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We propose a method for solving the Schrödinger-Poisson problem that can be efficiently implemented in
realistic 3D tight-binding models of semiconductor-based Majorana devices. The method is based on two key
ideas. (i) For a given geometry, the Poisson problem is only solved once (for each local orbital) and the results
are stored as an interaction tensor; using this Green’s function scheme, the Poisson component of the iteration
procedure is reduced to a few simple summations. (ii) The 3D problem is mapped into an effective multiorbital
1D problem with molecular orbitals calculated self-consistently as the transverse modes of an infinite wire
with the same electrostatic potential as the local electrostatic potential of the finite 3D device. These two ideas
considerably simplify the numerical complexity of the full 3D Schrödinger-Poisson problem for the nanowire,
enabling a tractable effective theory with predictive power. To demonstrate the capabilities of our approach, we
calculate the response of the system to an external magnetic field, the dependence of the effective chemical
potential on the work function difference, and the dependence of the effective semiconductor-superconductor
coupling on the applied gate potential. We find that, within a wide range of parameters, different low-energy
bands are characterized by similar effective couplings, which results in induced gap features characterized by a
single energy scale. We also find that electrostatic effects are responsible for a partial suppression of the Majorana
energy splitting oscillations. Finally, we show that a position-dependent work function difference can produce a
nonhomogeneous effective potential that is not affected by the screening due to the superconductor and is only
partially suppressed by the charge inside the wire. In turn, this potential can induce trivial low-energy states that
mimic the phenomenology of Majorana zero modes. Thus any position-dependent work function difference (even
at the 1% level) along the nanowire must be avoided through carefully engineered semiconductor-superconductor
interfaces.
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I. INTRODUCTION

Motivated by the theoretical model proposed by Kitaev [1]
and the concrete predictions [2–6] about the existence of zero-
energy Majorana modes in proximity-coupled semiconductor-
superconductor (SM-SC) hybrid structures, a systematic ex-
perimental search for Majorana zero modes [7,8] (MZMs)
has gained momentum in the past few years [9–18]. Re-
cent improvements in materials science and nanofabrication
[19–21] have led to the observation of stable zero-energy
subgap states that manifest the predicted 2e2/h quantization
of the zero bias tunneling differential conductance at low
temperatures [22–24]. The signatures observed experimentally
provide strong indication that MZMs localized at the ends of
proximitized semiconductor nanowires may have been realized
in the laboratory. However, based on the existing evidence
one cannot rule out the possibility that these experimental
signatures are, in fact, generated by nontopological Andreev
bound states (ABSs), which are ubiquitous in the presence
of nonuniform system parameters (e.g., variations of the
electrochemical potential) or when the wire is coupled to a
quantum dot [25–35]. In particular, the possible presence of
partially separated ABSs (ps-ABSs) consisting of pairs of
Majorana bound states separated by a distance comparable to

or larger than the characteristic Majorana length scale (but
less than the length of the wire) should raise serious concern,
as one cannot distinguish between these trivial low-energy
modes and genuine nonAbelian MZMs using any type of local
measurement at the end of the wire [35]. Considering this rather
disturbing state of affairs, in conjunction with the promising
proposals [36–40] for testing the predicted non-Abelian prop-
erties of the MZMs and building topological qubits, which
will require exquisite control of the hybrid system, it becomes
clear that a major theoretical task is to develop a more detailed
modeling of semiconductor-superconductor Majorana devices.
The minimal model used extensively so far in the Majorana
nanowire literature is simply insufficient for describing the
SM-SC structure at the level of essential details necessary
to distinguish between MZMs and ABSs, as well as in the
elucidation of other basic properties of the hybrid device.

A key component of this task is to account for the electro-
static effects that are naturally induced by the presence of the
superconductor-semiconductor interface and external potential
gates. Understanding these effects is critical in the context
of two important aspects of the modeling of hybrid devices.
On the one hand, they control three basic system parame-
ters: the chemical potential, the Rashba spin-orbit coupling,
and the induced superconducting pair potential. Typically,
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these parameters are treated as independent phenomenological
parameters. In fact, they are all controlled by the effective
electrostatic potential inside the wire generated by the work
function difference at the SM-SC interface and by the applied
gate potential in the presence of a low (but nonvanishing)
electron density. The work function difference and the gate
potential determine the number of charge carriers in the wire
(hence the value of the chemical potential relative to the bottom
of the conduction band). In addition, the transverse profile
of the effective potential is directly linked to the Rashba
spin-orbit coupling and determines the amplitudes of the wave
functions at the SM-SC interface, which, in turn, control the
strength of the proximity coupling to the superconductor.
Understanding the dependence of these system properties
on control parameters such as external gate potentials and
applied magnetic fields is important for correctly interpreting
the experimental data and optimizing the Majorana devices.
On the other hand, electrostatic effects are critical ingredients
of existing and proposed Majorana devices, ranging from the
controllable tunnel barrier in a charge transport measurement,
to the electrostatic confinement in two-dimensional SM-SC
structures [41–43], and electrostatic operations in Majorana
nanowire-based topological circuits [36–40], while being a
major potential source of unwanted inhomogeneity in the
active segments of these devices (i.e., those that host the non-
Abelian MZMs). From this perspective, understanding in detail
the electrostatic effects in semiconductor Majorana devices
represents a requirement. Clearly, the minimal model in which
all of these crucial parameters (e.g., chemical potential, spin-
orbit coupling, proximity-induced pair potential) are assumed
to be independent adjustable parameters, is highly inaccurate
(and perhaps even incorrect) and nonpredictive, since these
parameters cannot be freely tuned in any experimental hybrid
system by controlling the electrostatic environment (i.e., vari-
ous gate voltages).

