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We design a driven superconducting box with four spins S = 1/2 (qubits) such that coupled devices can give
insight on the occurrence of quantum spin liquids and many-body Majorana states. Within one box or island, we
introduce a generalized nuclear magnetic resonance algorithm to realize our models and study numerically the
spin observables in time as well as the emergent gauge fields. We discuss the stability of the box towards various
detuning effects and we include dissipation effects through a Lindblad master equation. Coupling boxes allows us
to realize quantum spin-liquid phases of KitaevZ2 spin models in various geometries with applications in the toric
code. Quantum phase transitions and Majorana physics might be detected by measuring local susceptibilities. We
show how to produce a Néel state of fluxes by coupling boxes and we address the role of local impurity fluxes
leading to random Ising models. We also present an implementation of the Sachdev-Ye-Kitaev Majorana model
in coupled ladder systems.
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I. INTRODUCTION

Majorana fermions have revived attention due to possi-
ble applications in quantum information as protected qubits
[1–7] and surface codes with Z2 variables [8–10]. We design
a Majorana box starting from a superconducting four-site
circuit [11–13] with the goal to engineer quantum spin liquids
and many-body Majorana states encoded in spin- 1

2 degrees
of freedom. Starting with four transmon qubits, we present a
nuclear magnetic resonance (NMR) double-period protocol to
realize the box. We study the quantum dynamics in time to im-
plement the required protocols and to detect theZ2 gauge fields
through spin variables. A system of three transmons in cQED
has been realized recently [13], with possible applications in
topological phases [14,15].

These boxes could be used in variable geometries from
quantum impurity systems to tunable ladder and plaquette
models. Ensembles of square-plaquette models have been real-
ized in ultracold atoms [16] to emulate an Anderson resonating
valence bond spin-liquid state [17], and have been shown
theoretically to be related to d-wave superconductivity (super-
fluidity) in the Hubbard model close to the Mott state [18].
The design of such Majorana boxes addresses challenging
questions regarding the choice of couplings. Experiments
in superconducting circuit quantum electrodynamics (cQED)
architectures [19] and in ultracold atoms [20] report progress
in engineering four-body interactions inspired by theoretical
efforts [21,22]. Engineering four-body interactions is also at
the heart of our proposal to realize gauge fluxes, loop currents,
and Majorana states in quantum spin liquids.

Within our framework, a lattice system can be built by
coupling a number of boxes, forming then coupled-ladder
models as in Fig. 1. Coupled boxes could allow us to rebuild the
Kitaev Z2 quantum spin model of the honeycomb lattice [23]

in ladder systems [24–29] with potential applications in the
toric code [30] and other surface codes [31]. These models
have stimulated the discovery of quantum materials [32–
37] as well as the design of ultracold atoms [38,39] and
other superconducting architectures [40–42]. It is important
to mention other proposals of Majorana boxes related to
topological superconducting wires [8,9] and topological super-
conductors [10]. Realizing a pure four-body Majorana fermion
coupling also allows us to emulate the Sachdev-Ye-Kitaev
(SYK) model [43–45] with coupled boxes as elaborated below.
The SYK model, which involves a (long-range and disordered)
coupling between four Majorana fermions, has attracted at-
tention theoretically in high-energy [46–48] and low-energy
physics [49–51] due to possible black-hole gravity holographic
correspondence [45] and link to quantum chaos [52]. Only
a few realizations of the SYK Majorana model have been
discussed so far [49–51]. SYK spin models could also bring
light on quantum glasses [44].

Before proceeding to the engineering side of the circuit
network, it is relevant to introduce the mapping of Z2 (or
Ising-type ) spin models to Majorana fermions and the notion
of flux states. On horizontal bonds, as shown in Fig. 1, there are
XYXY alternating Ising interactions with coupling constants
J1 and J2. For the vertical bonds, we allow ZZ′ZZ′ couplings
with strengths J3 and J4. A unit cell of four sites is depicted as
the blue box. A general lattice of Fig. 1 holds a class of exactly
solvable models for quantum spin liquids. By setting Z′ = 0,
the brick-wall lattice recovers the Kitaev honeycomb model.
Multileg ladders can then be addressed, as well as the passage
from one to two dimensions, or higher-dimensional lattices.

The sites are labeled through the j th column and αth
row, forming two sublattices A (j + α = even) and B (j +
α = odd). We can perform the Jordan-Wigner transform

σ
†
j = a

†
j e

iπ
∑

l<j a
†
l al , σ−

j = aj e
iπ

∑
l<j a

†
l al . The ground state, by
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FIG. 1. (Left) Two-dimensional lattice built from coupled boxes
with Z2 symmetry: XYXY alternating Ising couplings along hor-
izontal bonds and ZZ′ZZ′ couplings on vertical bonds. (Right
top) Different configurations of Jordan-Wigner strings for one unit
cell. (Right bottom) Majorana representation: J1, J2, J3(J4) denote,
respectively, the X, Y , and Z coupling constants. When |J1|, |J2| �
|J3|, |J4|, c-Majorana particles are gapped at high energies and the
d-Majorana fermions describe the state of gauge fields in each unit
cell or square plaquette.

analogy with a particle in a box in quantum mechanics, shows
no excitation along the string [24,25]. Each spin is represented
by a fermion operator and therefore a

†
l al can take values 0 or

1: eigenvalues for σ z
j = 2a

†
j aj − 1 are ±1. Each fermion can

be seen as two Majorana fermions cj and dj :

j ∈ A

{
cj = i(a†

j − aj ),

dj = a
†
j + aj ,

j ∈ B

{
cj = a

†
j + aj ,

dj = i(a†
j − aj ).

(1)

In a square of four sites, we obtain

HK = J1σ
x
1 σx

2 + J2σ
y

3 σ
y

4 + J3σ
z
1 σ z

3 + J4σ
z
2 σ z

4

= −iJ1c1c2 + iJ2c3c4 − iJ3D1,3c1c3 − iJ4D2,4c2c4

(2)

with D1,3 = −id1d3 and D2,4 = −id2d4. The couplings J1 and
J2 are ferromagnetic (or J1, J2 < 0), and the couplings J3 and
J4 are adjustable couplings through the fluxes �3 and �4 in
Fig. 2. Different string paths in Fig. 1 (right top) give identical
results. This result has been confirmed rigorously for the ladder
geometries [24]. It is relevant to note that the d-Majorana
fermions enter through the emergence of Z2 gauge fields: D1,3

and D2,4 commute with HK and take values ±1. On a square
unit cell, then we can define the associated flux operator

Pd = d1d2d3d4 = D1,3D2,4. (3)

This flux operator acting on a unit square cell, and encoded with
the d-Majorana Z2 variables, in our representation intervenes
through the product of parity operators of two d-Majorana
fermions forming the vertical bonds.

The limit of weak vertical bonds |J1|, |J2| � |J3|, |J4|
(see Fig. 1, right bottom) is of particular interest to us. The
c-Majorana fermions are gapped describing the formation of
valence bonds in the spin language between sites 1 and 2, and 3
and 4, respectively. In addition, −ic1c2 = +1 and ic3c4 = +1
such that we can define the operator Pc = c1c2c3c4 = +1. The
d-Majorana particles will be coupled in a four-body coupling,
as in the SYK model. More precisely, the leading-order term in
the perturbation theory gives −J3J4/(|J1| + |J2|)σ z

1 σ z
2 σ z

3 σ z
4 =

FIG. 2. (Top) We engineer X and Y Ising couplings through
inductance L and capacitance C on horizontal bonds, Z couplings
with SQUIDs, and auxiliary inductances L̃ on vertical bonds. (Middle
left) Structure of onsite transmon qubits: composed of two Josephson
junctions and a capacitance in parallel. (Middle right) Spectrum
of transmon qubits realized with the two lowest levels. (Bottom)
Structure of the generalized NMR device: producing a circularly
polarized driven field. Different colors of qubits (gray and white)
and NMR fields (dark blue and light blue) indicate two distinct sets
of frequency patterns for sublattices A and B.

