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Valley Edelstein effect in monolayer transition-metal dichalcogenides
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We predict the emergence of the valley Edelstein effect (VEE), which is an electric-field-induced spin-
polarization effect, in gated monolayer transition-metal dichalcogenides (MTMDs). We found an unconventional
valley-dependent response in which the spin polarization is parallel to the applied electric field with opposite spin
polarization generated by opposite valleys. This is in sharp contrast to the conventional Edelstein effect in which the
induced spin polarization is perpendicular to the applied electric field. We identify the origin of VEE as combined
effects of conventional Edelstein effect and valley-dependent Berry curvatures induced by coexisting Rashba and
Ising spin-orbit couplings in gated MTMDs. Experimental schemes to detect the VEE are also considered.
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I. INTRODUCTION

Monolayer transition-metal dichalcogenides (MTMDs)
have attracted much attention recently because of their
peculiar electronic and optical properties [1]. Semiconducting
MTMDs, MX2, are composed of transition-metal atoms
(M = Mo, W) and group-VI dichalcogenide atoms (X = S,
Se, Te, etc.) [2–5]. They are arranged in two-dimensional (2D)
honeycomb lattice structures, and exhibit a direct band gap
between the valence and conduction band edges near the ±K

points [6–10]. Both the top valence and the bottom conduction
band edges of MTMDs are spin split (∼0.1 eV and ∼10 meV,
respectively) due to strong atomic spin-orbit coupling (SOC)
of the d orbitals from transition-metal atoms and in-plane
mirror symmetry breaking in the lattice structure [11–15]. In
particular, the SOC here acts as a valley-dependent Zeeman
field, called Ising SOC [16,17], which pins electron spins
at opposite valleys to opposite out-of-plane directions. Such
a valley-dependent band structure makes MTMDs potential
candidates for valleytronics devices [18–20]. Several valley-
dependent phenomena, such as valley-selective circularly
dichroism [21] and intrinsic valley Hall effect [22], have been
theoretically studied and experimentally reported. Besides, in
gated MTMDs, superconductivity with nonzero Rashba SOCs
and Ising SOCs have also been experimentally studied [16,23].

The relatively small Ising SOC in the conduction bands
was ignored in previous studies [8–10,20]. In this paper,
we show that the valley-dependent Ising SOC together with
the Rashba SOC generate strong Berry curvatures in the
conduction bands. This Berry curvature combining with the
conventional Edelstein effect in gated MTMDs leads to a
new type of valley-dependent phenomenon, which we call the
valley Edelstein effect (VEE). In conventional Edelstein effects
[24–29], the spin polarizations are generated by Rashba SOCs
under an applied electric field E [30–33], and the induced spin
polarizations are perpendicular to E. In the VEE, however,
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the induced spin polarization has an extra parallel component
with respect to E, with the polarizations generated by electrons
from opposite valleys pointing to opposite directions.

Remarkably, the unconventional parallel spin density cal-
culated from Keldysh-Green’s function method is proportional
to the Berry curvature induced by the coexisting Rashba and
Ising SOCs in gated MTMDs [16,34]. Physically, the Berry
curvature drives electrons to drift in transverse directions
under the applied electric field E, and by combining with the
conventional Edelstein effect spin components parallel to E
can emerge [Fig. 1(a)].

Importantly, the Berry curvature in VEEs results from
a massive-Dirac-type Hamiltonian in spin basis [Eq. (2)].
The Ising SOC plays the role of a Dirac mass term and
has opposite signs at opposite valleys. This is very different
from the intrinsic Berry curvature in pristine MTMDs studied
previously [20], in which valley-dependent Berry curvatures
arises from orbital degrees of freedom.

To be specific, the spin density induced in response to E is
given by 〈

sVEE
v

〉 = eνe[C⊥( ẑ × E) + vC‖ E], (1)

where v = ± is the valley index, e < 0 is the electron charge,
νe = m/(2πh̄2) is the 2D density of states, m is the effective
electron mass, ẑ is the unit vector normal to the 2D plane,
and C⊥ and C‖ are the response coefficients for perpendicular
and parallel spin components, respectively. The key finding of
VEEs in this work is manifested in the nonzero value of C‖ in
the second term of Eq. (1), which arises when both Rashba and
Ising SOCs are present.

This paper is organized as follows. In Sec. II, we present the
model Hamiltonian for gated MTMDs [shown schematically in
Fig. 1(b)], which incorporates both impurity scattering effects
and coupling to external electric fields. Next, in Sec. III, we
use Keldysh Green’s function method to calculate the induced
spin density within a linear response theory and show explicitly
the emergence of the unconventional C‖. Remarkably, we
demonstrate that C‖ is directly related to Berry curvatures
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FIG. 1. Schematic of the VEE. The blue and orange arrows
represent the motion of electrons in the v = + and − valleys,
respectively, induced by an electric field E applied in the −x direction.
The thick solid (thin dotted) arrows correspond to the trajectories in
the presence (absence) of the Ising SOC. Due to valley-dependent
Berry curvatures [Eq. (12)] induced by Rashba and Ising SOCs, the
trajectory of electrons from v = + (−) valley bends into the +y