In general, accounting for electrostatic effects requires
solving a Schrödinger-Poisson problem self-consistently. The
Schrödinger-Poisson problem is important in understanding
the properties of low-dimensional semiconductor structures
and, indeed, over the years many self-consistent treatments
have been carried out in semiconductor inversion and accu-
mulation layers [44–46], semiconductor heterojunctions [47]
and quantum wells [48,49], semiconductor nanowires [50,51],
and semiconductor quantum dots [52]. Most of these self-
consistent theories are carried out within the continuum effec-
tive mass approximation (sometimes with additional approxi-
mations to simplify the numerics) where the self-consistency
is limited to the electrons in the semiconductor itself, thus
motivating our work. In general, these theories capture the elec-
tronic structure of the low-dimensional semiconductor systems
extremely well [53,54], and have become a standard tool in the
semiconductor industry. Our goal here is to develop a similar
self-consistent tool in hybrid structures with SM-SC interfaces,
whereas by contrast the standard low-dimensional semicon-
ductor systems have typically SM-SM (or SM-insulator, as
in Si MOSFETs) interfaces. The presence of superconduc-
tivity, spin-orbit coupling, and magnetic field makes our
problem much richer (and more difficult technically) than
the above-mentioned pure semiconductor low-dimensional
systems.

The most relevant components that determine the elec-
trostatic effects in SM-SC structures are the applied gate
potentials, the work function difference at the SM-SC interface,
and the screening due to the presence of the superconductor and
the finite charge in the wire. The topological superconducting
phase and the emerging MZMs have been been found to
be relatively stable against disorder and weak interaction
[55–61]. Considering the properties of the semiconductor
materials used in the fabrication of Majorana devices and the
strong screening by the superconductor, it is reasonable to
assume that the main effects of electron-electron interaction
are faithfully captured at the mean-field level, i.e., within
the Hartree approximation. Exchange-correlation effects may
have some small quantitative effects, but given that the typical
semiconductor materials used in Majorana nanowires (e.g.,
InSb and InAs) have very small electron effective masses
and rather large lattice dielectric constants, we expect such
exchange-correlation corrections to be rather negligible since
the relevant dimensionless interaction coupling constant (the
so-called rs value) is very small. Therefore the task at hand
is to find a self-consistent solution of a three-dimensional
(3D) Schrödinger-Poisson problem associated with a given
semiconductor-superconductor Majorana device. This task,
however, poses a significant challenge due to the enormous
number of relevant degrees of freedom that have to be taken into
account. A possible path would be the brute force approach to
the 3D Schrödinger-Poisson problem. This could be helpful in
the engineering process of a specific device, but has two major
disadvantages: it is an extremely costly numerical scheme and
it provides virtually no additional understanding of the relevant
physics and has limited predictive power. An additional (and
rather serious) empirical problem associated with a brute-
force 3D Schrödinger-Poisson approach is that the relevant
experimental parameters are simply not known at the level
of accuracy necessary for such a method to provide reliable
results at the 1–100 μeV energy scale operational for the MZM
problem of interest here.

In this work, we propose and develop an alternative ap-
proach involving an effective theory of the 3D Schrödinger-
Poisson problem that can be efficiently implemented numer-
ically and can provide insight into the low-energy physics of
the SM-SC device, particularly in terms of the dependence of
key low-energy features on the SM-SC materials parameters
and the applied gate voltages. Our method is based on two key
ideas. (i) We split the actual 3D problem into a 2D problem
corresponding to an infinite (uniform) wire and an effective
multiorbital 1D problem with “molecular” orbitals calculated
(self-consistently) using the infinite 2D system. (ii) For a given
geometry, the Poisson problem is solved once for each lattice
site and the results are stored; using this Green’s function
scheme, the Poisson component of the iteration procedure
becomes trivial. More specifically, we first consider an infinite
nanowire-superconductor system in the presence of an external
gate potential that is translation invariant (along the wire)
and calculate the transverse profiles of the wave functions
associated with each confinement-induced band by solving
self-consistently the corresponding 2D Schrödinger-Poisson
problem. Next, we construct an effective multiorbital 1D model
of the 3D device by dividing the system into N “slices”
and associating to each “slice” molecular orbitals given by
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the transverse profiles of the confinement-induced bands cor-
responding to an infinite wire with the same electrostatic
potential as the local electrostatic potential of the “slice,” which
is obtained by solving a 3D Laplace equation. Of course,
including all the bands would simply imply a change of basis.
The point is that the subspace spanned by a relatively small
number of bands calculated self-consistently by solving the
(2D) infinite wire problem provides a good approximation for
the low-energy Hilbert space of the 3D system. The projection
reduces the numerical complexity of the problem enormously,
since it eliminates a large number of (irrelevant) high-energy
degrees of freedom that have to be considered when using
the brute force approach to the full 3D problem. We note that
both the 2D problem and the 1D effective model are solved
self-consistently. The first self-consistency condition ensures
that the calculated transverse profiles (hence, the “molecular”
orbitals) accurately include interaction effects (at the Hartree
level of Coulomb energetics), while the second condition
ensures that the charge is correctly distributed along the wire
(within the same approximation). This effective approach is
both computationally efficient and physically substantive, as
demonstrated explicitly in the current work, being character-
ized by numerical tractability and predictive power.

This work focuses on a method to effectively solve the
Schrödinger-Poisson problem in semiconductor Majorana de-
vices, elucidating the implicit approximations as well as
additional possible simplifications and refinements of the
proposed approach. In addition, we provide specific examples
of how one can use this method to address important ques-
tions regarding the low-energy physics of proximity-coupled
SM-SC structures. We first consider the case of an infinite
semiconductor wire in the presence of an external gate poten-
tial and a work function difference at the interface between
the wire and the superconductor. We calculate the response
to an external magnetic field and compare the predictions
based on first-order perturbation theory [62] with the fully
self-consistent results. We also calculate the dependence of
the “effective chemical potential” (in fact, the energies of
the interacting semiconductor bands) on the work function
difference and show that the corresponding linear coefficient is
of order unity. By contrast, the dependence on the applied gate
potential is strongly suppressed due to the screening provided
by the superconductor. We also investigate the dependence
of the band-dependent induced pair potential on the work
function difference and the applied potential and find that
the low-energy bands are characterized by similar values of
this parameter, in sharp contrast with predictions based on
simple noninteracting models. This result is corroborated by
a direct calculation of the induced gap as a function of the
applied potential within a model that includes the parent
superconductor explicitly.