−J3J4/(|J1| + |J2|)PdPc with Pc = 1. If J3J4 > 0, Pd = 1
corresponds to the π -flux configuration in a square unit cell, in
agreement with the Lieb’s theorem [53]; otherwise, Pd = −1
relates to the 0 flux.

Below, we show how to detect the gauge fields, at the level
of one box and a few boxes. It is also relevant to note that
by assembling boxes, one can then build a spin model, which
turns out to be a quantum spin liquid with a π -flux ground
state. A staggered flux order has also been suggested for high-
Tc cuprates [54]. Recent efforts in quantum materials report
the observation of orbital loop currents in Mott materials with
spin-orbit coupling [55] by analogy with cuprates [56]. Here,
we can tune parameters in the spin system and adjust the ground
state to have such a π flux. The coupled-ladder geometry then
presents some tunability.

The paper is organized as follows. In Sec. II, we show how
to engineer HK with superconducting circuits and introduce
our main algorithm. In Sec. III, we perform numerical tests
on the time-dependent Hamiltonian, and study stability of
the box towards detuning and dissipation effects. Then, we
address measurements of gauge fields through spin degrees
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of freedom. Disorder (local impurities) in the gauge fields
can be implemented through magnetic fluxes and through
time-dependent protocols. In Sec. IV, we discuss applications
for an ensemble of coupled boxes, such as the realization of
Kitaev spin models and the emergence of Néel (Ising-type)
order for the gauge fields. We also address relations with Wen’s
toric code [57] and possible SYK loop models. In Sec. V, we
briefly summarize our results and appendices are devoted for
additional technical calculations and summary tables.

II. ALGORITHM ON AN ISLAND

A. Physics of a box

First, we introduce the physical structure of one box in
Fig. 2. Within a cell of four sites, we denote the supercon-
ducting phases as ϕ̂j (j = 1, 4 ∈ {A}; j = 2, 3 ∈ {B}). One
box can be decomposed into three parts: the onsite transmon,
the local NMR device, and the intersite couplings. Figure 2
(middle) shows the internal structure of each site. We build
a transmon qubit on the site j via sets of capacitances
and Josephson junctions {Cq,A,EJq,A

} and {Cq,B, EJq,B
}, of

which the resonance (plasma) frequencies will be adjusted
accordingly. The qubit Hamiltonian reads as

Hq,j = Cq,jφ
2
0

2
˙̂ϕ2
j − EJq,j cos ϕ̂j , (4)

where φ0 = h̄/(2e) denotes the rescaled quantum of flux and
EJq,j represents the Josephson energy of the internal junction.

In Fig. 2 (bottom), we then connect each node j to an
inductance L′

j and a capacitance C ′
j followed by an ac source

of voltage, generating a time-dependent NMR field

HNMR,j = EL′,j (ϕ′
j − ϕ̂j )2 + C ′φ2

0

2
(ϕ̇′

j − ˙̂ϕj )2 + EVac,j .

(5)

The main purpose of this field is to cancel the local magnetic
field in the rotating frame, as we will show later. The time de-
pendence ofHNMR,j is encoded in parameters ϕ′

j and ϕ̇′
j which

satisfy the relations φ0ϕ̇
′
j = −Vac,j = −V0,j sin (ωj t ), ϕ′

j =∫
dt ϕ̇′

j = V0,j cos (ωj t )/(φ0ωj ). We choose to apply this
NMR device because it preserves the Z2 symmetry of the
Hamiltonian. This protocol is then distinct from the protocol
used in Ref. [13] for the three-qubit system.

For the interaction part, as can be seen from Fig. 2 (top),
horizontal bonds of the box are coupled by an inductance L and
a capacitance C to engineer, respectively, X and Y couplings.
The corresponding interaction Hamiltonians take the form

HL = EL(ϕ̂2 − ϕ̂1)2, HC = Cφ2
0

2
( ˙̂ϕ4 − ˙̂ϕ3)2 (6)

with EL = φ2
0/(2L).

Realizing pure Z couplings on vertical bonds can be
achieved through SQUIDs. The SQUIDs (with characteristic
Josephson energies EJ,3 and EJ,4) are controlled via applied
magnetic fields �3 and �4, and we add auxiliary inductances
L̃3 and L̃4 to compensate the additional X couplings (see
Fig. 2). For instance, on the vertical bond (1,3), the interaction
energy of the SQUID has the form

HS,3 = −EJ,3 cos (ϕ̂1 − ϕ̂3), (7)

while the auxiliary inductance L̃3 contributes to

HL̃,3 = EL̃(ϕ̂1 − ϕ̂3)2, (8)

with EL̃ = φ2
0/(2L̃). We study perturbations arising from

vertical bonds in Sec. III D.
The total Hamiltonian can now be written as

H =
4∑

j=1

Hq,j + HNMR,j + HL + HC + HS + HL̃. (9)

B. Quantized Hamiltonian

We start from the quantization [12] of the transmon qubit
Hamiltonian Hq,j , which behaves as harmonic oscillators
with anharmonicity from Josephson junctions. Expanding the
nonlinear cosine potential in Eq. (4) to the fourth order and
choosing the bosonic representation [ϕ̂j , π̂l] = ih̄δj,l , ϕ̂j =
(b†j + bj )/λj , ˆ̇ϕj = (b†j − bj )(−eλj )/(iφ0Cq,j ) with conju-
gate momentum π̂j = φ2

0Cq,j
˙̂ϕj , we reach

Hq,j = −EJq,j
+ h̄ωq,j

(
b
†
j bj + 1

2

)
− ECq,j

12
(b†j + bj )4.

(10)

Here, we assume the system in the large λj =
[EJq,j

/(2ECq,j
)]1/4 limit. ECq,j

= e2/(2Cq,j ) depicts the
charging energy associated with the transfer of a single
electron. ωq,j = √

8ECq,j
EJq,j

/h̄ is known as the Josephson
plasma frequency (∼GHz corresponding to T ∼ 0.1 K).

As shown in Fig. 2 (middle right), we denote the eigenstates
of a pure harmonic oscillator as |nj 〉. Taking into account the
leading-order correction from the quartic term in Eq. (10),
the spectrum of a transmon is modified into En,j = −EJq,j +
h̄ωq,j (nj + 1/2) − ECq,j

(6n2
j + 6nj + 3)/12. The gap is de-

creasing between two successive energy levels: �En,j =
En+1,j − En,j = h̄ωq,j − ECq,j (nj + 1). If we restrict the
state of each transmon j to the two lowest-energy levels |0〉j the
quantum vacuum and |1〉j the state with one quantum, a qubit
will be formed. As transitions to higher levels are forbidden,
bj become hard-core bosons obeying bn

j = (b†j )n = 0 for any
n � 2. It allows for a mapping to the spin- 1

2 states for an

individual site: |0〉j ↔ |↓〉j , |1〉j ↔ |↑〉j , b
†
j ↔ σ+

j , bj ↔
σ−

j with |↓〉j and |↑〉j polarized along the z direction. In the
spin space,

σx
j = b

†
j + bj , σ

y

j = 1

i
(b†j − bj ), σ z

j = 2b
†
j bj − 1. (11)

Eigenvalues of σ z
j are well fixed to ±1 since we restrict

ourselves to the subspace where b†b = 0 or 1. Now, the
effective Hamiltonian of a transmon qubit acts as a strong local
magnetic field

Hq,j 
 �E0,j b
†
j bj = εq,j σ

z
j , (12)

where εq,j = �E0,j /2 = (h̄ωq,j − ECq,j
)/2 characterizes the

transition energy from |0〉j to |1〉j . In the absence of an ac
driving source, the spin system would be polarized, meaning
that all the transmon systems would be in the quantum vacuum.
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Through this quantization procedure, the NMR field is
transformed into

HNMR,j = − h̄ωL′,j

2
cos(ωj t )σx

j − h̄ωC ′,j

2
sin(ωj t )σy

j

+ (εL′,j + εC ′,j )σ z
j , (13)

with the fast-oscillating terms EL′,j (ϕ′
j )2, C ′(φ0ϕ̇

′
j )2/2, and

EVac,j dropped out. For simplicity, all coefficients are listed in
Appendix A. Furthermore, we impose

ωL′,j = ωC ′,j = ω1,j (14)

to generate a circularly polarized field. [The stability in the
presence of a small detuning from this condition is related to
the discussion in Eq. (31).]