(−y) direction. The spin polarization (black arrows) arises in the
perpendicular direction to the electron motion via the spin-momentum
locking due to the Rashba SOC. As a result, valley-dependent spin
polarization is induced along E (VEE) in addition to the net spin
polarization perpendicular to E (conventional Edelstein effect). (b)
Schematic dual-gate setup with tunable chemical potential and Rashba
SOC. Top (back) gate voltage is indicated by Vtg (Vbg). The chemical
potential is tuned by the average of Vtg and Vbg, while the Rashba
SOC can be induced by the difference between Vtg and Vbg.

induced by Rashba and Ising SOCs. In Sec. IV, we discuss
experimental realization of VEE in gated MTMDs and explain
how it can be detected by longitudinal magneto-optic Kerr
effects [35]. Section V is devoted to conclusion.

II. MODEL

We consider a MTMD, such as MoS2 and WS2, and assume
that the Fermi level crosses the spin-split conduction bands
around the ±K points [4,6], as shown in Fig. 2. Such situa-
tion can be achieved by electrogating [36,37]. The effective
Hamiltonian H0,v for electrons in the vK valley is given by
[4,11]

H0,v =
∑

k

ψ†
v[εkσ

0 + vβIσ
z + αR(kyσ

x − kxσ
y )]ψv, (2)

where ψ
†
v ≡ ψ

†
v (k) = (ψ†

↑,v ψ
†
↓,v) is the creation operator of

an electron in the valley vK with ↑ and ↓ denoting the spin,
k ≡ (kx, ky ) is the electron momentum measured from the vK

point, and σ i (i = x, y, z) are the Pauli matrices. The first

FIG. 2. Spin-split conduction bands of the MTMD with the Ising
SOC and Rashba SOCs around K point and −K points for μ > βI.

term of Eq. (2) is the kinetic term with εk = h̄2k2/(2m) − μ,
where the chemical potential μ is measured from the averaged
energy of the spin-split conduction bands at the vK point. The
second term is the Ising SOC. The coupling strength βI is
assumed to be a constant [16,38] since the spin splitting is
independent of k up to the second order near the ±K points
[11–15,20]. The third term of Eq. (2) is the Rashba SOC whose
strength αR can be controlled by the gate voltage. Without
loss of generality, we choose both βI and αR to be positive.
Importantly, we note that in the presence of both Rashba
and Ising SOCs, the effective Hamiltonian in Eq. (2) has the
form of a massive Dirac Hamiltonian (by ignoring the εk term
which does not affect the Berry curvature). As we show in
later sections, this massive-Dirac-type Hamiltonian leads to
nontrivial valley-dependent Berry curvatures, which plays an
essential role in the VEEs.

It is noted that the strength of the Rashba SOC is controlled
by the out-of-plane gating electric field across the MTMD
sample, while the Fermi level is controlled by the carrier
density which does not necessarily have a strong dependence
on the gating electric field. For example, almost independent
control of carrier density and gating field using dual-gate setup
(as depicted in Fig. 1) has already been achieved in graphene
systems [39,40]. Alternatively, with a single top/bottom gate,
the carrier density can also be tuned by intercalation of dopants
such as alkali atoms [36]. Therefore, by coordinating doping
concentrations and gating strengths, one can also effectively
control gating field and Fermi level independently.

We further take into account an in-plane dc electric field
E as well as nonmagnetic impurities on the MTMD. Here,
we assume that hybridization between the ±K valleys can be
ignored, namely, the magnitude of the momentum shift due
to E is much smaller than 2|K|. Then, the Hamiltonian for
electrons in the ±K valleys are decoupled, each of which is
given by

Hv = H0,v + Hem,v + Vimp,v, (3)

Hem,v = − e
∑

k

ψ†
vv · Aψv, (4)

Vimp,v =
∫

dx ui(x)ψ†
v (x)ψv(x), (5)

where v = −(∂Hv/∂k)/h̄ is the velocity operator, A is
the vector potential defined by E = −∂t A, and ui(x) =∑Ni

j=1 u0δ(x − Rj ) is the short-range impurity potential in-
dependent of the valley index. Here, Ni, u0, and Rj are the
number of impurities, a constant impurity potential, and the
position of the j th impurity on the monolayer, respectively.

III. VALLEY EDELSTEIN EFFECT

We calculate the induced spin density using the Keldysh
Green’s functions within the linear response to E. The con-
tributions from the ±K valleys, 〈sVEE

± 〉, are independently
calculated from H±. The calculated perpendicular (C⊥) and
parallel (C‖) spin coefficients are shown in Fig. 3. Clearly,
the unconventional C‖ term arises when both Rashba and
Ising SOCs are present. According to Eq. (1), the parallel
spin polarization for electrons from opposite valleys points to
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C ⊥
C ‖

FIG. 3. (a) Conventional and (b) valley-dependent parts of the
VEE as a function of the Rashba SOC (αR) for various values of the
Ising SOC (βI) at bare self-energy�0 = 3 meV and chemical potential
μ = 100 meV.

opposite directions. This is referred to as the valley Edelstein
effect (VEE).