Next, we consider a finite wire and investigate the energy
splitting oscillations of the Majorana modes arising from the
overlap of the MZMs at the two wire ends of the wire. We
find that interaction partially suppresses these oscillations
[63,64], which is an effect arising from the self-consistency
in the Schrödinger-Poisson solution. We then consider a finite
system with a nonuniform work function difference at the
SM-SC interface. This nonuniformity in the work function
could arise, for example, from physical structural fluctuations

at the interface, which are invariable at the few mono-layer
level even in the best epitaxial interfaces. We find that small
variations of the work function difference (of the order of
1%–2%) can generate variations of the effective electrostatic
potential larger than the induced gap. The screening by the su-
perconductor plays no role in suppressing the emergence of this
inhomogeneous potential, while the screening by the charge
inside the wire is only effective at high occupancies. This
calculation provides concrete support to the possibility of long-
range potential inhomogeneities in proximitized nanowires,
which are predicted [33–35] to induce trivial low-energy states
that mimic the (local) signatures of non-Abelian MZMs. We
note that the typical absolute work function at the SM-SC
interface is of the order of hundreds of meV, whereas the
relevant low-energy energy scale (e.g., the induced gap in the
nanowire) is only∼100 μeV, making the homogeneous control
of the work function along the whole SM-SC interface a rather
formidable materials science, fabrication, and engineering
challenge, which must be solved for future progress in the field.
We mention as an aside that the work function inhomogeneity
issue discovered in the current work is quite distinct from
the short-range disorder problem associated with the SM-SC
interface discussed earlier in the literature within the minimal
model [65].

The rest of the paper is organized as follows. In Sec. II,
we present our approach to the Schrödinger-Poisson problem
in proximitized semiconductor nanowires. We describe the
Green’s function scheme (Sec. II A), its implementation in
the case of infinite nanowires (Sec. II B), and the scheme
for constructing and solving the effective 1D problem corre-
sponding to finite systems (Sec. II C). In Sec. III, we apply
our method to infinite Majorana nanowires and investigate
the response to an external magnetic field (Sec. III A), the
dependence of the effective chemical potential on the work
function difference at the SM-SC interface (Sec. III B), and
dependence of the proximity-induced pair potential on the
relevant parameters (Sec. III C). We also use our scheme to
study the dependence of the induced gap on the applied gate
potential for a system in the intermediate coupling regime
(Sec. III D). Section IV is dedicated to finite hybrid structures
of experimental relevance. We discuss the suppression of the
Majorana splitting oscillations due to interaction (Sec. IV A)
and the emergence of inhomogeneous potentials in systems
with a nonuniform work function difference (Sec. IV B). The
convergence of our effective theory scheme is discussed in
Sec. IV C. We conclude in Sec. V with a summary of the results
and a discussion of the relevance of this work to future studies
of Majorana systems.

II. THEORETICAL METHODS

In this section, we describe our approach to the Schrödinger-
Poisson problem in proximitized semiconductor nanowires.
We discuss (A) the Green’s function scheme, (B) the infinite
wire case, and (C) the effective 1D problem. We focus on the
weak coupling regime, i.e., we assume that the low-energy
wave functions have almost all their weight inside the semicon-
ductor nanowire (with an exponentially small tail penetrating
inside the superconductor). The parent superconductor is
treated as a “boundary condition” for the electrostatic potential.
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We show that the strong/intermediate coupling regime, which
is expected to exhibit interesting new physics at low energies
[66], can also be addressed within our theoretical framework
by explicitly including the superconductor in the model Hamil-
tonian. However, this approach is limited to simple effective
models of the parent superconductor. A more general theory
of the strong/intermediate coupling regime will be discussed
elsewhere.

A. The Green’s function scheme

Consider a d-dimensional semiconductor system described
by a multiorbital tight-binding Hamiltonian of the form

H = H0 + Hint, (1)

where H0 is a noninteracting Hamiltonian, which includes
hopping terms, spin-orbit coupling, and external field contri-
butions, and Hint accounts for the electron-electron interaction.
At the mean-field level, the interaction term has the form

Hint =
∑
i,j

∑
α,β

U
αβ

ij c
†
iαcjβ, (2)

where i and j label the lattice on which the tight-binding model
is defined, α and β are combined orbital and spin indices,
and U

αβ

ij = −e〈i, α|U |j, β〉 are matrix elements of the Hartree
potential U (r ) with the basis states |i, α〉 of the tight-binding
model. The operator c

†
iα creates an electron in a single particle

state with orbital/spin index α centered at site i (i.e., the state
|i, α〉). The Hartree (or Coulomb) potential satisfies the Poisson
equation

∇2U (r) = −ρ(r)

ε
, (3)

where ε is the background dielectric constant of the semicon-
ductor and ρ(r) is the charge density. In turn, the charge density
can be expressed in terms of the eigenstates ψn of Hamiltonian
(1) as a sum over the occupied states,

ρ(r ) = −e

occ.∑
n

|ψn(r )|2. (4)

Equations (1)–(4) define a Schrödinger-Poisson problem that
has to be solved self-consistently. The self-consistency arises
from the fact that the eigenstates ψn(r ), which define the
charge density through Eq. (4), are in turn determined by the
charge density through Eqs. (2) and (3). We note that having a
unique solution of the Poisson equation (3) requires specified
boundary conditions. Also, in general, the noninteracting
Hamiltonian H0 contains an external electrostatic potential
generated, for example, by an applied gate voltage. Finding the
spatial dependence of this external potential may require solv-
ing an additional Laplace equation, which involves knowledge
of various geometrical and materials details characterizing
each given device. It is convenient to solve the Poisson equation
(3) with homogeneous boundary conditions and incorporate
all nonhomogeneous contributions (e.g., a nonvanishing gate
voltage) into the boundary conditions of the Laplace equation.
Note that the Laplace equation has to be solved once (for
a given external potential configuration), while the Poisson
equation has to be solved self-consistently, together with the

Schrödinger problem defined by Hamiltonian (1), within an
iterative scheme, which can be computationally expensive. For
example, having to solve the Poisson equation numerically at
every iteration represents a serious practical obstacle when
exploring the large parameter space that typically characterize
the heterostructure model. In addition, numerical accuracy
demands very precise solutions of the Poisson equation,
making this the essential roadblock in the efficiency of the
computational scheme.

