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The entanglement in a quantum system that possesses an internal symmetry, characterized by the Sz

magnetization or U (1) charge, is distributed among different sectors. The aim of this Rapid Communication
is to gain a deeper understanding of the contribution to the entanglement entropy in each of those sectors for the
ground state of conformal invariant critical one-dimensional systems. Surprisingly, we find that the entanglement
entropy is equally distributed among the different magnetization sectors. Its value is given by the standard area law
violating logarithmic term that depends on the central charge c, minus a double logarithmic correction related to
the zero-temperature susceptibility. This result provides a method to estimate simultaneously the central charge c

and the critical exponents of U (1)-symmetric quantum chains. The method is numerically simple and gives precise
results for the spin- 1

2 quantum XXZ chain. We also compute the probability distribution of the magnetization in
contiguous sublattices.

DOI: 10.1103/PhysRevB.98.041106

Introduction. In recent years the study of entanglement in
quantum many-body systems, and in quantum field theory,
has been carried out intensively. As a result of it, many links
have been established among previously disconnected areas
of physics, computer science, and mathematics. These studies
have led to a quantum information perspective of phase transi-
tions and topological order, topics that belonged traditionally
to condensed matter physics and statistical mechanics [1]. For
most of the quantum critical systems in one spatial dimension,
a precise characterization of entanglement has been achieved
owing to the powerful methods of conformal field theory
(CFT). In these systems, the area law of the von Neumann
entanglement entropy (EE) of the ground state (GS), in a single
interval [2], develops a logarithmic violation parametrized by
the central charge c of the underlying CFT [3–7].

Employing ultracold atoms loaded in optical lattices, it is
nowadays possible to simulate many one-dimensional quan-
tum systems [8]. Quite recently, a measurement of entan-
glement was done using a one-dimensional optical lattice
composed of a few 87Rb atoms [9]. Since the number of
atoms involved in these experiments is small, finite-size effects
play an important role in measuring the EE. Fortunately, CFT
predicts the leading finite-size correction of the Rényi entropy
of the GS of a chain of L sites, which is given by [3–7]

S
(n)
A,CFT = c(b)

n + c

3b

(
1 + 1

n

)
ln

[
bL

π
sin

πx

L

]
, (1)

where x is the size of the subsystem A, b = 1,2 for pe-
riodic/free boundary conditions (PBCs/FBCs), and c(b)

n is a
nonuniversal constant. The EE corresponds to the choice
n = 1.

Besides the central charge c, the entanglement properties of
a quantum chain can also depend on the critical exponents or
the operator content of the underlying CFT. This dependence

was previously observed in the entanglement for multiple
intervals [10], scaling corrections [11], parity effects [12], and
in the primary states and descendants of the CFT [13].

The aim of this Rapid Communication is to split the
total entanglement into contributions coming from disjoint
symmetry sectors. We carry out this analysis for the critical
quantum chains that have a U (1) symmetry that, in the scaling
limit, develops a U (1) Kac-Moody algebra (KM). Those are the
models with a critical line with continuously varying exponents
[14]. As a by-product of our calculation, we present herewith
a simple method to evaluate simultaneously the central charge
and the critical exponents for this class of quantum chains.
We hope that these results could be tested in ultracold atom
experiments as the ones performed in Ref. [9].

Let us start with a general quantum chain withL sites, whose
Hamiltonian Ĥ = ∑L

i=1 hi,i+1 commutes with the magnetiza-
tion operator Sz = ∑L

i=1 Sz
i , where Sz

i are spin s matrices. Let
|ψ〉 be a common eigenstate of Ĥ and Sz, with eigenvalues E

and M , respectively. We split the chain into disjoints blocks
A (i = 1, . . . ,x) and B (i = x + 1, . . . ,L), and compute the
reduced density matrix ρA = trB ρ (ρ = |ψ〉〈ψ |). The magne-
tization operator also splits into the sum Sz = Sz

A + Sz
B . Then,

tracing over the Hilbert subspace of the block B in the equation
[Sz,ρ] = 0 yields [Sz

A,ρA] = 0. This implies

ρA = ⊕mρ̃A,m = ⊕mpA,mρA,m, (2)

where −sx � m � sx, ρA,m is a density matrix with eigen-
value m of Sz

A, and pA,m = tr ρ̃A,m � 0 is the probability of
finding m in a measurement of Sz

A.
The decomposition (2) is implemented normally in numeri-

cal methods, such as the density matrix renormalization group
(DMRG) [15] and matrix product state (MPS), multiscale
entanglement renormalization ansatz (MERA), etc. [16], to
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reduce the memory resources needed for high-precision re-
sults. The latter equation implies