In our calculations, we assume that the self-energy �v due
to impurity scatterings satisfies �v 
 |μ ± βI|, which allows
us to take into account disorder effects perturbatively [25]. For
the parameters we choose below, this assumption is satisfied.
Using the Keldysh techniques, the spin density in response to
E is found to be [41]〈

sVEE,i
v

〉 = − eh̄

4π

∑
k,ω

∑
j=x,y

dfω

dω
tr
[
σ iGr

k,ω,vS
j

k,ω,vG
a
k,ω,v

]
Ej ,

(6)

where Gr
k,ω,v = [h̄ω − H0,v + i�v]−1 and Ga

k,ω,v = [Gr
k,ω,v]†

are the retarded and advanced Green’s functions, respectively,
fω is the Fermi distribution function, and Sj

k,ω,v is the velocity
operator with the ladder vertex corrections. The self-energy �v

is calculated within the self-consistent Born approximation,
resulting in

�v = �′
0,ω + v�z,ωσ z, (7)

where �′
0,ω = �0 ≡ πncu

2
0νe and �z,ω = 0 for μ > βI and

�′
0,ω ≡ �0(1 + uR/

√
λω )/2 and �z,ω ≡ �0βI/(2

√
λω ) for

−βI < μ < βI. Here, we define �0 = πncu
2
0νe and λω = β2

I −
(μ + h̄ω)2 + [uR − (μ + h̄ω)]2, where nc is the concentration
of impurities and uR ≡ mα2

R/h̄2 is the Rashba energy.
Using the obtained self-energy, the Green’s function can be

decomposed as

Gr
k,ω,v = �r

+
h̄ω − E+ + i(�′

0,ω + γ�z,ω )

+ �r
−

h̄ω − E− + i(�′
0,ω − γ�z,ω )

, (8)

where E± = εk ±
√

α2
Rk2 + β2

I is the energy dispersion
of each band, and �r

± = 1/2 ± (ur · σ )/2(
√

α2
Rk2 + β2

I −
iγ�z,ω ) is the projection operator onto the each band with
ur = αR(k × ẑ) + v(βI − i�z) ẑ and γ = βI/

√
β2

I + α2
Rk2. It

is noticed that the first (second) term of Eq. (8) is the
Green’s function corresponding to the spin-split upper (lower)
conduction band.

After some calculations (Appendices B and C), we find that
the magnitude of C⊥ is comparable to that of C‖ in Eq. (1)
with μ  βI. Below, we discuss in detail in this parameter
regime. The results for μ < βI will be given in Appendix B.
For μ  βI, we obtain

C⊥ = αR

4π
�(v) 1 − �(s)

xx[
1 − �

(s)
xx

]2 + [
�

(s)
xy

]2 , (9)

C‖ = αR

4π
�(v)

�(s)
xy[

1 − �
(s)
xx

]2 + [
�

(s)
xy

]2 , (10)

where �(s)
xx (�(s)

xy ) is the diagonal (off-diagonal) compo-
nent of the spin-vertex function, and �(v) is the velocity-
vertex function, which are defined from the following
equations: ncu

2
i

∑
k Gr

k,0,vσ
xGa

k,0,v = v�(s)
xx σ x + �(s)

xy σ y and∑
k Gr

k,0,vv
jGa

k,0,v = �(v)εj�zσ
�αRνe/(2h̄).

We numerically calculate the vertex functions (�(v), �(s)
xx ,

and �(s)
xy ) and obtain the Rashba SOC (αR) and Ising SOC (βI)

dependence of C⊥ and C‖ as shown in Figs. 3(a) and 3(b),
respectively. Here, we choose μ = 100 meV and �0 = 3 meV
(which corresponds to the relaxation time τ = 0.1 ps).

The results presented in Fig. 3 exhibit two important fea-
tures. First, at βI = 0, we find that C⊥ ≈ C0

⊥ ≡ αR/(2�0), and
C‖ = 0. Namely, the conventional Edelstein effect generated
by Rashba SOCs is reproduced. Second, in βI �= 0, the C⊥
term is suppressed, while the C‖ term becomes nonzero.
For fixed βI, C‖ increases as a function of αR and reaches
a maximum value where C‖ ∼ C⊥. With further increase in
αR, C‖ decreases and C⊥ dominates the Edelstein effect.