To address this challenge, we reformulate the problem so
that the Poisson component of each iteration becomes trivial.
First, we write the eigenstates in terms of the localized basis
states as

|ψn〉 =
∑
j,α

Anjα|j, α〉. (5)

Defining Aαβ

nij = A∗
niαAnjβ , we can write the charge density in

the form

ρ(r) = −e

occ.∑
n

∑
j,α

Aαα
njj |ϕjα (r)|2

− e

occ.∑
n

∑
(i,α)�=(j,β )

Aαβ

nijϕ
∗
iα (r)ϕjβ (r), (6)

whereϕjα (r ) = 〈r|j, α〉 are local orbitals. Note that the second
term in Eq. (6) is due to orbital overlap and can be neglected
in single-band models (see below).

Next, we introduce the Green’s function G
αβ
nm defined by the

equation

∇2G
αβ

ij (r) = e

ε
ϕ∗

iα (r)ϕjβ (r) (7)

with homogeneous boundary conditions. Note that Gαα
ii (r)

represents the electrostatic potential generated by an electron
occupying the orbitalα at site i. Finally, we define the following
“interaction tensor”:

ν
αβγ δ

ijkl = −e

∫
ϕ∗

iα (r)ϕjβ (r)Gγδ

kl (r)d3r. (8)

The element ν
ααγ γ

iikk represents the interaction energy between
two electrons occupying the orbitals α at site i and γ at site k,
respectively. Note that, in general, the Green’s function defined
by Eq. (7) and the interaction tensor defined by Eq. (8) are
complex quantities. Using these quantities, we can write the
matrix elements of the Hartree potential in the form

U
αβ

ij =
occ.∑
n

∑
k,l

∑
γ,δ

ν
αβγ δ

ijkl Aγ δ

nkl . (9)

Our strategy is to solve Eq. (7) for every lattice site in the
system, which can be done numerically or, in some cases,
even analytically (see, for example, Appendix A), perform
the integration in Eq. (8), and store the interaction tensor.
The Poisson component of the iterative scheme reduces to
tensor contraction in Eq. (9). We note that, in practice, many
elements of the interaction tensor are small and can be safely
neglected. Also, the calculation of the interaction tensor using
Eq. (8) requires knowledge of the basis states ϕiα (r), which
can be found using ab-intio techniques. In the applications
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discussed in this work we only consider single-orbital models
and we assume that ϕi (r) has spherical symmetry and is
strongly localized near site i (i.e., we neglect the overlap with
neighboring orbitals).

The general scheme described above simplifies significantly
in the case of single-orbital tight-binding models. Since the
only internal degree of freedom is spin, we have α → σ , where
σ = ± is the spin index. Furthermore, the spatial profile of the
local orbital is spin-independent, so that we have 〈r|i, σ 〉 =
ϕi (r )|σ 〉, and we neglect the overlap between neighboring
orbitals, ϕi (r )ϕj (r ) = δij |ϕi (r )|2. With these simplifications
the relevant Green’s function that has to be calculated (for
each lattice site i) becomes

∇2Gi (r) = e

ε
|ϕi (r)|2 (10)

and the interaction tensor (8) reduces to an interaction matrix,

νij = −e

∫
Gi (r)|ϕj (r)|2d3r. (11)

Note that νij is simply the effective Coulomb interaction energy
between two electrons at sites i and j , respectively. Finally, the
interaction term from Hamiltonian (1) becomes local and can
be expressed in terms of the matrix elements of the Hartree
potential as

Hint =
∑
i,σ

Uic
†
iσ ciσ ,

Ui =
occ.∑
n

∑
jσ

νij |Anjσ |2. (12)

The usefulness of this method becomes clear if we consider
exploring a large parameter space within a given device
geometry. As long as the geometry of the system remains
fixed, we can change various system parameters, such as
back gate potentials, magnetic fields, and spin-orbit couplings,
while using the same interaction matrix, which is determined
once at the beginning of the calculation. Moreover, since
finite element computational methods can automatically han-
dle unconventional and complicated device geometries, this
method can be applied to devices having arbitrary shape,
with any number of gates, different dielectric materials, and
arbitrary spatial dimensiond. Thus the method described above
is of wide applicability to actual systems of experimental
relevance.