On the horizontal bonds, the interaction Hamiltonians
become

HL = εL,Aσ z
1 + εL,Bσ z

2 + J1σ
x
1 σx

2 ,

HC = εC,Bσ z
3 + εC,Aσ z

4 + J2σ
y

3 σ
y

4 , (15)

where J1 < 0 and J2 < 0.
A more detailed analysis is needed for the vertical

bonds. In the large-λj limit, ϕ̂j can be viewed as a
small quantum variable. We are allowed to ignore higher-
order contributions of the cosine potential in Eq. (7). To
the fourth order, HS,3 = −EJ,3[1 − (ϕ̂1 − ϕ̂3)2/2! + (ϕ̂1 −
ϕ̂3)4/4! + · · · ]. The quadratic terms give rise to an effective X

coupling ϕ̂1ϕ̂3 ∼ σx
1 σx

3 and a magnetic field ϕ̂2
1 ∼ σ z

1 , ϕ̂2
3 ∼

σ z
3 . For the quartic contribution, the only effective term ϕ̂2

1 ϕ̂
2
3

produces a Z coupling σ z
1 σ z

3 . Thus,

HS,3 = J3σ
z
1 σ z

3 + J x
3 σx

1 σx
3 + εJ,1σ

z
1 + εJ,3σ

z
3 , (16)

where J3, J
x
3 ∝ −EJ,3. Both the signs and amplitudes of

vertical couplings can be adjusted by the flux �3 inside the
SQUID as EJ,3 ∼ cos[�3/(2φ0)].

At the same time, the auxiliary inductance L̃3 gives a
negative X coupling

HL̃,3 = J̃ x
3 σx

1 σx
3 + εL̃,Aσ z

1 + εL̃,Bσ z
3 . (17)

We can then reduce the vertical X couplings to zero:

J x
3 + J̃ x

3 = 0, (18)

with the phase �3/(2φ0) ∈ [π/2 + 2nπ, 3π/2 + 2nπ ], n ∈
Z for a positive J x

3 . It is the same case with bond (2,4).
Combined with the local σ z

j field of the transmon qubit, the
total effective Hamiltonian of the box becomes

H = HK + HC (t ),

HK = J x
1 σx

1 σx
2 + J2σ

y

3 σ
y

4 + J3σ
z
1 σ z

3 + J4σ
z
2 σ z

4 ,

HC (t ) =
∑

j

h̄ω0,j

2
σ z

j − h̄ω1,j

2

[
cos(ωj t )σx

j + sin(ωj t )σy

j

]
.

(19)

The time-dependent Hamiltonian HC (t ) here is distinct
from the capacitive Hamiltonian HC introduced above in the
intermediate steps of the reasoning. Generally, h̄ω0,j /2= εj =
εq,j + εL′,j + εC ′,j + εL,j + εC,j + εJ,j + εL̃,j . The main
contribution to ω0,j arises from the qubit transition energy
εq,j . Other minor terms may vary depending on the geometries

(e.g., isolated boxes or infinite lattices) and the dynamic
processes (e.g., changing the sign of J4 couplings). But, we
can always form two different frequency patterns {ω0,A, ω0,B}
from the beginning and treat the potential deviations as small
local detunings (as will be discussed in Sec. III B). Meanwhile,
ω1,j can be adjusted by parameters L′

j , C ′
j , and Vac,j such that

it is comparable to ω0,j .

C. Generalized NMR protocol

In this section, we are going to present the core idea of
our algorithm. The aim is to find a unitary gauge transforma-
tion U (t ) from H to G: U (t ) = ∏

j Uj (t ) = ∏
j eiFj (t ), such

that in the new gauge, the local magnetic field σ z
j vanishes

and no additional couplings emerge. We denote ψ (t ) and
φ(t ) as the eigenstates of H and G, respectively. They are
related by the transform φ(t ) = U (t )ψ (t ) and φ(t ) satisfy
the Schrödinger equation Gφ(t ) = ih̄∂tφ(t ). Therefore, G =
GC + UHKU−1, GC = (ih̄∂tU )U−1 + UHCU−1. Two of
our requirements are as follows: (i) GC = 0; (ii) G =
UHKU−1 = H′

K where H′
K takes a similar Kitaev form

with renormalized prefactors. We introduce the new vari-
able τj = ωj t and we anticipate the test function Fj =
(αj/2)(sin τjσ

x
j − cos τjσ

y

j ). By applying the mathematical
steps in Appendix B, from Eq. (B6) we obtain

GC = h̄

2

4∑
j=1

(ω0,j cos αj + ω1,j sin αj − ωj cos αj + ωj )σ z
j

− (ω1,j cos αj − ω0,j sin αj + ωj sin αj )

× (
cos τjσ

x
j + sin τjσ

y

j

)
. (20)

The second time-dependent term vanishes for

cos αj = −(ω0,j − ωj )
/√

ω2
1,j + (ω0,j − ωj )2,

tan αj = ω1,j /(ω0,j − ωj ). (21)

GC then becomes a time-independent effective magnetic field
polarized on z direction only:

GC =
∑

j

h̄

2

(
ωj −

√
w2

1,j + (ω0,j − ωj )2
)
σ z

j . (22)

If the frequencies of the ac voltages satisfy

ωj = ω2
1,j + ω2

0,j

2ω0,j

, GC = 0. (23)

Next, we analyze the remaining part UHKU−1 in the effec-
tive Hamiltonian G. Constructed from spin operators, Uj (t )
commute between different sites. For the ν link (ν = x, y, z),
Uσν

Aσ ν
BU−1 = (UAσν

AU−1
A )(UBσν

BU−1
B ). In the rotating frame,

from Eq. (B7) spin operators on each site undergo the following
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TABLE I. Parameters for generalized NMR protocol.

Parameter Relation

α arctan[2ω0ω1/(ω2
0 − ω2

1 )]
rx, ry cos2 (αA/2) cos2 (αB/2)
rz cos αA cos αB

u cos αA − 1
v cos αB − 1
r1 u2v2/64 + (u2v + uv2 + u2 + v2)/8

+uv + u + v + 1
r2 u2v2/64
r3 u2v2/64 + (uv2 + v2)/8
r4 u2v2/64 + (u2v + u2)/8

gauge transformation:

Ujσ
x
j U−1

j = [1 + cos2(τj )(cos αj − 1)]σx
j

+ cos αj − 1

2
sin(2τj )σy

j − sin αj cos(τj )σ z
j ,

Ujσ
y

j U−1
j = [1 + sin2(τj )(cos αj − 1)]σy

j

+ cos αj − 1

2
sin(2τj )σx

j − sin αj sin(τj )σ z
j ,

Ujσ
z
j U−1

j = cos αjσ
z
j + sin αj cos(τj )σx

j + sin αj sin(τj )σy

j .

(24)

We denote 〈f (t )〉T as the time average (1/T )
∫ T

0 f (t )dt . Aver-
aging over a long timescale T = NTA = TB (Tj = 2π/ωj , N

any integer larger than one), most of the time-dependent terms
in the product (UAσν

AU−1
A )(UBσν

BU−1
B ) will vanish. How-

ever, terms such as 〈cos2(τA/B )〉
T

= 〈sin2(τA/B )〉
T

= 1/2,

〈cos2(τA) cos2(τB )〉T = 〈sin2(τA) sin2(τB )〉T = 1/4 will re-
main. By imposing different frequency patterns for sublattices
A and B, we ensure that only Kitaev couplings are nonvanish-
ing after the rotation

〈G〉T = 〈UHKU−1〉T = H′
K, J ′

ν = rνJν, (25)

with rν (ν = x, y, z) listed in Table I.