To understand this unusual behavior of C‖, we note that
it can be approximated as C‖ ≈ αR

4π
�(v)�(s)

xy , where �(s)
xy ≈

2βI�0

α2
Rk2

F +β2
I

and �(v) ≈ 2π
�0

(1 − 1
2

α2
Rk2

F

α2
Rk2

F +β2
I

). Here, kF is to the Fermi
momentum measured from the K points. Remarkably, the
expression of C‖ can be recast in the following form:

C‖ � cos(θ‖)|�v=±
spin (kF)|kF

(
1 + 2β2

I

α2
Rk2

F

)
. (11)

Here, cos(θ‖) = αRkF/(α2
Rk2

F + β2
I )1/2 is the in-plane direc-

tion cosine of electron spin at the Fermi energy. �v=±
spin is the

Berry curvature based on the massive-Dirac-type Hamiltonian
in Eq. (2):

�v=±
spin (kF) = v

α2
RβI

2
(
α2

Rk2
F + β2

I

)3/2 . (12)

Interestingly, the valley index in �v
spin results from the Ising

SOC, which plays the role of a valley-dependent Dirac mass
in Eq. (2). Based on Eq. (12), the magnitude of �v

spin is a
nonmonotonic function of αR and βI, which can be visualized
from the solid angle of the spin structures at the Fermi surface
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FIG. 4. Schematic of the spin structures at the Fermi surface. The
Berry curvature �v=+

spin induced by Rashba and Ising SOCs can be
visualized from the solid angle of the spin structures at K point: the
Berry curvature is nearly zero at weak (left panel) and strong (right
panel) Ising SOC. Finite Berry curvature can emerge when Ising and
Rashba SOCs are comparable.

(Fig. 4): when either βI or αR is zero, the spin structure is either
coplanar (left panel) or uniformly out of plane (right panel).
In either case, �v

spin is zero. In contrast, for αRkF ∼ βI (middle
panel), �v

spin is nonzero, which results in a finite C‖. Notably,
this special behavior of �v

spin is qualitatively consistent with the
nonmonotonic behavior ofC‖ as a function of αR in Fig. 3: when
either αRkF  βI or αRkF 
 βI, �v

spin ≈ 0 and C‖ is small. In
the intermediate regime, �v

spin can be strong enough to induce
a large C‖, with C‖ ∼ C⊥. Based on the parameters in Fig. 3, the

Berry curvature in Eq. (12) is estimated to be �v
spin ≈ 1 Å

2
at

the Fermi energy with μ = 100 meV, αR = 20 meV Å, which

is 10 times of the intrinsic Berry curvature �orbital ≈ 0.1 Å
2

with the same Fermi momentum kF (Appendix A).
The close relation between C⊥ and the Berry curvature in

Eq. (12) reveals the physical origin of VEEs as a combined
effect of the valley-dependent �v

spin and conventional Edelstein
effect: Under applied electric fields, �v

spin drives electrons from
opposite valleys to drift in opposite transverse y directions
[Fig. 1(a)]. The resultant transverse flow of electrons from
opposite valleys combines with conventional Edelstein effects
to induce valley-contrasting spin polarizations that are parallel
to the applied electric field.

Actually, the VEE can be affected from the Berry curvature
due to both spin and orbital effect. However, as discussed in
the Appendix A, the Berry curvature caused by the orbital
effect is indeed small (due to the large bulk gap and relative
small chemical potential compared to the size of the bulk
gap) compared to the Berry phase caused by the spin degrees
of freedom. The situation of including both orbital and spin
degrees of freedom is investigated, and it is shown that under
realistic situations, the total valley Hall effect can be dominated
by the Berry curvature due to SOCs [42]. Therefore, the orbital
Berry curvature effects could be ignored.

IV. EXPERIMENTAL DETECTIONS

In this section, we discuss how to experimentally realize
and detect VEEs in gated MTMDs. Particularly, we propose
that the parallel spin induced by VEEs can be detected by
longitudinal Kerr effect measurements [35].

Consider the MTMD system in Fig. 1(b), by applying an
electric field in the x direction, electrons from opposite valleys
are driven by �v

spin to drift in opposite y directions. In the steady

FIG. 5. Schematic for spatial spin textures generated by VEEs
and detection scheme using Kerr effects. Magnitude of out-of-plane
spin component is qualitatively indicated by colors. Parallel spins on
the edges can be detected by the Kerr angle θs

K [Eq. (13)].

state, this establishes a valley imbalance near the boundaries
[20], where finite spin density due to VEEs will also emerge
(Fig. 5).

Here, we note that VEE has two unique signatures. First,
the induced magnetization M‖ is parallel to E, which contrasts
with the in-plane perpendicular magnetization from conven-
tional Edelstein effect. Second, the nonzero M‖ induced by
VEEs is valley dependent [Eq. (1)]. Due to the valley Hall
effect resulting from �v

spin, valley polarizations accumulated
near opposite edges have opposite signs [20]. As a result, M‖
due to VEEs also points to opposite directions at opposite
edges. Therefore, observation of nonzero edge-contrasting M‖
provides strong evidence for VEEs.

Now, we discuss how to detect M‖ using longitudinal
Kerr effect measurements. In magneto-optic Kerr effect, an
incident light of s(p) polarizations are generally reflected as
superposition of s- and p-polarized lights due to a magnetized
surface. This effect is quantified by the Kerr angles θ i

K (i =
s, p) for i-polarized lights [35]. It can be shown that with
proper oblique incidence setting, M‖ can be related to the Kerr
angle for s-polarized light [35]:

x̂ · M‖/Mtot ∝ θs
K. (13)

Here, Mtot is the magnitude of the total magnetization. More-
over, the edge contrasting M‖ from VEEs can be mapped out
by the spatial profile of θs

K, where the valley-dependent spin
density can be signified by opposite signs of θs

K at opposite
edges. Details of Kerr effect setting can be found in the
Appendix D.