SA =
∑
m

pA,mSA,m + HA, (3)

where SA = −tr ρA ln ρA, SA,m = −tr ρA,m ln ρA,m, and HA =
−∑

m pA,m ln pA,m. Equation (3) means that the quantum
entropy in the subsystem A is greater, in general, than the
weighted sum of the entropies of the different magnetization
sectors. This fact expresses the holistic nature of quantum
entanglement. Actually, Eq. (3) can be seen as a special case
of the general Holevo theorem in quantum information theory
[17,18] that states that the maximum information we can
extract from a general mixed state, ρ = ∑

m pmρm, is given
by the difference S(ρ) − ∑

m pmS(ρm). In the case of Eq. (3)
the maximum information is given by the Shannon entropy.

The critical chains studied in this Rapid Communication
reveal surprisingly that the contributions SA,m to the entropy
SA are equal for low values of the magnetization |m|. We call
this situation equipartition of entanglement entropy.

Analytic predictions. The previous discussion applies to any
quantum lattice system with a U (1) symmetry. In the following,
we shall derive analytic predictions of pA,m and SA,m, for
critical spin-s quantum chains, such as the spin-s XXZ model.
In a block A with x sites, Eq. (2) can be inverted to obtain

pA,mρA,m = 1

2sx + 1

sx∑
n=−sx

e
2πin

2sx+1 (Sz
A−m) ρA, (4)

where the sum projects the density matrix ρA into the sector
with Sz

A = m. In the limit x � 1, Eq. (4) becomes

pA,mρA,m =
∫ 1/2

−1/2
dφ e2πiφ(Sz

A−m) ρA. (5)

Taking the trace over the states in A, and using trA ρA =
trA ρA,m = 1, gives the probability distribution

pA,m =
∫ 1

2

− 1
2

dφ e−2πimφ trA(e2πiφSz
A ρA). (6)

Similarly, the nth power of Eq. (5) yields

pn
A,mtrA ρn

A,m =
n∏

j=1

∫ 1/2

−1/2
dφj e−2πim

∑n
j=1 φj

×trA(e2πiSz
A

∑n
j=1 φj ρn

A), (7)

that, together with (6), provides the Rényi entropies S
(n)
A,m =

1
1−n

log trA ρn
A,m. To find trA(e2πiφSz

Aρn
A), we extend the general

formalism to construct the entanglement Hamiltonian in CFTs
[19] that we summarize below.

The reduced density matrix ρA in CFT is given by

ρA = 1

Z1
e−2πKA, Z1 = trA e−2πKA, (8)

where KA = ∫
A

dx T00(x)/f ′(x) is the entanglement Hamilto-
nian and T00 is a component of the stress tensor [19]. f (z) is
the conformal map from the Euclidean space-time, with a cut
along the interval A and two boundaries, into an annulus of
width W and height 2π . Taking the trace of the nth power in

(8) yields

trA ρn
A = Zn

Zn
1

, Zn = trA e−2πnKA, (9)

where Zn is the Euclidean partition function of an n-sheeted
cover of the original space-time with conical singularities
around the end points of A. We propose the following extension
of Eq. (9) to CFTs with a U (1) KM symmetry,

trA

(
e2πiφJ0 ρn

A

) = Zn(φ)

Zn
1

= trA(e2πiφJ0e−2πnKA )

Zn
1

,

where J0 is the zero mode of the U (1) current J (z). Zn(φ) is
the partition function, given in Eq. (9), but with fugacity 2πiφ.
Since the eigenvalues of KA are given by π (�p,m − c/24)/W ,
where �p,m are the dimensions of the boundary operators [19]
and m is the eigenvalue of J0, we obtain

Zn(φ) = q−nc/24
∑
p,m

dp,m qn�p,me2πimφ, (10)

where q = e−2π2/W and dp,m is the degeneracy of the boundary
operator (p,m). In the case of the ground state of the CFT, with
periodic/free boundary conditions, the width W should be fixed
to [recall Eq. (1)]

W = 2

b
ln[bLc(x)], Lc(x) = L

π
sin

πx

L
. (11)

For the thermal state at temperature 1/β, W = 2 ln ( β

π
sinh πx

β
)

[19].
The first application of the analytic formula (10) is the

Luttinger liquid which is a CFT with c = 1 and a U (1) sym-
metry generated by the current operator J (z) = i

√
K∂ϕ(z),

where ϕ(z) is a chiral boson and K a constant. A state with
charge m ∈ Z + a (with a = 0, 1