D. Measuring flux states through multichannels

Within a single box, we define four types of loop operators
in the rotating frame with Hamiltonian G (25):

Pc = σx
1 σx

2 σ
y

3 σ
y

4 = c1c2c3c4,

Pd = σ
y

1 σ
y

2 σx
3 σx

4 = d1d2d3d4,

Pe = σ
y

1 σx
2 σ

y

3 σx
4 = −d1c2c3d4,

Pf = σx
1 σ

y

2 σx
3 σ

y

4 = −c1d2d3c4. (26)

These operators will be important in the detection of Z2 gauge
fluxes. In particular, in the limit of strong horizontal bonds, as
mentioned in the Introduction we predict Pc = c1c2c3c4 = 1.
In our Majorana representation (1), they become four-body
Majorana couplings. Pd = 1 corresponds to the π -flux config-
uration whilePd = −1 relates to the 0 flux. The NMR protocol
thus enables us to measure experimentally the flux states
encoded in Z2 gauge fields. We denote 〈UPU−1〉T = 〈〈P〉〉
as the time-averaged measurement (over the large Floquet

period) in the original spin space. From Eq. (24), the unitary
transformation to the rotating frame entangles these four loop
operators⎛⎜⎝〈〈Pd〉〉

〈〈Pc〉〉
〈〈Pe〉〉
〈〈Pf 〉〉

⎞⎟⎠ =

⎛⎜⎝r1 r2 r3 r4

r2 r1 r4 r3

r3 r4 r1 r2

r4 r3 r2 r1

⎞⎟⎠
⎛⎜⎝Pd

Pc

Pe

Pf

⎞⎟⎠. (27)

The coefficients read as

r1 = 〈(1 + sin2(τA)u)(1 + sin2(τB )v)

× (1 + cos2(τB )v)(1 + cos2(τA)u)〉T ,

r2 = u2v2

16
〈sin2(2τA) sin2(2τB )〉T ,

r3 = v2

4
〈sin2(2τB )(1 + sin2(τA)u)(1 + cos2(τA)u)〉T ,

r4 = u2

4
〈sin2(2τA)(1 + sin2(τB )v)(1 + cos2(τB )v)〉T ,

(28)

where u = cos αA − 1, v = cos αB − 1. The time-averaged
values of ri’s are given in Table I. Flux operators can be
measured directly from the observables in the original frame
by the inverse matrix in Eq. (27). For instance,

Pd = 1

D (r̃1〈〈Pd〉〉 + r̃2〈〈Pc〉〉 + r̃3〈〈Pe〉〉 + r̃4〈〈Pf 〉〉), (29)

where D = ∑4
m=1 r4

m − 2
∑

m<m′ r2
mr2

m′ + 8
∏4

m=1 rm and
r̃m = rm(r2

m − ∑
m′ =m r2

m′ ) + 2
∏

m′ =m rm′ . A similar formula
is obtained for Pc, through Eq. (27).

III. NUMERICAL TEST

A. Time-averaged quantities

We test the protocol (valid to any order in 1/ωj ) numerically
by solving the time-dependent Hamiltonian with a diago-
nalization using Julia scientific computing language and we
evaluate the time-averaged observables 〈〈σ z

j 〉〉 and 〈〈σ z
j σ z

l 〉〉.
We choose different integer values N = 3, 5, 7 and check
that the results are (almost) identical. Here, 〈〈f 〉〉 = 〈〈f 〉(t )〉T
denotes the time averaged quantity (1/T )

∫ T

0 Tr[ρ(t )f ] with
ρ(t ) being the density matrix of the system and T = 2π/ωmin

with (ωmin = ωB ). Therefore, T corresponds to the largest
Floquet period.

The calculation of spin observables averaged in time under
the Hamiltonian H should agree with the calculation in the
rotating frame with the Hamiltonian G. In Fig. 3, we show
results in the particular limit of strong vertical bonds with
antiferromagnetic couplings J3 = J4 � |J1| = |J2|. We verify
〈〈σ z

j 〉〉 = 0 since on each site a spin can be polarized in the
| + z〉 and | − z〉 directions equally. We check that 〈〈σx

j 〉〉
and 〈〈σy

j 〉〉 are zero. In Fig. 3, we check the correct value
〈〈σ z

1 σ z
3 〉〉 ∼ −1 × rz = −0.11 (due to the large J3 coupling

in the rotating frame).
We can also detect directly the flux variables through the

four-body spin operators and compare with the mathemat-
ical predictions above. In Fig. 3, we show that we obtain
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FIG. 3. Time evolution of 〈〈σ z
j 〉〉 (blue) and 〈〈σ z

1 σ z
3 〉〉 (green)

(dashed lines); and of the fluxes Pd (yellow) and Pc (red) (solid lines)
averaged over the longest period 2π/ωmin with ωmin = ωA/N = ωB .
We took N = 3, but other integer values of N give comparable results.
The NMR frequency pattern is selected on each site as ω1,j = √

2ω0,j ,
ωj = 3ω0,j /2. (These initial frequency conditions remain the same in
Figs. 4–6.) The top panel corresponds to weak vertical bonds |J1| =
|J2| = 0.4h̄ωB , |J3| = |J4| = 0.045|J1|, while the bottom panel deals
with the regime of strong vertical bonds J3/ε3 = J4/ε4 = 0.8.

numerically in the regime of weak vertical bondsPc ∼ Pd ∼ 1
from the measurement of four separate channels 〈〈Pξ 〉〉 (ξ =
c, d, e, f ), using formulas (26) and (27), corresponding to the
precise engineering of the π -flux configuration.

B. Detuning effects

We have three steps of fine tunings throughout our proposal:
(i) the cancellation of vertical X couplings; (ii) the engineering
of a circularly polarized NMR field in Hamiltonian (19);
(iii) the cancellation of local magnetic field in the rotating
frame. The prerequisite (i) is important for the realization of
Kitaev-type Hamiltonians. We show in Sec. III D that such
perturbations can be useful to produce local flux impurities, at
a perturbation level.

For (i), the condition for the parameters from Eq. (18)
becomes

EL̃,m = −EJ,m/2, m = 3, 4. (30)

This can be reached by tuning the phases �3,�4. We will
discuss this point more carefully in Sec. III D.

For (ii), we impose ω1,j = ωL′,j = ωC ′,j in terms of pa-
rameters (see Table III in Appendix A). We discuss below
perturbation effects from that condition.

Now for the algorithm (iii), we consider a small deviation in
the frequency pattern ωj → ω̃j = ωj + δωj . The Hamiltonian
of the NMR field becomes

HNMR(t ) = −
4∑

j=1

h̄ω1,j

2

[
cos(ω̃j t )σx

j + sin(ω̃j t )σy

j

]
+ h̄ω1,j

2

δωj

ωj

cos(ω̃j t )σx
j . (31)

The third term is also equivalent to change ωL′,j while ωC ′,j
remains unchanged in relation with Eq. (19). More details on
the parameters of the box are given in Appendix A. We can
study the consequences of the detuned Hamiltonian (31) in the

rotating frame. First, the variable α̃j characterizing the unitary
transformation has a small shift:

cos α̃j 
 cos αj + cos αj (1 − cos2 αj )

1 − ω0,j /ωj

δωj

ωj

,

sin α̃j 
 sin αj − cos2 αj

1 − ω0,j /ωj

δωj

ωj

.