It is noted that for the optical detection, the spatial resolution
of the light beam should be smaller than the valley diffusion
length lv , which for TMD samples can be on the order of micron
scale [43]. For example, the valley diffusion length is found
to be lv ∼ 1 μm, and the light beam of size ∼0.7 μm was
used to probe the valley imbalance accumulated at sample
boundaries due to valley Hall effect [43]. Since the valley
diffusion length is an intrinsic physical property, we expect
that its diffusion length is hardly affected by the spin Berry
curvature. In addition, the order of the spin diffusion length is
typically on the order of 1 μm [44]. Its length scale is the same
order of lv . Hence, the spin polarization induced by VEEs could
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also be established on the same length scale ∼1 μm. Therefore,
the VEEs could be detected using similar spatial resolution in
the Kerr effect measurement.

Finally, we estimate the obtained spin density. The obtained
spin is caused by the applied electric field, and the density of
each valley can be estimated as s⊥ = eνeC⊥|E × ẑ| and s‖ =
eνeC‖|E|, respectively. These are estimated as s⊥ ≈ 13 μm−2

and s‖ ≈ 8 μm−2, respectively, when we apply a dc electric
field Ex = 100 mV/μm for the system with βI = 10 meV,
αR = 10 meVÅ, μ = 0.1 eV, �0 = 3 meV, and m/me = 0.5
with me being the electron rest mass. The magnitude of
the induced spin density could be measurable. The reason
is that its magnitude is comparable to the magnitude of the
conventional spin density, which is detected at the interface of
the InGaAs/GaAs [30], where its magnitude is about ρeld ≈
8 μm−2 under the thickness of the film d ≈ 1 μm [45].

V. CONCLUSION

In this work, we predict that Berry curvatures due to co-
existing Rashba and Ising SOCs combined with conventional
Edelstein effects lead to VEEs in gated MTMDs, in which
valley-contrasting spin polarization parallel to the applied
electric field can be generated. The parallel spin polarization
due to VEEs can be comparable to the perpendicular spin
polarization via conventional Edelstein effect. Experimental
realization of VEE can be detected by longitudinal Kerr effects.
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APPENDIX A: BERRY CURVATURE IN GATED MTMDs

We evaluate Berry curvature in pristine MTDMs and that
in gated MTMDs. The former is given by the effective mas-
sive Dirac-Hamiltonian. The effective Hamiltonian is given
by Horbital = h̄VF (vkxτx + kyτy ) + �τz, where v = ± is the
valley index, VF is the Fermi velocity, τ is Pauli matrix acting
on orbital degrees of freedom, and 2� corresponds to the band
gap between conduction band and valence band [20]. Then,
the intrinsic Berry curvature �orbital is given by

�orbital(k) = h̄2V 2
F �

2
(
h̄2V 2

F k2 + �2
)3/2 . (A1)

On the other hand, the Berry curvature in gated MTMDs
results from the effective massive-Dirac-type Hamiltonian
given by Hspin = ( h̄2k2

2m
− μ)σ0 + αR(kyσx − kxσy ) + vβIσz

which is also a Dirac-type Hamiltonian, but with an extra σ0

term which does not affect the Berry curvature. Here, σ is the

Pauli matrix in spin space. The Berry curvature induced by
Rashba and Ising SOCs is given by

�v=±
spin (k) ≡ ẑ · ∇ × 〈k, v|i∇|k, v〉 = v

α2
RβI

2
(
α2

Rk2
F + β2

I

)3/2 ,

(A2)

where |k, v〉 is the wave function of the effective massive
Dirac-Hamiltonian in the gated MTMD. We find that the Berry
curvature in gated MTMD is estimated by |�v=±

spin (k = kF)| ≈
1.26 Å

2
, when we use realistic parameters βI = 10 meV, αR =

20 meV Å, μ = 100 meV, and m/me = 0.5 with me being
the electron rest mass. On the other hand, the intrinsic Berry

curvature is given by |�v=±
orbital(k = kF)| ≈ 0.096 Å

2
, when we

chose the realistic parameters � = 1.79 eV, VF = 4.38 eV Å,
μ = 100 meV, and m/me = 0.5. Therefore, we find that in the
regime considered in this work, |�v=±

spin (kF)|  |�orbital(kF)|.

