + A. The second
contribution, j,, corresponds to the Belyaev process, which
consists of two excitations of the BEC due to the absorption
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FIG. 3. Components j. (a), j; (b),and j, = j; + 4j. (c) of the current as functions of external EMF frequency for various impurity scattering
times: T = 2 ps (red), 5 ps (green), 7 ps (blue), and 10 ps (black). Inset in (c) demonstrates current decay at high w.

of the EMF quantum, o = wp + gpyk + A, demonstrating
thresholdlike dependence on frequency [38] [see Fig. 1(b), red
arrows].

Figure 4 shows the spectra of the total current in the system.
As exhibited in Fig. 4(a), its shape is a superposition of
thresholdlike and peaked forms. Total current increases with
the increase of impurity scattering time [Fig. 4(b)] since both
current components increase, as shown in Figs. 3(a) and 3(b).
Total current also grows with the concentration of particles in
the BEC, as shown in Fig. 4(c). As expected from Eqs. (14)
and (15), at small n., the biggest influence on current comes
from the j, term. It should be noted that with the increase
of frequency, current vanished when w > A [see insets in
Figs. 4(b) and 4(c)].

All these properties of exciton current allow the proposal
of a frequency-selective photodetector employing the effects
described above. Indeed, the j; component of total current—
provided that there is a substantial number of particles in the
BEC—allows for the suppression of low and high frequencies
of the output signal (see Fig. 4). Attenuation of such a filter
depends first on the concentration of particles in the BEC [see
Fig. 4(c)], and second on the purity of the sample, which
determines the scattering of particles on impurities through
the parameter t [see Fig. 4(b)]. Since condensates usually have
sufficiently low responsiveness to impurities [35], we expect a

high signal-to-noise ratio of our detector. Here the sensitivity
(responsivity) to incoming light is expected to be condensate
density dependent. However, an increase of n, should not
bring any decoherence in the system since the particles are
mostly residing one quantum state. Important to mention again,
comparing with detectors employed in standard electronics,
our device deals with the particle density flux (and not with
electric current).

Conclusions. We have developed a theory of the resonant
photon drag effect in a system with indirect excitons in a double
quantum well structure under the action of external circularly
polarized light. It has been shown that the photon drag flux
of excitons experiences resonant behavior when the frequency
of light is close to the gap between the ground and excited
energy levels of internal exciton motion. The resulting drag
current consists of both Bose-condensed and excited particles;
as a result, the shape of the total current represents a hybrid
of thresholdlike and resonant contributions. These features
allow us to propose a photon drag based frequency-selective
photodetector.
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FIG. 4. Current as a function of external EMF frequency. (a) Components of current j. (red), j, (green), j, (blue), and full current j (black)
for T = 1 ps. (b) Full current for various impurity scattering times: T = 3 ps (red), 5 ps (green), 7 ps (blue), and 10 ps (black). (c) Full current
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