(32)

When δωj � ωj , we can assume cos α̃j 
 cos αj , sin α̃j 

sin αj . The effective Hamiltonian GC in Eq. (22) takes the
form accordingly

GC 

∑

j

h̄ω0,j

2ωj

δωjσ
z
j . (33)

In our numerical simulation ω0 ∼ ω, GC becomes sensitive
under detuning. To analyze the consequence of the extra third
term in the Hamiltonian (31), we go back to the general unitary
transform (24) and after time average〈〈

h̄ω1,j

2

δωj

ωj

cos(ω̃j t )σx
j

〉〉

 h̄

4

(
2ω0,j

ωj

− ω2
0,j

ω2
j

)
δωjσ

z
j ,

(34)

where we keep the initial large time period T (ω) unchanged
and 〈cos2(ω̃j t )〉T 
 1/2 + O(δωj ). In the end, combining
Eqs. (33) and (34) we expect the detuning ωj + δωj on each
site would create a nonzero effective magnetic field:

H̃z =
∑

j

ω0,j

ωj

(
1 − ω0,j

4ωj

)
h̄δωjσ

z
j . (35)

The prefactor cannot be zero, otherwise ω2
1,j < 0 by the

relation (23): 2ωjω0,j = ω2
1,j + ω2

0,j . The gapped phase is
protected to the first-order perturbation under H̃z. To second
order O(δω/|J1|), effective couplings σ z

1 σ z
2 and σ z

3 σ z
4 are

generated but quite small. For the gapless phase (e.g., in the
Kitaev honeycomb model), the magnetic field is polarized
purely along z direction without a gap opening.

Numerically, we check the above effects by simultaneously
detuning four sites or a single site. As a numerical test, we
show results on detuning δωj compared to ωj . All physical
observables (especially Pd ) are supposed to be stable via a
small detuning. When δωj is comparable to ωj , we could detect
large fluctuations. In Fig. 4, we show the effect of detuning the
driving frequency of the site 2 on the gauge-field four-body
operator Pd . We check that one gets small errors of the order
of 3% for more than 14 time periods if the detuning is of the
order of 5%.

C. Dissipative processes

It is important to characterize the influence of losses and de-
phasing on the dynamical protocols. Taking into account these
physical processes, the dynamics of the qubit density matrix ρ

is described by the following Lindblad-type master equation:

∂tρ = −(i/h̄)[H(t ), ρ] + γ

4∑
j=1

(
σ z

j ρσ z
j − ρ

)
+ �

2

4∑
j=1

(2σ+
j ρσ−

j − σ+
j σ−

j ρ − ρσ+
j σ−

j ). (36)
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FIG. 4. Detuning effects in δω2 of the driving frequency ω2.
Average error on Pd (averaged over time) induced by this detuning,
as a function of both δω2 and the adimensional time ωmint/2π . The
errors are relatively small, one gets errors of less than 3% for more
than 14 time periods, if the detuning is of the order of 5%. This plot
corresponds to the weak vertical bonds configuration (see Fig. 3).

Here, H(t ) is the original time-dependent Hamiltonian in
Eq. (19) and γ and � are, respectively, the dephasing and
loss rates of the qubit; we suppose independent losses and
dephasing on each site, with the same strength. As can
be seen in Fig. 5, the presence of losses and dephasing
destroys the quantization of both Pd (yellow) and Pc (red)
at the level of one box. Studying the effect of dephasing
and losses separately, we find that they lead qualitatively to
a similar decay in the flux dynamics. When simulating the
proper Hamiltonian in an experiment, one should therefore
perform all measurements within a timescale τmes set by these
characteristic rates τmes � 1/γ, 1/�. It is relevant to note the
similar role γ and � in these measurements.

D. Perturbations and changing fluxes

Here, we analyze the effects of nonzero vertical X couplings
on single-box systems, arising from Josephson junctions. In
the limit of strong horizontal bonds, the ground state is highly
degenerate: |GS〉 = |αα〉x,(1,2) ⊗ |ββ〉y,(3,4), (α, β ) = ±1.
From perturbation theory, interactions on the vertical bonds
contribute to H(2)

eff = −J3J4/(|J1| + |J2|)(σ z
1 σ z

2 σ z
3 σ z

4 )eff −

FIG. 5. Time evolution of the fluxes Pd (yellow) and Pc (red) in
dissipative processes. Here, we have taken weak vertical bonds |J1| =
|J2| = 0.4h̄ωB , |J3| = |J4| = 0.045|J1|. Losses and dephasing, with
rates � = 5 10−3ωB and γ = 5 10−3ωB , lead to a monotonous expo-
nential decay of the fluxes Pd and Pc from their initial quantized
value +1 to zero. Results of this figure must be compared with those
of Fig. 3.

J x
3 J x

4 /|J2|(σx
1 σx

2 σx
3 σx

4 )eff. Strong J1 links ensure that
〈σx

1 σx
2 〉 = 1. Thus,

H(2) = − J3J4

|J1| + |J2|
〈
σ z

1 σ z
2 σ z

3 σ z
4

〉 − J x
3 J x

4

|J2|
〈
σx

3 σx
4

〉
. (37)

In the Majorana basis (1),〈
σ z

1 σ z
2 σ z

3 σ z
4

〉 = PcPd = Pd ,
〈
σx

3 σx
4

〉 = −id3d4, (38)

where we have taken into account Pc = 〈σx
1 σx

2 σ
y

3 σ
y

4 〉 = 1.
Once we add an additional inductance L̃3 between sites

1 and 3 and turn off the vertical X coupling such that J x
3 +

J̃ x
3 = 0 (we have �3 fixed and J3 > 0), the contribution from

J x
4 vanishes and we check that σx

2 σx
4 becomes an irrelevant

operator to any higher order in perturbation theory. The gapped
phases of Kitaev-type spin models are therefore fully protected
against local J x

4 noises. This point is crucial to the flux
engineering later in Sec. IV B.

Furthermore, we gain the flexibility of tuning the �4 phase,
which is useful to engineer local defects with 0 flux in a unit
cell. Suppose we deviate from the condition in Eq. (18), and
study some effects of J x

3 and J x
4 . To second order in J x

3 J x
4 , we

then engineer a term in the Hamiltonian, which is equivalent
to add a small inductance between the sites 3 and 4: δH‖ =
δJ1σ

x
3 σx

4 = −iδJ1d3d4, where δJ1 is proportional to J x
3 J x

4 .
Tuning progressively the flux �4 in time would change the
sign of J x

4 from positive to negative. Then, this allows us to
locally change the flux in a square cell from π to 0 and have
also a time control on the local gauge fields. Next, we discuss
this protocol in more detail.

In this protocol, we flip the sign of the parity operator
−id3d4 in time. The ground state of HK + δH‖ differs de-
pending on the sign of δJ1 (or J x

3 J x
4 which could be tuned by

some local magnetic flux like �4), corresponding to the two
choices of the parity operator id3d4 (+1 or −1). In order to
make such a protocol, one needs to avoid a gap closing when
δJ1 = 0 because the system would not follow adiabatically the
required ground state. Therefore, this dynamical protocol also
requires an additional small field hyσ

y

3 coupling the two ground
states. Such a term physically can be derived by analogy with
the NMR device by coupling locally the site 3 capacitively
to a small dc constant bias voltage. One can then control
the strength of hy in this case since it is proportional to the
capacitance and to the bias voltage. This precise time control
on local fluxes is illustrated in Fig. 6, wherePd is progressively
changed from +1 to −1 whilePc remains roughly constant. We
already observe this effect without using optimized geodesic
paths [58].

IV. APPLICATION IN COUPLED-BOX ENSEMBLES

A. Quantum spin liquids, Majorana states, probes

In the two-dimensional lattice of Fig. 1, once a box unit
cell is built up one can construct more complex geometries
with J4 = 0 for square ladders [24], J4 = 0 for brick-wall
ladders [24], and their equivalents in two dimensions, the
Kitaev honeycomb model [23]. The three gapped spin-liquid
phases Ax , Ay , Az (with short-range entanglement emerging
in the X, Y , and Z directions) and the gapless B phase in
these spin models could be observed. In the Kitaev honeycomb
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FIG. 6. Time evolution of Pd (yellow) and Pc (red) under a parity
flip. Here, we have taken weak vertical bonds |J1| = |J2| = 0.4h̄ωB

and 2|J3| = |J x
3 | = 0.1|J1|. We have considered a sinusoidal variation

of 2J4 = J x
4 between the range ±0.1|J1|. An additional small field

hyσ
y

3 is implemented with hy = 0.08J1.

lattice, the Az gapped phase supports a toric code [30] and the B

phase allows non-Abelian anyonic statistics in the presence of a
magnetic field. It is important to mention recent efforts in quan-
tum materials to observe through nuclear magnetic resonance
the gap in the B phase opening in the presence of magnetic
fields as well as topological aspects through neutral edge-
mode measurements [33,59]. One could also envision to build
“decorated” ladders showing chiral spin-liquid states [28].