APPENDIX B: DERIVATION OF C‖ AND C⊥ IN |μ − �0| < βI

Since preexisting works of the conventional Edelstein effect
used Green’s function techniques [25], we also use Green’s
functions in the following calculation. The calculation is as-
sumed when the magnitude of the self-energy of nonmagnetic
impurity scattering is smaller than that of the chemical potential
(μ  �0 as shown in Fig. 6). First, we introduce the impurity-
averaged Green’s functions in |μ − �0| < βI:

Gr
k,ω,v = �+

h̄ω − E+ + i(�′
0 + γ�z)

+ �−
h̄ω − E− + i(�′

0 − γ�z)
, (B1)

with

�± = 1
2 [1 ± (u · σ )/u0], (B2)

u = αR(k × ẑ) + v(βI − i�z) ẑ, (B3)

u0 =
√

α2
Rk2 + β2

I − iγ�z, (B4)

�′
0 =

⎡
⎣1

2
+ uR

2
√

β2
I − μ2 + (uR − μ)2

⎤
⎦�0, (B5)

�0 = πνencu
2
i , (B6)

FIG. 6. Schematic illustration of spin-split conduction bands of
the MTMD around K point for (a) μ > βI and (b) −βI � μ � βI.
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�z = βI

2
√

β2
I − μ2 + (uR − μ)2

�0, (B7)

γ (ξ ) = βI√
2uRξ + β2

I

, (B8)

uR = mα2
R/h̄2. (B9)

Here, E± = εk ±
√

α2
Rk2 + β2

I denotes the energy dispersion
of the spin-splitting bands. It is noticed that the first (second)
term of Eqs. (B1) is the Green’s function corresponding to
the upper (lower) spin-split conduction band. Since the top
conduction band is far from the Fermi level, contributions from
the first term of Eqs. (B1) is negligibly small compared with
that from the second term of Eqs. (B1). Hence, the first term
of Eqs. (B1) is ignored in the following calculation.

The electric-field-induced spin density of each valley is
given from Eq. (6) in the main text as

〈
sVEE,i

v

〉 = − eh̄

4π

∑
k

∑
j=x,y

tr
[
σ iGr

k,vS
j

k,0,vG
a
k,v

]
Ej , (B10)

where vj ≡ ∂Hv/(∂h̄kj ) is the velocity operator and Ga
k,v ≡

Ga
k,ω=0,v[= (Gr

k,ω=0,v )†] is the advanced Green’s function.

Sj

k,ω,v is defined by

Sj

k,ω,v = vj + ncu
2
i

∑
k

Gr
k,ω,vvjG

a
k,ω,v + (

ncu
2
i

)2

×
∑
k,k1

Gr
k1,ω,vG

r
k,ω,vvjG

a
k,ω,vG

a
k1,ω,v + · · · .

(B11)

Then,
∑

k Gr
k,vS

j

k,0,vG
a
k,v of Eq. (B10) is described by using

�
(v)
jn and �

(s)
jn as

∑
k

Gr
k,vS

j

k,0,vG
a
k,v

=
∑

n=x,y

�̃
(v)
jn

[
σn + ncu

2
i

∑
k

Gr
k,vσ

nGa
k,v + (

ncu
2
i

)2

×
∑
k,k1

Gr
k1,vG

r
k,vσ

nGa
k,vG

a
k1,v + · · ·

⎤
⎦

=
∑

n,�=x,y

�̃
(v)
jn

[
δn� + �̃

(s)
n� + �̃

(s)
n�1

�̃
(s)
�1�

+ · · · ]σ �, (B12)

where �̃
(v)
j and �̃

(s)
j denote the vertex function of the velocity

operator and of the spin operator, respectively:

�̃
(s)
j ≡ ncu

2
i

∑
k

Gr
k,vσ

jGa
k,v =

∑
�=x,y

�̃
(s)
n� σ �, (B13)

�̃
(v)
j ≡

∑
k

Gr
k,vvjG

a
k,v =

∑
n=x,y

�̃
(v)
jn σ n, (B14)

�̃(v)
xy ≡

∫ ∞

0

1

E2
ξ + (�′

0 − γ�z)2

ξ

√
2uRξ + β2

I

2uRξ + β2
I + γ 2�2

z

dξ

− 2π

�0
�(s), (B15)

�̃(v)
xx ≡

∫ ∞

0

�z

E2
ξ + (�′

0 − γ�z)2

ξ −
√

2uRξ + β2
I + γβI

2uRξ + β2
I + γ 2�2

z

dξ,

(B16)

�̃(s) = �0

4π

∫ ∞

0

1

E2
ξ + (�′

0 − γ�z)2

×
[

1 − β2
I + �2

z

2uRξ + β2
I + γ 2�2

z

]
dξ, (B17)

where �̃
(v)
jn and �̃

(s)
jn are coefficients of the matrix compo-

nent of �̃
(v)
j and �̃

(s)
j , respectively. We use Eξ = ξ − μ +√

2uRξ + β2
I . As a result, the electric-field-induced spin den-

sity 〈sVEE,i
v 〉 is given from Eqs. (B10)–(B17) as

〈
sVEE

v

〉 = − eh̄

2π

∑
n,j=x,y

�̃
(v)
jn

[
δni + �̃

(s)
ni + �̃

(s)
n�1

�̃
(s)
�1i

+ · · · ]Ej

= − eνeC⊥( ẑ × E) − veνeC‖ E, (B18)

where C⊥ and C‖ are given by

C⊥ = αR

4π
�̃(v)

xy [1 − �̃(s)]−1 ≈ αR

4π
�̃(v)

xy , (B19)