A generalization of this method that explicitly incorporates
the parent superconductor is straightforward. The Hamiltonian
of the hybrid system has the generic form H = H0 + Hint +
HSC + HSM-SC, where the first two terms correspond to the
Hamiltonian in Eq. (1), while HSC models the parent super-
conductor. To preserve the numerical efficiency of the method,
the modeling of the superconductor has to be simple, e.g., HSC

can be a single-band tight-binding model with superconducting
correlations incorporated at the mean-field level through an
on-site pairing potential �0. The last term in the Hamiltonian
describes the coupling between the semiconductor wire and
the superconductor. We note that within this generalization
there are no constraints regarding the coupling strength at
the SM-SC interface, i.e., the method can be applied to
both weak-coupled and intermediate/strong-coupled hybrid

systems. In the generalized scheme, the charge density inside
the SM wire is calculated using the particle components of
the eigenstates of the total Hamiltonian. Explicitly, Eq. (4) is
replaced by

ρ(r ) = −e

occ.∑
n,σ

|unσ (r )|2, (13)

where r is a position vector inside the SM wire and unσ are
the particle components (corresponding to the spin projection
σ ) of the spinor ψn = (un↑, un↓, vn↑, vn↓)T representing an
eigenstate of the full Hamiltonian. Note that, in general, the
eigenstates extent into both the SM wire and the parent SC, but
only the components inside the wire contribute to the charge
density ρ(r ). Finally, Eq. (5) becomes

|un〉 =
∑
j,α

Anjα|j, α〉, (14)

where we have incorporated the spin into the state label,
(n, σ ) → n, to simplify the notation. The remaining steps can
be implemented as described above. In particular, the Green’s
function (7) that provides the solution of the Poisson compo-
nent of the Schrödinger-Poisson problem remains unchanged.
Note that the key difference between the basic scheme and
this generalization is that the explicit treatment of the parent
SC allows one to account for the fact that the low-energy
states have spectral weight inside both the SM wire and the
SC. This is particularly important in the intermediate/strong
coupling regime. The generalized scheme should be used to
calculate key effective model parameters, such as the induced
gap, the Rashba spin-orbit coupling, and the g factor. We
emphasize that (i) these are not independent parameters, but
should be determined self-consistently as functions of the
electrostatic parameters of the system (e.g., work function
difference and gate potentials) and the coupling strength across
the SM-SC interface, and (ii) these parameters can be strongly
position-dependent, particularly near the ends of the wire or
inside tunnel barrier regions, hence it is important to determine
them using a 3D Schrödinger-Poisson scheme (see below,
Sec. II C).

B. Schrödinger-Poisson scheme for infinite nanowires

While using the Green’s function method makes a 3D
Schrödinger-Poisson problem significantly more manageable
(this technique being clearly preferable to the pure brute force
self-consistent approach), a direct 3D calculation may still
be prohibitively costly due to the large number of (relevant)
degrees of freedom. To overcome this challenge, we split the
3D problem into a 2D problem corresponding to an infinite
uniform wire and an effective 1D problem associated with
the actual finite structure. In this section we describe the self-
consistent procedure for solving the 2D Schrödinger-Poisson
problem using the general framework discussed above.

Consider an infinite quasi-1D semiconductor (SM)
nanowire proximity coupled to an s-wave superconductor
(SC). The axis of the wire is oriented along the x direction,
while the finite cross section has a geometry similar to that
shown in Fig. 1, which is the typical experimental setup for
Majorana nanowires. The semiconductor nanowire (e.g., InSb
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εr

ε0

εdielectric

φ = VSC

φ = Vg

R

d

FIG. 1. Typical transverse profile of a Majorana SM-SC het-
erostructure. The SM nanowire (yellow) is partially covered by an
s-wave SC (blue) and placed on an insulating substrate (light red). A
back gate (black) creates a controllable electrostatic potential.

or InAs) is partially covered by an s-wave superconductor
(e.g., Al or NbTiN) and placed on an insulating substrate.
A controllable back gate allows one to change the elec-
trostatic potential across the wire. For clarity and to avoid
cumbersome notations, we restrict ourselves to single-orbital
tight-binding models and we neglect the overlap between
neighboring orbitals, which allows us to use the simplified
version of the Green’s function scheme described above.
However, we emphasize that the approach is generic and can
be directly generalized to the multiorbital case. The noninter-
acting part of the Hamiltonian describing the nanowire has the
form

H∞
0 =

∑
i,j,k,σ

[
tij +

(
h̄2k2

2m∗ + Vi + E0

)
δi,j

]
c
†
ikσ cjkσ

+
∑

i,k,σ,σ
′
�c

†
ikσ (σx )σσ

′ cikσ
′

+
∑

i,k,σ,σ
′
αRk[c†ikσ (σy )σσ

′ cikσ
′ + H.c.], (15)

where i, j ∈ L are position labels in the transverse y-z plane
(i.e., normal to the nanowire direction taken to be the x

direction throughout) and c
†
ikσ creates an electron at position

i with longitudinal wave vector k and spin σ . Note that the
lattice L is only defined inside the SM nanowire. In Eq. (15),
tij are matrix elements for hopping across the wire, h̄2k2

2m∗ (with
m∗ being the effective mass) is the longitudinal component
of the kinetic energy, Vi represents the external potential
at site i arising from the back gate and the work function
difference at the SC-SM interface, and E0 is a reference
energy (determined by the value of the SM band gap and
the possible presence of dopants) that controls the minimum
of the (noninteracting) spectrum for an isolated SM wire. In
the last two terms, � represents the (half) Zeeman splitting
due to a magnetic field applied parallel to the wire, αR is the
Rashba spin-orbit coupling, and σμ (with μ = x, y, z) are Pauli
matrices associated with the spin degree of freedom. Note that
the (infinite) wire has translational invariance in the x direction

and, therefore, k ≡ kx is a good quantum number. Also, we
assume that the SM-SC coupling is weak, which means that
the SC can be treated as (i) a source of Cooper pairs for the
wire (with pairing potential �) and (ii) a boundary condition
for the electrostatic problem. The weak-coupling assumption,
used extensively in the Majorana nanowire literature, enables
one to integrate out all the complications of the underlying
superconductor in terms of a single pairing potential parameter
characterizing the induced proximity effect.

The electrostatic potential Vi has to be calculated by solving
a Laplace equation with boundary conditions determined by
the geometry of the problem and by two key parameters:
the gate voltage Vg and the work function difference at the
interface, VSC (see Fig. 1). We emphasize that, for a given SM
model, the parameters Vg , VSC, and E0 completely determine
the carrier concentration in the nanowire and the transverse
profiles of the wave functions and effective electrostatic po-
tential (which includes the interaction effects at the mean-field
level). Hence the chemical potential of the wire (relative
to, e.g., the bottom of the spectrum), the Rashba coefficient
αR , and the induced pairing potential � are not indepen-
dent parameters (as implicitly assumed in the extensively
used minimal model), but rather functions of Vg , VSC, and
E0, the actual independent parameters of the microscopic
theory.