In addition, the Kitaev spin chain can be mapped to the
transverse field Ising model and the two-leg square ladders
have the dual of the XY chain in alternating transverse
fields [24,25]. Spin-spin correlation functions could reveal the
short-ranged entanglement in gapped phases [13]. Here, we
discuss how the NMR device can be used to detect Majorana
physics and quantum phase transitions in Kitaev spin models.

Let us assume the quantum phase transition with decoupled
(zigzag) chains in the two-dimensional honeycomb lattice
model, J3 = J4 = 0. In Fig. 7(a), the quantum phase transition
occurs when δJ2 = J1 for the upper chain. At the quantum
phase transition, the Hamiltonian can be written in terms
of Dirac fermions in the continuous limit by recombining
c2m−1 and c2m along the chain. The continuum model is a
one-dimensional fermion Dirac model of ψ (x) and ψ†(x)
operators [24] and spin-spin correlation functions show power-
law decay. To probe the quantum critical fluctuations in the
chain, one can weakly couple this chain to a spin- 1

2 impurity �S
described by a transmon qubit, or another spinless fermion, that
also reveals two Majorana fermions c and d, such that Sz =

FIG. 7. (a) Two coupled boxes in the limit of large J1 and J2. (b),
(c) Space of four effective spins formed by strong J1 and J2 links;
while nonzero J4 and J4′ reproduce Ising couplings (b), suppressing
J4 and J4′ would lead to a four-body Hamiltonian (c) related to Wen’s
toric code.

idc, Sx = c, and Sy = d. Adding a small coupling between
this chain and the impurity spin (either capacitive or inductive
depending on the location of this impurity spin), then one can
engineer a small coupling iαdci , where α � J1, involving the
Majorana fermion ci at site i. By analogy to the two-channel
Kondo model at the Emery-Kivelson line [60], we identify a
coupling term ∝iαd[ψ (x) + ψ†(x)].

The fermion d will entangle with the chain and the Majorana
fermion c will remain free. A signature of this free remnant
Majorana fermion is a (ln 2)/2 entropy as well as a logarithmic
magnetic susceptibility χimp = ∂〈Sz〉/∂h ∝ ln h, in contrast
to a linear behavior for the one-channel Kondo model [60].
With the NMR device attached to the spin- 1

2 impurity, one
could control the field strength hSz by detuning the onsite
frequency ω from Eq. (35) and measure the logarithmic growth
of the susceptibility reflecting the Majorana physics as well as
quantum critical fluctuations in the chain. The gapped phases of
the Kitaev model in ladder geometries also reveal edge-mode
excitations [24]. The NMR device could also probe in that
case the susceptibility at low fields to detect these modes (a
precise time-dependent protocol including perturbation effects
for such a chain device will be studied in a further publication).
These results do not probe non-Abelian statistics [61,62], but
still would give some response of Majorana fermions.

Boxes in the limit of strong vertical bonds could give rise
to spin-1 quantum impurity physics [63].

B. Z2 gauge fields and Néel order of fluxes

Now, we discuss a peculiar limit of coupled-box systems,
where inside each box all c Majorana fermions are gapped
due to the large J1 and J2 couplings (shown in Fig. 1, right
bottom). By coupling two boxes in the way of Fig. 7(a) with
J x

3 = 0 and J3 > 0, we are able to realize a Néel state of
d-Majorana gauge fields. Performing perturbation theory
in the spin space (see Appendix C) and mapping into the
Majorana representation, we find

H(2)
eff = cst − J3

|J1| + |J2| (J4P1 + J4′P3),

H(4)
eff = cst − J3

2(|J1| + |J2|)3

[
2J3J4J4′P1P3

+ J4
(
J 2

3 + J 2
4′
)
P1 + J4′

(
J 2

3 + J 2
4

)
P3

]
− δJ1δJ2

2(|J1| + |J2|)3

(
5J3J4′P1̃23

+ J3J4P2 + J 2
3 P1̃2 + J4J4′P2̃3

)
, (39)

where Pμ describes the four-body d-Majorana coupling
on the vertices of box μ = 1, 2, 3 [in Fig. 7(a), μ = 2
denotes an induced box in the middle]. More precisely,
P1 = d1d2d3d4, P2 = d2d1′d4d3′ , P3 = d1′d2′d3′d4′ , P1̃2 =
P1P2 = d1d1′d3d3′ , P2̃3 = P2P3 = d2d2′d4d4′ , P1̃23 =
P1P2P3 = d1d2′d3d4′ . To minimize the energy, fluxes within
each box can be uniquely fixed by the signs of J4 and J4′ . From
the discussion of Sec. III D, we infer that whenJ x

3 = 0, nonzero
J x

4 and J x
4′ couplings are allowed and do not enter into effective

terms in any order of perturbation. Thus, the flexibility on the
signs of J4 and J x

4′ is virtually guaranteed. In Table II, we list all
possible orderings of three gauge fields for two coupled boxes.

035431-8



ENGINEERING QUANTUM SPIN LIQUIDS AND MANY- … PHYSICAL REVIEW B 98, 035431 (2018)

TABLE II. Ordering of gauge fields for two coupled boxes.

(sgn[J4], sgn[J4′ ]) (P1,P2,P3,P1̃2,P2̃3,P1̃23 ) Flux

(+, +) (+1,+1, +1, +1, +1, +1) π π π

(−, −) (−1,−1, −1, +1, +1, +1) 0 0 0
(+, −) (+1,+1, −1, +1, −1, −1) π π 0
(−, +) (−1,−1, +1, +1, −1, −1) 0 0 π

In large networks, one could couple more boxes in the
same way and build square ladders. When all products of J3J4

are kept positive, the emergent π -flux ground state leading
to the Néel order of Z2 gauge fields is in agreement with
Lieb’s theorem. The Néel order could reveal a finite critical
temperature in the case of long-range coupling between boxes,
by analogy with the Ising model (see Sec. IV D below). By
tuning the signs of J4 one is able to create impurities of 0
fluxes in the static Z2 gauge fields: a pair of fluxes in the
bulk or a single flux on the boundary. Another proposal to
engineer many-body phases of fluxes in ladder systems has
been done recently [64]. Small ladder spin systems gener-
ally reveal rich dynamics due to Mott physics and gauge
fields [65]. From Eqs. (37) and (38), a small nonzero J x

3 on
the vertical J3 links would fix the parity of two Majorana
pairs −id3d4 and −id3′d4′ , and would then help in deciding
between the two possible ordered ground states with 0 or π

order.

C. Towards Wen’s toric code

Here, we show how to implement Wen’s two-dimensional
toric code [57] with our coupled-box clusters. In Fig. 7(a) if
we set J4 = J4′ = 0, only one term remains in the perturba-
tion (C2):

H(4)
eff = g

〈
σ z

1 σ z
3 σ z

1′σ
z
3′σ

y

2 σ
y

1′σ
x
4 σx

3′
〉
eff = gF̂ , (40)

with g = −δJ1δJ2J
2
3 /[2(|J1| + |J2|)3] < 0. Meanwhile, as

J x
4 and J x

4′ vanish together, local J x
3 noises do not contribute to

H
(4)
eff . Recalling that ϒ† in Appendix C maps each strong bond

into one effective 1
2 spin [see Fig. 7(c)]: |αα〉x,(1,2) → |α〉x,D ,

|ββ〉x,(1′,2′ ) → |β〉x,C , |γ γ 〉y,(3,4) → |γ 〉y,A, |δδ〉y,(3′,4′ ) →
|δ〉y,B , in a loop of four effective spins we obtain

F̂ = 〈
σ z

1 σ
y

2 σ z
3 σx

4 σx
1′σ

y

3′
〉
eff = τ x

Aτ
y

Bτ x
Cτ

y

D, (41)

where τ ν (ν = x, y, z) are spin operators acting on the effective
space [see Fig. 7(c)]. Based on this minimal cell with zero
J4 and J4′ , we can then build the two-dimensional lattices of
coupled brick-wall ladders shown in Fig. 8 (left) and reach the
Hamiltonian of Wen’s toric code in Fig. 8 (right):

H = g
∑

i

F̂i , F̂i = τ x
i τ

y

i+âτ
x

i+â+b̂
τ

y

i+b̂
, (42)

where i = (ia, ib ) denotes the square lattice sites. As each F̂i

commutes with each other, it is an exactly solvable model with
the ground-state configuration Fi = +1,∀ i for g < 0.