C‖ = αR

4π
�̃(v)

xx [1 − �̃(s)]−1 ≈ αR

4π
�̃(v)

xx , (B20)

where we have used the spin-vertex function |�̃(s)
xy | < 1. In

particular, in the limit of �z 
 βI, we have

�̃(v)
xy ≈ −π

2(�′
0 − γ�z)

⎡
⎣1 −

β2
I + �2

z + μ

√
2uRμ + β2

I

2uRμ + β2
I + γ 2�2

z

⎤
⎦,

(B21)

�̃(v)
xx ≈ π�z

2(�′
0 − γ�z)

μ −
√

2uRμ + β2
I + γβI

2uRμ + β2
I + γ 2�2

z

, (B22)

C ⊥
C ‖

FIG. 7. The Ising SOC βI dependence of C‖/C⊥ in the conduction
band in βI > μ for several Rashba SOC (αR) at �0 = 0.3 meV.
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and

C‖ ≈ αR

8

�z

�′
0 − γ�z

μ −
√

α2
Rk2

F + β2
I + γβI

α2
Rk2

F + β2
I

(B23)

with Fermi wave number kF =
√

2mμ

h̄2 . Figure 7 shows that the
Ising SOC dependence of C‖/C⊥ in βI < μ for several αR. We
find C‖/C⊥ < 1 in the whole of βI.

APPENDIX C: DERIVATION OF C‖ AND C⊥ IN |μ − �0| > βI

1. Detail of the calculation of C‖ and C⊥

In this appendix, we use �
(s)
ij and �

(v)
ij to denote the spin

vertex function and the velocity vertex function in |μ − �0| >

βI, respectively. From the same way, we obtain the spin
density as〈

sVEE,i
v

〉 = − eh̄

2π
�

(v)
jn

[
δni + �

(s)
ni + �

(s)
n�1

�
(s)
�1i

+ · · · ]Ej

= eνe[C⊥( ẑ × E)i + vC‖Ei] (C1)

with

C⊥ = αR

4π
�(v) 1 − �(s)

xx[
1 − �

(s)
xx

]2 + [
�

(s)
xy

]2 , (C2)

C‖ = αR

4π
�(v)

�(s)
xy[

1 − �
(s)
xx

]2 + [
�

(s)
xy

]2 , (C3)

�(s)
xx = �(s)

yy = �0

π

∫ ∞

0
dξ

(ξ − μ)2 + �2
0 − β2

I(
E2+ + �2

0

)(
E2− + �2

0

) , (C4)

�(s)
xy = −�(s)

yx = �0

π

∫ ∞

0
dξ

4uz�0(
E2+ + �2

0

)(
E2− + �2

0

) , (C5)

�(v) = 4
∫ ∞

0
dξ

ξ − μ − uR
u2

[
(ξ − μ)2 + �2

0

]
(
E2+ + �2

0

)(
E2− + �2

0

) ξ, (C6)

where we have used �0 = πνencu
2
i , α2

Rk2 = 2uRξ, uR =
mα2

R/h̄2, E± = ξ − μ ± u, and u =
√

2uRξ + β2
I . Within the

limit of uR 
 �0 and μ  �0, we have

�(s)
xy ≈ 2βI�0

β2
I + α2

Rk2
F + �2

0

≈ 2βI�0

β2
I + α2

Rk2
F

, (C7)

�(v) ≈ 2π

�0

[
1 − 1

2

(
1 − β2

I

β2
I + α2

Rk2
F

)]
. (C8)

As a result, we obtain within |�(s)
xx | < 1 and |�(s)

xy | < 1 as

C⊥ ≈ αR

4π
�(v) ≈ αR

2�0

[
1 − 1

2

α2
Rk2

F

β2
I + α2

Rk2
F

]
, (C9)

C‖ ≈ αR

4π
�(v)�(s)

xy ≈ αRβI

β2
I + α2

Rk2
F

[
1 − 1

2

α2
Rk2

F

β2
I + α2

Rk2
F

]
, (C10)

where we have used∫ ∞

0

dξ(
E2+ + �2

0

)(
E2− + �2

0

) ≈ π

2�0
(
β2

I + α2
Rk2

F

) . (C11)

Figure 8(a) [8(b)] shows the αR (βI) dependence of C‖/C⊥ for
several βI (αR) in μ > βI. We find that C‖ can be comparable
to C⊥.