The interaction effects are incorporated at the mean-field
(Hartree) level by adding to Hamiltonian (15) the term

Hint =
∑
i,k,σ

Uic
†
ikσ cikσ , (16)

where Ui are the matrix elements of the Hartree potential.
These matrix elements are determined by the interaction matrix
(11) and by eigenstates ψnkσ (i) ≡ Ankiσ of the full Hamil-
tonian H∞ = H∞

0 + Hint, where n labels the confinement-
induced transverse modes. Explicitly, we can write the matrix
elements of the Hartree potential in the form

Ui =
occ.∑

n,k,σ

∑
j

νij |Ankjσ |2. (17)

Solving the Schrödinger-Poisson problem for the infinite wire
implies solving Eq. (10) with homogeneous boundary condi-
tions (once) for each lattice site i corresponding to a transverse
section of the wire, calculating and storing the interaction
matrix νij given by Eq. (11), then solving self-consistently the
Schrödinger problem for H∞ = H∞

0 + Hint with the matrix
elements of the Hartree potential being given by Eq. (17).

A few comments regarding the practical implementation of
this scheme are warranted. First, we note that the basis states ϕi

of the tight-binding model are typically unspecified. Moreover,
we often deal with effective tight-binding models defined on
a lattice having a unit cell much larger then the atomic unit
cell of the semiconductor. Hence, ϕi should not necessarily be
regarded as atomic-type orbitals. In such cases, a reasonable
approximation that can be easily implemented numerically
is based on the assumption that the charge associated with
ϕi (r ) is uniformly distributed throughout the unit cell. Second,
we note that, imposing only minor additional restrictions, we
can find an analytic solution of Eq. (10). The main idea is
to solve the Poisson problem in a cylindrical geometry, then
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FIG. 2. (Left) Confinement-induced bands for an infinite wire
with αR = 0 in the absence of an applied Zeeman field (i.e., for
� = 0). (Right) Applying a magnetic field (� �= 0) splits the bands
into pairs of spin subbands (solid lines). The dashed lines represent the
(fictitious) energy dispersion corresponding to � = 0 that is used in
the definition of the effective chemical potential μn. For each band μn

is defined with respect to the minimum (at k = 0) of the corresponding
dashed line. The effective chemical potential of the second band, μ2,
is shown as an example.

use a conformal mapping to obtain the results for, e.g., a
hexagonal wire. The details of this calculation are provided in
Appendix A.

Finally, let us discuss qualitatively the effect of the (mean-
field) electron-electron interaction on the energy spectrum of
the infinite SM wire. A quantitative analysis will follow in
Sec. III. The transverse confinement of the nanowire gives rise
to confinement-induced one-dimensional subbands (hence-
forth referred to as “bands”), as shown in Fig. 2. Here, for
simplicity, we take αR = 0. We define the effective chemical
potential measured relative to the bottom of a given band n

as μn = −E0
n(0), where E0

n(0) is the nth energy eigenvalue
of H∞ corresponding to � = 0 (i.e., no Zeeman field) and
k = 0. In the presence of a Zeeman field, the effective chemical
potential is defined as μn(�) = − 1

2 [E�
n↑(0) + E�

n↓(0)], where
E�

nσ (0) is the energy (at k = 0) of the corresponding spin-split
subband (see Fig. 2). Defining such a quantity can be useful in
the context of Majorana physics, for example, when discussing
the “topological condition,” � >

√
μ2

n + �2, where n is the
topmost occupied band. Note that μn is positive for occupied
bands and negative for empty bands. Neglecting interactions
results in a chemical potential that is independent of the ap-
plied Zeeman field, μn(�) = μn(0) = const. However, due to
interaction effects, the dependence of μn on control parameters
such as the Zeeman field becomes nontrivial. Indeed, turning
on � splits each band into two spin subbands, as shown in
Fig. 2. With increasing �, the higher-energy spin subband
“loses” occupied states, while its lower-energy partner gains
occupied states. The net gain (or loss) is, in general, nonzero,
which implies that the occupation of each band will change and,
consequently, the Hartree potential (17) will change. In turn,
this shifts the effective chemical potential of each band by an
amount δμn(�) that has to be determined self-consistently. We
conclude that applying a magnetic field does not simply split
the bands. Instead, due to interactions, the Zeeman effect has to
be supplemented by band-dependent energy shifts that can only
be determined by solving the Schrödinger-Poisson problem
self-consistently. Hence the effective chemical potential varies

x

y

z

m-1 m m+1

FIG. 3. Schematic representation of the layers (slices) used for
constructing the effective 1D model. A generic site of the 3D lattice is
labeled (i, m), where m is the layer index and i indicates the transverse
position within the layer.

with �, leading to important consequences regarding the
dependence of various low-energy features on the applied
magnetic field.

C. The effective 1D problem for finite systems

Consider a finite nanowire oriented along the x direction
and having a certain transverse profile. We divide the wire
into Nx layers (or slices), each containing N⊥ sites, as shown
schematically in Fig. 3. The corresponding 3D Hamiltonian
has the form

H3D =
∑

i,j,m,σ

t⊥ij c
†
imσ cjmσ +

∑
i,m,n,σ

t‖mnc
†
imσ cinσ

+
∑
i,m,σ

(Vim + Uim)nimσ

+
∑

i,m,σ,σ ′
iαR[c†i(m+1)σ (σy )σσ ′cimσ ′ + H.c.]