The excitations could be engineered in two ways. On one
hand, in the effective spin space the local magnetic field σx

i or
σ

y

i acting on the strong x or y bond (which could be achieved
by an inductive or capacitive coupling to a small dc constant

FIG. 8. (Left) Brick-wall ladders with coupling parameters
|J1|, |J2| � |δJ1|, |δJ2|, |J3|. (Right) Wen’s toric code manifested in
effective spin space.

bias voltage as before) becomes the local operation X̂ or Ŷ

which flips the spin on a single site. It creates a diagonal
pair of excitations with two corresponding loop-qubit states
changing from +1 to −1. On the other hand, picking up a single
vertical bond labeled as J3′ and changing its sign to −J3′ via �3′

could introduce a neighboring pair of excitations (during the
process the nonzero X coupling on this isolated vertical bond
remains irrelevant). One can also relate Wen’s toric code to
Kitaev’s toric code by moving spins from square lattice sites
to the edges of a dual square lattice and performing unitary
rotations.

D. SYK loop model and Random Ising models

For the original SYK model with quenched disorder, the
Hamiltonian has the form

H = 1

4!

N∑
i,j,k,l=1

Jijkldidjdkdl, (43)

where the couplings obey Gaussian distribution P (Jijkl ) ∼
exp (−N3J 2

ijkl/12J 2) : J 2
ijkl = 3!J 2/N3, Jijkl = 0. The SYK

model is found to be maximally chaotic and share the same
Lyapunov exponent of a black hole in Einstein gravity [45].

By coupling two chains with strong x links and y links
by weak z links shown in Fig. 9, we find two interesting
limits to build up the effective Hamiltonian. We define x =
(|J1| + |J2|)−1 as a small number and therefore quantify the

FIG. 9. (Top) Proposal to approximate the SYK model. The blue
and green boxes describe longer-range couplings. (Bottom) Mapping
to the long-ranged Ising model.
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weak couplings through {|J3|, |J4|} = O(xs ), {|δJ1|, |δJ2|} =
O(xt ), s, t ∈ N+.

When s � t , we can restrict the system to the second-order
perturbation in Eq. (39) and reach an effective Hamiltonian
O(x2s+1):

H(2)
eff =

N∑
m,n=1

Jmnd(2m−1,1)d(2m,1)d(2n−1,2)d(2n,2), (44)

where the subscript (j, α) denotes the site on the j th
column of chain α = 1, 2 and Jmn = −J3J4,mn/(|J1| + |J2|).
The coupling constants Jmn are random variables with a
Gaussian distribution ensured by the adjustability of �4,mn:
P (Jmn) ∼ exp (−NJ 2

mn/2J 2). [id(2m−1,α)d(2m,α),Heff] = 0
and (id(2m−1,α)d(2m,α) )2 = 1 imply that id(2m−1,α)d(2m,α) is a
good quantum number with the value ±1. We arrive at the
following map:

H(2)
eff =

N∑
m,n=1

Jmnτ
z
(m,1)τ

z
(n,2), (45)

where τ z
(m,α) = id(2m−1,α)d(2m,α). This gives rise to a one-

dimensional Ising model [e.g., the zigzag path formed by
orange loops and half of blue loops shown in Fig. 9 (bot-
tom)] with long-range random interactions (for example,
green loops). Following the mapping to effective spin space
as in Sec. IV C, we can get the same result and take
into account higher-order corrections. Back to two coupled
boxes in Fig. 7(a), from Eqs. (39) and (C2) we find P1 =
〈σ z

1 σ z
2 σ z

3 σ z
4 〉eff = τ z

Dτ z
A,P3 = 〈σ z

1′σ
z
2′σ

z
3′σ

z
4′ 〉eff = τ z

Cτ z
B , which

recovers the classical Ising couplings shown in Fig. 7(b).
Quantum corrections arise from the fourth-order perturbation
with the terms P1P3 = τ z

Aτ z
Bτ z

Cτ z
D, P1̃23 = τ x

Aτ x
Bτ

y

Cτ
y

D, P2 =
τ

y

Aτ
y

Bτ x
Cτ x

D, P1̃2 = τ x
Aτ

y

Bτ x
Cτ

y

D, P2̃3 = τ
y

Aτ x
Bτ

y

Cτ x
D . Noises from

nonzero X couplings on vertical bonds would produce a small
magnetic field along z direction on sites A and B, as the
effective interactions 〈σx

3 σx
4 〉 ∼ τ z

A, 〈σx
3′σ

x
4′ 〉 ∼ τ z

B .
When s > t , we can drop out the terms ∼ O(x4s+3) in

the fourth-order perturbation of Eq. (39) and the effective
Hamiltonian has the form O(x2s+2t+3):

H(4)
eff =

N∑
m,n=1

4∑
l=1

JmnlPmnl
d , (46)

with coefficients Jmn1 = − δJ1δJ2J
2
3

2(|J1|+|J2|)3 , Jmn2 =
− 5δJ1δJ2J3J4,(m+1)n

2(|J1|+|J2|)3 , Jmn3 = − δJ1δJ2J3J4,mn

2(|J1|+|J2|)3 , Jmn4 =
− δJ1δJ2J4,mnJ4,(m+1)n

2(|J1|+|J2|)3 . Here, Pmnl
d is the loop operator

which denotes the four-body couplings between
d Majoranas living on the vertices of “tilted”
boxes: Pmnl

d = d(2m−1,1)d(2m+l,1)d(2n−1,2)d(2n+l,2)(l =
1, 2), Pmn3

d = d(2m,1)d(2m+1,1)d(2n,2)d(2n+1,2), Pmn4
d =

d(2m,1)d(2m+2,1)d(2n,2)d(2n+2,2). This model could reveal
glassy phases of the Ising model and quantum corrections
could be controlled through effective fourth-order corrections,
which will be studied in a future work. An analog of the
Anderson-Edwards [66] order parameter could be measured
as well as echo spin measurements [67]. Links with many-body
localization phenomena could also occur [68].

V. CONCLUSION

To summarize, we suggest a superconducting toolbox start-
ing from spin degrees of freedom (qubits) to study the for-
mation of Z2 quantum spin liquids and many-body Majorana
states. Spin correlations can be measured with current tech-
nology [13,69] and local susceptibility measurement through
the NMR device could reveal the occurrence of Majorana
degrees of freedom and quantum phase transitions. We have
addressed detuning and dissipation effects and observed that
the emergent gauge fields could be detected on several Floquet
periods, even though the quantization of the fluxes could be
altered. We have discussed the protection of the different
phases related to possible detuning effects. In lattices of several
boxes, quantum spin-liquid states are associated with a Néel
order of gauge fields making analogies with Ising models.
These Ising models can be disordered by engineering local
fluxes and one could realize various glassy phases in relation
with the SYK Majorana model. As other practical applications,
we have built relations with the Wen’s toric code in brick-wall
ladders. This box at a boundary could allow us to study
other quantum impurity Majorana models by analogy with
Kondo models (with four spins S = 1/2 or two spins S = 1).
We also note another proposal to engineer four-body Ising
interactions with Josephson junctions [70]. It is also promising
to see that the occurrence of orbital loop currents in Mott
insulators [55,56] has now been observed. Realizing anistropic
spin coupling constants in two dimensions is also possible in
cold atoms [38,71].
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APPENDIX A: TABLE OF PARAMETERS

Our dynamical protocols simulated in numerics are de-
signed to study spin observables and detect Z2 gauge fields.
It is important to analyze the constraints in terms of ex-
perimental parameters. For simplicity, here we suppress
the site index j . From Table III, the limit of weak verti-
cal bonds |J1|, J2| � |J3|, |J4| requires λ � 1 � s, sλ2 ∼
1, EL,EC � EJ,3, EJ,4. The main contribution to the mag-
netic field σ z comes from the transition frequency of the
qubit h̄ωq � EL,EC,EJ ,EL̃, EL′ , EC ′ . To cancel this local
field, we engineer a circularly polarized field and impose
ω1 = ωL′ = ωC ′ giving rise to 4EL′ = s ′λ2h̄ω with h̄ω �
EL′ , λ � 1 � s ′, 1 � s ′λ2.
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TABLE III. Parameters for box circuit. Notation of subscripts: A

for sites {1, 4}, B for sites {2, 3}, ν = x, y, z.