2. Relation between C‖ and Berry curvature

Interestingly, C‖ can be also represented by using Berry
curvature in the gated MTMDs. The Berry curvature in the
presence of the Rashba and Ising SOCs at each valley are
given by

�v=±
spin (kF) = ẑ · ∇ × 〈k, v|i∇|k, v〉||k|=kF

= v
α2

RβI

2
(
α2

Rk2
F + β2

I

)3/2 . (C12)

By using the spin Berry curvature of the gated
MTMD �v=±

spin , C‖ is represented from Eq. (C10) as

C‖ ≈ α2
RβI(

α2
Rk2

F + β2
I

)3/2

1

αR

α2
Rk2

F + 2β2
I√

α2
Rk2

F + β2
I

= ∣∣�v
spin(kF)

∣∣kF
αRkF√

α2
Rk2

F + β2
I

[
1 + 2β2

I

α2
Rk2

F

]

= ∣∣�v
spin(kF)

∣∣kF cos θ‖

[
1 + 2β2

I

α2
Rk2

F

]
, (C13)

where we define cos θ‖ ≡ αRkF√
α2

Rk2
F+β2

I

.

C ⊥
C ‖

C ⊥
C ‖

FIG. 8. (a) The Rashba SOC (αR) dependence of C‖/C⊥ for several the Ising SOC (βI) in the conduction band in μ > βI. (b) βI dependence
of C‖/C⊥ for several Rashba SOC (αR). In these figures, we used �0 = 3 meV and μ = 0.1 eV. We find that C‖ can be comparable to C⊥ in a
realistic parameter regime.
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APPENDIX D: DETECTION OF VEE USING KERR
EFFECT MEASUREMENTS

We provide the detection scheme of the VEE using Kerr
effect measurements. To detect the in-plane parallel magne-
tization due to the VEE, we consider the longitudinal Kerr
effect, as described in Fig. 5 in the main text. After applying
the in-plane electric field (Ex), spin density can be generated by
VEEs in the steady state, which induces nonzero magnetization
in gated MTDMs. By focusing a beam of laser with s(p)
polarizations onto the system, the nonzero magnetization cou-
ples differentially with left-handed and right-handed compo-
nents, which leads to a superposition of both s- and p-polarized
lights in the reflected beam. The reflection coefficients rij for
i, j = s, p-polarized lights are given by [35]

rpp = n2 cos θ0 − n0 cos θ2

n2 cos θ0 + n0 cos θ2

− 4πin0d1 cos θ0
(
n2

2 cos θ1
2 − n2

1 cos θ2
2
)

λ(n0 cos θ2 + n2 cos θ0)2
, (D1)

rsp = 4πn0n1Qd1 cos θ0(Mzn1 cos θ2 + Mxn2 sin θ1)

Mtot (n0 cos θ0 + n2 cos θ2)(n0 cos θ2 + n2 cos θ0)
,

(D2)

rps = 4πn0n1Qd1 cos θ0(Mzn1 cos θ2 − Mxn2 sin θ1)

Mtot (n0 cos θ0 + n2 cos θ2)(n0 cos θ2 + n2 cos θ0)
,

(D3)

where nl and θl (l = 0, 1, 2) denote the refractive index and
the incident angle at the lth medium (shown in Fig. 9). Q

is the Voigt vector depending on materials, d1 is the thickness
of the magnetic medium, λ is wavelength of the light, Mi (i =
x, y, z) are the i component of the magnetization, and Mtot =√

M2
x + M2

y + M2
z is the magnitude of the magnetization.

From Eqs. (D1)–(D3), the Kerr angle for i = s, p-polarized
light, θ i

K, is given by [35]

θ
p

K = cos θ0

cos (θ0 + θ2)

(
Mx

Mtot

sin θ1
2

sin θ2
+ Mz

Mtot
cos θ2

)
�n, (D4)

θs
K = cos θ0

cos (θ0 − θ2)

(
Mx

Mtot

sin θ1
2

sin θ2
− Mz

Mtot
cos θ2

)
�n. (D5)

FIG. 9. The coordinate system for the Kerr effect measurement in
the nonmagnetic medium 0 and 2 and the magnetic medium 1, where
the magnetization (blue arrow) is polarized along arbitrary direction.

Here, �n is defined as the complex polar Kerr effect for normal
incidence in the film given by

�n ≡ 4πn0n
2
1Qd

λ
(
n2

s − n2
0

) . (D6)

The Voigt vector Q is determined by the the Kerr angle for the
p-polarized wave under the normal incident light (θp

K )normal as

(
θ

p

K

)normal ≡ rsp(θ0 = 0)

rpp(θ0 = 0)

= 4πn0n
2
1Qd1 cos θ0 cos θ2

(n0 cos θ0 + n1 cos θ2)(n1 cos θ0 − n0 cos θ2)
.

(D7)

By considering medium 0 and medium 2 with similar
refractive indices (i.e., n0 ≈ n2 and θ0 ≈ θ2), the relation
between the in-plane magnetization Mx and Kerr angle is given
by

Mx = 1

2�n

sin θ0 cos θ0

sin θ1
2

[
θs

K + θ
p

K cos (2θ0)
]
Mtot. (D8)

Based on the relation above, for oblique incidence with the
incident angle θ0 ≈ π/4, we have

Mx ∝ θs
K (D9)

as discussed in the main text. Therefore, the parallel spin
density due to VEEs can be mapped out by θs

K.
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