+
∑

i,m,σ,σ ′
�c

†
imσ (σx )σσ ′cimσ ′ , (18)

where c
†
imσ creates an electron with spin σ localized near the

site i of layer m, nimσ = c
†
imσ cimσ is the number operator,

t⊥ij and t
‖
mn are intra- and interlayer nearest neighbor hopping

matrix elements, respectively, � is the (half) Zeeman splitting,
and αR is the Rashba spin-orbit coefficient. The electrostatic
effects are described by the external potential Vim and by
the mean-field contribution Uim, which will be determined
self consistently using the generic Green’s function method
discussed in Sec. II A and the procedure described below.
Note that a reference energy E0 that controls the minimum
of the (noninteracting) spectrum for an isolated SM wire [see
Eq. (15)] can be incorporated into Vim.

First, for each layer m we define the following auxiliary
Hamiltonian:

H (m)
aux =

∑
i,j,k,σ

[
t⊥ij +

(
h̄2k2

2m∗ + V
(m)
i + U

(m)
i

)
δij

]
c
†
ikσ cjkσ

+
∑
ikσσ ′

αRkc
†
ikσ (σy )σσ ′cikσ ′ , (19)

where V
(m)
i = Vim. The auxiliary model, which describes an

infinite wire, is defined on a lattice with a transverse profile
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that matches the lattice of layer m, i.e., the local transverse
profile of the original 3D system. Note that, Hamiltonian
(19) represents a specific case of the infinite wire problem
considered in Sec. II B corresponding to an external potential
V

(m)
i = Vim and no Zeeman field, i.e., � = 0. In other words,

the auxiliary Hamiltonian H (m)
aux describes an infinite system

in the presence of a translation-invariant external potential
that matches the local external potential of the actual 3D wire
on layer m. The k-independent transverse components of the
single-particle eigenstates of the auxiliary Hamiltonian have
the form ∣∣ϕm

α

〉 =
∑

j

Sm
αj |j 〉, (20)

where |j 〉 is the local orbital at site j and α is a band
index. Note that the label for the spin degree of freedom has
been suppressed. By convention, the Roman letters i, j, . . .

label (transverse) positions within the wire, as well as the
corresponding local orbitals. On the other hand, the Greek
letters α, β, . . . will be used to designate confinement-induced
bands and the “molecular orbitals” |ϕm

α 〉 associated with the
transverse profile of the corresponding band.

Next, we perform a change of basis in the tight-binding
Hamiltonian H3D, from the local orbitals |jm〉 to the molecular
orbitals |ϕm

α 〉 given (for each layer) by the k = 0 eigenstates
of the auxiliary problem (19). For convenience, we introduce
the “vector” operator c̄ with components c̄� = cimσ labeled by
� = �(m, i, σ ) = 2(m − 1)N⊥ + 2i − 1 + σ . Here, we have
1 � m � Nx , 1 � i � N⊥, and σ =↑≡ 0 or σ =↓≡ 1, so
that the total number of degrees of freedom (which gives
the size of c̄) is 2NxN⊥. Similarly, we label the molecular
orbital basis with ν = ν(m,α, σ ) = 2(m − 1)N⊥ + 2α − 1 +
σ . Using these notation, we rewrite the Hamiltonian (18) in a
more compact (and generic) form as

H3D =
∑
��′

c̄
†
�[t̄⊥��′ + t̄

‖
��′ + (V̄� + Ū�)δ��′ + �̄��′ + ᾱ��′]c̄�′ ,

(21)
where the nonzero matrix elements match the corresponding
quantities from Eq. (18). The structure of these matrices is dis-
cussed in Appendix B. Now let S̄ be the transformation matrix
that generates the desired change of basis. The element S̄ν�

of the transformation matrix corresponding to ν = ν(m,α, σ )
and � = �(m, j, σ ) is given by the coefficient in Eq. (20),
S̄ν� = Sm

αj . Inserting the identity
∑

ν S̄
†
�ν S̄ν�′ = δ��′ in Eq. (21)

and defining the annihilation operator for the molecular orbital,
c̃ν = ∑

� S̄ν�c̄�, leads to

H3D =
∑
νν ′

c̃†ν

[∑
��′

S̄ν�

[
t̄⊥��′ + (

V̄� + Ū aux
�

)
δ��′

]
S̄
†
�′ν ′

]
c̃ν ′

+
∑
νν ′

c̃†ν[t̃‖νν ′ +˜�U νν ′ + �̃νν ′ + α̃νν ′ ]̃cν ′ , (22)

where D̃ = S̄D̄S̄† for all matrices D̄ from Eq. (21). The
potential Ū aux is the mean-field contribution determined self-
consistently by solving the auxiliary problem (19) for each
layer m, i.e., for � = �(m, i, σ ) we have Ū aux

� = U
(m)
i . The

additional term ˜�U = Ū − Ū aux represents the difference

between the mean-field potential Ū calculated self-
consistently for the original 3D problem and Ū aux. Noticing
that the quantity between the square brackets in the first term
of Eq. (22) is nothing but an eigenvalue εν = εm

α of the auxiliary
Hamiltonian (19) for k = 0, we can write the 3D Hamiltonian
in the form

H3D =
∑
νν ′

c̃†ν[ενδνν ′ + t̃
‖
νν ′ +˜�U νν ′ + �̃νν ′ + α̃νν ′]c̃ν ′ .