Parameter Relation Parameter Relation

λ [EJq
/(2ECq

)]1/4 J1 −2EL/(λAλB )
s C/Cq J2 −2ECsAsBλAλB

ωq

√
8ECq

EJq
/h̄ J3 −EJ,3/(2λAλB )2

ωL′ 4EL′V0/(h̄φ0λω) J4 −EJ,4/(2λAλB )2

ωC′ 2V0es
′λ/h̄ J x

3 −EJ,3/(λAλB )
εq (h̄ωq − ECq

)/2 J x
4 −EJ,4/(λAλB )

εL EL/λ2 J̃ x
3 −2EL̃,3/(λAλB )

εC EC (sλ)2 J̃ x
4 −2EL̃,4/(λAλB )

εJ −EJ,⊥/(2λ2) J ′
ν rνJν

We further choose a particular combination of frequen-
cies from Eq. (23): ω1 = √

2ω0, ω = 3ω0/2. It results in
V0 = 3

√
2φ0h̄ω2

0λ/(8EL′ ). Since ω0 � EL′, λ � 1, both the
amplitude V0 and frequency ω of the ac driving device
should be large. Additionally, it is also noted that inside
the NMR, the plasma frequency ωP is much smaller com-
pared to ω: ωP ∼ 1/

√
L′C ′ ∼ √

EL′/C ′ � ω ∼ ω0 ∼ ωq ∼√
EJq

/Cq , which leads to EL′/EJq
� s ′ � 1. It is consistent

with our limit of large λ � 1.

APPENDIX B: NMR UNITARY TRANSFORMATION

Here, we present some useful mathematical formulas re-
lated to the gauge transformation in Sec. II C. Spin operators
commute on different sites, so do Fj (t ). It enables us to
suppress site indices j and focus on the single spin problem:

HC (τ ) = ω0Sz − ω1(cos τSx + sin τSy ),

GC = eiFHCe−iF + ih̄ω(∂τ e
iF )e−iF . (B1)

Applying the Baker-Campbell-Hausdorff formula

eiFHCe−iF = HC + i[F,HC] + i2

2!
[F, [F,HC]]

+ i3

3!
[F, [F, [F,HC]]] + · · · ,

(∂τ e
iF )e−iF = ∂τ

( ∞∑
n=0

(iF )n

n!

)
e−iF

= i∂τF + i2

2!
[F, ∂τF ] + i3

3!
[F, [F, ∂τF ]] + · · · .

(B2)

Now, we assume F (τ ) is a linear function of Si (i = x, y, z)
as HC (τ ):

F (τ ) = l(τ )Sx + m(τ )Sy + n(τ )Sz. (B3)

Due to the closed SU(2) algebra for spin 1
2 ,

[Si, Sj ] = ih̄εijkSk, (B4)

GC is also linear in Si . For an arbitrary linear function Q(Si ),
we find

[F, [F, [F,Q]]] = α2[F,Q], α2 = h̄2(l2 + m2 + n2).

(B5)

Then, the infinite series in GC can be grouped into the finite
expression

GC = HC + sin α

α
i[F,HC] + cos α − 1

α2
[F, [F,HC]]

+ h̄ω

(
−∂τF + cos α − 1

α2
i[F, ∂τF ]

− sin α − α

α3
[F, [F, ∂τF ]]

)
. (B6)

Taking F (τ ) = α[sin(τ )Sx − cos(τ )Sy]/h̄, we derive the ex-
pression of GC in Eq. (20). In the same manner, a single local
spin operator Si is transformed into the rotating frame through

eiF Sie
−iF = Si + sin α

α
i[F, Si] + cos α − 1

α2
[F, [F, Si]].

(B7)

APPENDIX C: PERTURBATION THEORY STUDY

In perturbation theory, a system of two coupled boxes in
Fig. 7(a) consists of the interaction terms

H0 = J1
(
σx

1 σx
2 + σx

1′σ
x
2′
) + J2

(
σx

3 σx
4 + σx

3′σ
x
4′
)
,

V = δH⊥ + δH ‖,

δH⊥ = J3
(
σ z

1 σ z
3 + σ z

1′σ
z
3′
) + (

J4σ
z
2 σ z

4 + J4′σ z
2′σ

z
4′
)
,

δH ‖ = δJ2σ
y

2 σ
y

1′ + δJ1σ
x
4 σx

3′ . (C1)

Here (J1, J2) � −1, (δJ1, δJ2, J3, J
x
3 ) → (0−, 0−, 0+, 0),

and J4, J4′ can be controlled around 0± by the phases
�4,�4′ . We notice in Sec. III D when suppressing the vertical
X couplings on J3 bonds, (J x

4 σx
2 σx

4 + J x
4′σ

x
2′σ

x
4′ ) become

irrelevant operators in any order of perturbation, thus, we have
ignored them in δH⊥.

The ground state of H0 is constructed by four effec-
tive spins: |αα〉x,(1,2) ⊗ |ββ〉y,(3,4) ⊗ |γ γ 〉x,(1′,2′ ) ⊗ |δδ〉y,(3′,4′ )
(α, β, γ, δ = ±1). We introduce a map ϒ : ϒ |α〉 = |αα〉
and find H(0)

eff = 2(J1 + J2), H(1)
eff = ϒ†V ϒ = 0, H(3)

eff =
ϒ†V G′

0V G′
0V ϒ = 0 where G′

0(E) = [(E − H0)−1]′. The
nonzero contributions arise from the second and fourth orders

H(2)
eff = ϒ†V G′

0V ϒ

= cst − J3J4

|J1| + |J2|
〈
σ z

1 σ z
2 σ z

3 σ z
4

〉
eff

− J3J4′

|J1| + |J2|
〈
σ z

1′σ
z
2′σ

z
3′σ

z
4′
〉
eff,

H(4)
eff = ϒ†V G′

0V G′
0V G′

0V ϒ

= cst − 1

2(|J1| + |J2|)3

[
J3J4

(
J 2

3 + J 2
4′
)〈
σ z

1 σ z
2 σ z

3 σ z
4

〉
eff

+ 2J 2
3 J4J4′

〈
σ z

1 σ z
3 σ z

2 σ z
4 σ z

1′σ
z
3′σ

z
2′σ

z
4′
〉
eff

+ J3J4′
(
J 2

3 + J 2
4

)〈
σ z

1′σ
z
2′σ

z
3′σ

z
4′
〉
eff

]
− δJ1δJ2

2(|J1| + |J2|)3

(
5J3J4′

〈
σ z

1 σ z
3 σ z

2′σ
z
4′σ

y

2 σ
y

1′σ
x
4 σx

3′
〉
eff

+ J3J4
〈
σ z

2 σ z
4 σ z

1′σ
z
3′σ

y

2 σ
y

1′σ
x
4 σx

3′
〉
eff

+ J 2
3

〈
σ z

1 σ z
3 σ z

1′σ
z
3′σ

y

2 σ
y

1′σ
x
4 σx

3′
〉
eff

+ J4J4′
〈
σ z

2 σ z
4 σ z

2′σ
z
4′σ

y

2 σ
y

1′σ
x
4 σx

3′
〉
eff

)
. (C2)
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