2 ) is associated with the vertex

operator eimϕ(z)/
√

K , and has conformal weight hm = m2/(2K).
The partition function (10) reads in this case

Zn(φ) = 1

η(qn)

∑
m∈Z+a

q
nm2

2K e2πimφ = θa,0
(
φ,nτ

K

)
η(qn)

, (12)

where τ = iπ/W , η(q) = q
1

24
∏∞

n=1(1 − qn) is the Dedekind
eta function, and θa,c(z,τ ) = ∑

n∈Z eπiτ (n+a)2+2πin(z+c) is a
Jacobi theta function with characteristics. In the limit L � 1,
one has W � 1 and therefore q ∼ 1, so that a large number
of terms contribute to Eq. (12). However, using the modular
transformation τ → −1/τ [20],

θa,0(z,τ ) =
√

i

2τ
e−i z2

2τ

∑
a′=0, 1

2

e4πiaa′
θa′,0

(
− z

τ
,−2

τ

)
(13)

and η(−1/τ ) = √
τ/i η(τ ), we obtain

Zn(φ) ∼ e
W
n ( 1

12 −Kφ2). (14)

For special values of K , the CFT is rational and Zn(φ) becomes
a finite sum (e.g., if K2 is an even number [21]),

Zn(φ) =
∑

j

nj χj (qn,φ), (15)
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wherenj are non-negative integers that depend on the boundary
conditions on the annulus. The coefficients χj (qn,φ) are
denoted nonspecialized characters that are labeled by the
representation j of an extended KM algebra. Their modular
transformations [21,22] have been used to study the correlators
in the multichannel Kondo model [23] and bulk susceptibilities
[24,25].

The second application we report deals with the spin
s-isotropic exactly solvable model [26]. This is a critical
system described by the Wess-Zumino-Witten (WZW) model
SU(2)k at level k = 2s, and central charge c = 3k

k+2 . The
model contains a similar U (1) current operator, which is
now J z(z) = i

√
k
2∂ϕ(z). The primary fields are labeled by

the total spin j = 0, 1
2 , . . . , k

2 . The partition function (15) is
a linear combination of the nonspecialized characters χj (q,φ)
of SU(2)k and using their modular transformations [21,22], we
obtain [27]

Zn(φ) ∼ e
W
n ( c

12 − k
2 φ2). (16)

For the spin- 1
2 chain, c = 1 and k = 1, and then (16) coincides

with (14), for K = 1
2 , where the Luttinger liquid has an

enhanced SU(2)1 symmetry.
We can summarize both previous applications as

trA

(
e2πiφJ0 ρn

A

) ∝ eW[ c
12 ( 1

n
−n)− K

n
φ2], (17)

where K = K or K = k
2 for the Luttinger liquid and the

spin-s chain, respectively. Quite remarkably, this parameter
satisfies the universal relation K = πvsχ , where vs is the
spin-wave velocity, and χ is the zero-field susceptibility at
zero temperature of these distinct spin chains [24,25]. The case
n = 1 in Eq. (17) coincides with the full counting statistics
(FCS) for the subsystem magnetization Sz

A [28,29]. Taking
n > 1 provides a generalized FCS where the entanglement
properties are taken into account.

Let us derive some consequences of Eq. (17) for finite
chains with PBC [i.e., b = 1 in (11)]. For n = 1, we obtain
the probability distribution

pA,m =
∫ 1

2

− 1
2

dφ e−2πiφm−κφ2
, κ = 2K ln[gLc(x)]. (18)

The constant g comes from the lattice cutoff in the chains
that has not been included in (17). The highest probability
corresponds to m = 0,

pA,0 =
√

π

κ
erf

(√
κ/2

)
, (19)

where erf(x) is the error function. pA,m can be approximated
by replacing the integration limits in (18) by ±∞,

pA,m 
√

π

κ
e−(πm)2/κ , (20)

which is a distribution whose Shannon entropy,

HA ∼ 1

2
ln (2K ln[gLc(x)]), (21)

quantifies our knowledge after measurement of sublattice
magnetization. For a half block it will go as ln ln L, a re-
markably slow increase with L. It is interesting to observe

that the relation K = πvsχ obtained in Refs. [24,25] can be
derived from Eq. (20). The zero-field susceptibility is given
by χ = 〈m2〉/(xT ), where m is the magnetization of a region
of length x and T is the temperature. Using Eq. (20), one
finds 〈m2〉 = κ

2π2 , where κ = KW = 2 ln ( β

π
sinh πx

β
) [notice

that the expression of κ , defined in Eq. (18), is for T = 0,
where W = 2 ln Lc(x)]. In the limit x � β one finds 〈m2〉 
KxT /π , which gives the relation K = πvsχ . The same sort
of computation provides, for example, the Gibbs entropy for
the subsystem of size x that is given by SA = πc

3 T . Note also
that since Eq. (17) is related with the zero-field susceptibility
(which is related with the spin fluctuations), we would expect
a connection between the entanglement and spin fluctuations.
This is very interesting, since measurements of fluctuations are
easier to do than the entanglement ones. Indeed, recently some
authors have made this connection [29] (see also Ref. [30]).

In the limit κ � 1, the Rényi entropies can be found using
(7) and (17), and behave asymptotically as

tr ρn
A,m

tr ρn
A

∝ κ
1
2 (n−1), (22)

which implies

S
(n)
A,m  S

(n)
A,CFT − 1

2 ln κ. (23)

Hence, the EE of the density matrix ρA,m is dominated
by the EE of the full density matrix ρA, with a reduction
− 1

2 ln(2K ln[gLc(x)]) that is independent of the quantum
number m. This is the equipartition of the EE mentioned above.

Numerical tests. We have considered the spin- 1
2 XXZ

Hamiltonian with PBC,

H =
L∑

n=1

(
Sx

nSx
n+1 + Sy

nS
y

n+1 + �Sz
nS

z
n+1

)
, (24)

in the critical regime −1 < � � 1, whose low energy
is described by a Luttinger liquid with parameter K =
1
2 [1 − 1

π
arcos(�)]

−1
[14,31]. Using the DMRG method we

obtained the GS and the reduced density matrices ρA and
ρA,m. We consider system sizes up to L = 600 under PBC and
keeping up to m̃ = 3000 states per block in the final sweep.
We have done ∼6–10 sweeps, and the discarded weight was
typically 10−10–10−12 at that final sweep. To verify Eq. (17),
we write it as

ln tr
(
e2πiφSz

A ρn
A

) = −γn(φ) ln[gnLc(x)] + dn, (25)

where gn,dn are nonuniversal constants (g1 ≡ g), and

γn(φ) = αn + βn(φ), αn = c

6

(
n − 1

n

)
, βn(φ) = 2K

n
φ2.

(26)

In our opinion, Eqs. (25) and (26) give us the most simple
and numerically easier method to evaluate the central charge
and the Luttinger parameter from reduced density matrices.
The evaluation of ρA,m with the DMRG does not require any
additional numerical effort because it is already calculated in
the evaluation of ρA. For n = 1, Eq. (25) yields a φ extension of
the trace that provides the Luttinger parameter (α1 = 0, β1 =
2Kφ2), and for n > 1 it gives the central charge [αn = c(n −
1/n)/6].
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FIG. 1. DMRG results for XXZ quantum chain for several values
of � and a chain of L = 600 sites. (a) γn(φ) vs φ2 for n = 1, 2,
and 3. The data were obtained considering, for each φ, the sublattice
sizes x ∈ [80,300]. (b) pA,0(x) vs x. (c) δS

(2)
A,0 vs x. The numbers

−0.1, −0.2 are vertical shifts to facilitate the picture. The values of
g and g2 in (b) and (c) are obtained from fitting the data of (a) to
Eq. (25). The symbols are the numerical data and the lines in (b) and
(c) are the theoretical predictions.

The DMRG data show clearly, for each φ, the linear
dependence on ln Lc(x) in Eq. (25). We illustrate in Fig. 1(a)
the function γn(φ) obtained from Eq. (25) for several values of
� and n. Table I summarizes the results for the estimated values
of αn and βn(φ). Notice the excellent agreement between the
numerical and theoretical results.

TABLE I. The values of αn and βn/φ
2 obtained by fitting the

DMRG data of Fig. 1(a) to Eq. (26) for the spin- 1
2 XXZ chain for

� = 0,0.5, cos ( π

8 ). The values in parentheses are the predicted ones
in Eq. (26).

� n = 1 n = 2 n = 3

0 αn 0.00 (0) 0.25 (0.25) 0.44 (0.444...)
0 βn/φ

2 1.99 (2) 0.99 (1) 0.66 (0.666...)
0.5 αn 0.00 (0) 0.25 (0.25) 0.44 (0.444...)
0.5 βn/φ

2 1.48 (1.5) 0.75 (0.75) 0.48 (0.5)
cos(π/8) αn 0.00 (0) 0.25 (0.25) 0.44 (0.444...)
cos(π/8) βn/φ

2 1.13 (1.1428) 0.57 (0.5714) 0.35 (0.3805)

We also test Eq. (19) for the XXZ spin- 1
2 chain using g as a

fitting parameter. In the case of the XX model, the exact value is
given by g = 2e1+γ = 9.68 . . . [27]. Figure 1(b) illustrates the
excellent agreement between the numerical and the analytical
prediction (19) for pA,0 as a function of x for three values
of �.

Finally, we present the results for the Rényi-2 entropy S
(2)
A,0.

We found that S
(2)
A,0 = S

(2)
A − f (κ,κ2) [27], where

f (κ,κ2) = ln

[
κ

πκ2

[√
2πκ2 erf

(√
κ2

2

) − 2 + 2e−κ2/2
]

[
erf

(√
κ

2

)]2

]

and κ2 = 2K ln[g2Lc(x)]. The asymptotic behavior was al-
ready shown in (23). Figure 1(c) shows the DMRG data for
δS

(2)
A,0 = S

(2)
A,0 + f (κ,κ2) = c/4 ln[2Lc(x)] + c2

2 in the XXZ
spin- 1

2 chain with L = 600, where we use the values of g1

and g2 found in Fig. 1(a), shown in the insets of Figs. 1(b)
and 1(c).

Twist fields. Although we have derived the analytic results
using the modular properties of nonspecialized characters, we
think that the twist field method of Refs. [6,32] can be extended
to this case. This is suggested by Eq. (17), whose right-hand
side is proportional to Lc(x)−

c
6 (n− 1

n
) × Lc(x)−

2K
n

φ2
. The first

factor comes from the correlator 〈TnT−n〉 of the twist field
T±n with scaling dimensions �Tn

= �̄Tn
= 1

24 (n − 1
n

), and the
second factor corresponds to the correlator 〈Oφ,nO−φ,n〉 of
a field Oφ,n with scaling dimensions �Oφ,n

= �̄Oφ,n
= K

2n
φ2.

The field Oφ,n is a generalized string-order parameter with
angle 2πφ [33], which for n = 1 and φ = 1

2 has the two-point
correlator described above [34]. We expect that the generalized
string-order fields provide an extension of the twist fields that
are reminiscent of the ones used in nonunitary CFTs where
the ground state is not the CFT vacuum [35]. Double log
corrections to the EE have been discussed in the context of
nonunitary CFTs [35,36], and in the noncompact Liouville
theory with c = 1 [36].

Conclusions. We have shown that for critical Hamiltonians,
with a U (1) KM symmetry, the bipartite entanglement of the
projected states exhibits universal properties related to the
underlying CFT such as the Luttinger parameter K , or the level
k of the KM algebra SU(2)k . The numerical determination
of the parameter K using entanglement measures is quite
difficult and imprecise. We have presented here a simple way
to compute K together with the central charge c, through
the projected density matrices. We have also derived the
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probabilities of measuring a given magnetization in a part of the
system, a problem that is related to the full counting statistics
which we generalize to deal with entanglement effects.

We believe that the results obtained in this Rapid Com-
munication can be measured in experiments with ultracold
atoms. For that, it is necessary to measure trA(e2πiφSz

Aρn
A) =∑

m e2πiφm trA(ρn
A,m). In principle, this quantity can be mea-

sured using two different schemes, proposed recently in
Refs. [37,38]. In the scheme of Ref. [37], it is necessary to
build n copies of the state ρ. Since trA(ρn

A,m) = trA(Vnρ
⊗n
A,m),

where Vn is the shift operator [37], we only need to measure
the expectation value 〈Vn〉 on n copies, for a fixed value of m.
Note that expectation values can be measured in optical lattices
[37]. On the other hand, the scheme proposed in Ref. [38]
uses a random measurement protocol in a single copy and for
the reconstruction it explores the decomposition of the density
matrix into disjoint blocks with different quantum numbers.
This scheme seems to be a natural route to measure trA(ρn

A,m)
for a fix value of m.

Note that the generalization of our approach to systems with
higher rank KM algebras such as SU(n)k is straightforward and
will be reported elsewhere [27]. Finally, we would also to point

out that the results obtained in this Rapid Communication apply
only to critical theories. They can be extended to the massive
theories, obtained by adding relevant perturbation to the critical
ones. The reduced density matrix for an interval whose size is
smaller that the correlation length ξ coincides with the critical
one, except that the cord length Lc(x) is now replaced by the
ratio ξ/a, where a is the lattice spacing. The equipartition of
the entanglement entropy will also hold for this more general
class of models.

Noted added. Recently, we became aware of Refs. [39,40]
that also consider the problem studied here.
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