(23)
So far, we have made no approximation; the physics

described by Eq. (23) is exactly the same as that described by
the original Hamiltonian (18). However, the key point of this
construction is that the low-energy subspace of the original
problem (which is the relevant subspace for understanding
Majorana physics) is well approximated by the low-energy
subspace spanned by a relatively small number no of molecular
orbitals. In other words, we can project the 3D Hamiltonian
onto the low-energy subspace spanned by the molecular or-
bitals |ϕm

α 〉 with α < no. The projection generates the following
effective 1D Hamiltonian

Heff =
∑
m,n,σ

•∑
α,β

t̃
‖
mα,nβc†mασ cnβσ +

∑
m,σ

•∑
α

εm
α nmασ

+
∑

m,σσ ′

•∑
α,β

[
˜�U m

αβδσσ ′ + �(σx )σσ ′δαβ

]
c†mασ cmβσ ′

+
∑

m,n,σσ ′

•∑
α,β

iαmn
αβ (σy )σσ ′c†mασ cnβσ ′, (24)

where m and n label the sites of the (finite) 1D lattice, α and β

designate the molecular orbitals, and the summations marked
by a • symbol are restricted to the lowest energy orbitals, i.e,
α, β � no. The hopping matrix elements t̃

‖
mα,nβ can be written

in terms of the hopping matrix [T ‖]im,jn = t
‖
mnδij between

layers m and n as

t̃
‖
mα,nβ = 〈

ϕm
α

∣∣T ‖∣∣ϕn
β

〉
. (25)

Starting with nearest-neighbor hopping t
‖
mn in Eq. (18) results

in an effective 1D model with nearest-neighbor hopping
t̃
‖
mα,nβ . Note, however, that the hopping matrix elements of the

effective Hamiltonian are, in general, orbital- and position-
dependent. The position dependence and orbital mixing can
be particularly strong at the ends of the wire or inside the
transition regions between a segment of the wire that is covered
by a superconductor and a segment that is not covered (e.g.,
a tunnel barrier region). This behavior is generated by the
transverse profiles (i.e., molecular orbitals) being position-
dependent inside the transition region. Similar considerations
also apply to the spin-orbit coupling term. However, for
a quantitative description of position-dependent spin-orbit
coupling one should start with a more detailed model of the 3D
wire, e.g., using an eight-band Kane-type Hamiltonian, rather
than the simple phenomenological term discussed here. This
is certainly doable, but unnecessary at this stage, as we focus
on the basic ideas of the effective theory. Nonetheless, it is
important to emphasize that, based on the present analysis,
we can conclude that accurate modeling of inhomogeneous
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regions such as, for example, the tunnel barrier region at the
end of a proximitized wire, using effective 1D Hamiltonians
should necessarily involve position-dependent hopping/spin-
orbit coupling and orbital mixing terms, in addition to the
potential barriers that are typically considered in the literature.
This physics of the position dependence is not accounted for
in the usual minimal model of Majorana nanowires.

Calculating the matrix elements ˜�U m
αβ of the mean-field

potential is a straightforward extension of the Green’s function
method discussed in Sec. II A. Let |ψλ〉 be an eigenstate of the
effective Hamiltonian (24). Expanding it in terms of molecular
orbitals, |ϕm

α 〉, then in terms of local orbitals, |jm〉, we have

|ψλ〉 =
∑
m,σ

•∑
α

Aλ,mασ

∣∣ϕm
α

〉 =
∑
m,j,σ

•∑
α

Aλ,mασ Sm
αj |jm〉.

(26)

The interaction matrix νim,jn of the original 3D problem
is determined by solving equations (10) and (11) for the
corresponding system. This encodes the interaction energy
between two electrons occupying the local orbitals |im〉 and
|jn〉, respectively. It is convenient to define the molecular
orbital interaction tensor given by

ν̃ αβγ δ
mn =

∑
i,j

Sαβ,imνim,jnSγ δ,jn, (27)

whereSαβ,im = [S∗]mαiS
m
βi . Note that ν̃ has the same structure as

the interaction tensor (8), with i = j → m and k = l → n. In
particular, the element ν̃ ααγ γ

mn represents the interaction energy
between two electrons occupying the molecular orbitals α on
site m and γ on site n, respectively. Finally, using the results of
Sec. II A, one finds that the matrix elements of the mean-field
potential are given by

˜�U m
αβ =

occ.∑
λ

∑
n,σ

•∑
γ δ

ν̃ αβγ δ
mn Aγ δ

λ,nσ − 〈
ϕm

α

∣∣U (m)
∣∣ϕm

β

〉
, (28)

where Aγ δ

λ,nσ = A∗
λ,nγ σAλ,nδσ and we have subtracted the

matrix elements of the mean-field potential associated with
the auxiliary problem (19).

We conclude this section with a summary of our approach to
the Schrödinger-Poisson problem in semiconductor Majorana
devices. Assume that a finite nanowire described by a 3D
tight-binding model, e.g., the Hamiltonian given by Eq. (18),
is weakly coupled to a superconductor. The first step is to
calculate the external electrostatic potential Vim by solving a
Laplace equation with appropriate boundary conditions. The
result will depend on the geometry of the system, as well as the
applied gate potential Vg (or, more generally, Vg1, Vg2, . . . in
a system with multiple gates) and the work function difference
at the SM-SC interface, VSC. Second, we divide the nanowire
into Nx layers and solve the auxiliary (infinite wire) problem
(19) for each layer, following the self-consistent procedure
described in Sec. II B. The third and final step involves solving
the effective 1D problem (24) self-consistently using the matrix
elements (28) of the mean-field potential. We emphasize that
the properties of the system in the superconducting state are
obtained by solving the Bogoliubov de Gennes (BdG) problem

defined by the Hamiltonian

HBdG = Heff +
∑

n,m,α,β

[〈
ϕn

α

∣∣�ind

∣∣ϕm
β

〉
c
†
nα↑c

†
mβ↓+H.c.

]
, (29)

where �ind(i, j ) is a proximity-induced anomalous term de-
fined at the SM-SC interface. Note that in the presence of
low-energy states (e.g., at finite magnetic fields) the charge
density is always calculated using Eq. (13) [instead of Eq. (4)],
to account for particle-hole mixing. The essence of the approx-
imation involved in this effective theory approach is the ansatz
that the transverse profiles of the low-energy states at a given
location along the wire are similar to the profiles of the low-
energy confinement-induced bands of an infinite wire under
the same electrostatic conditions. The theory includes mode
mixing due to off diagonal terms in the effective Hamiltonian,
which allows for corrections to these profiles. If one includes
enough molecular orbitals into the basis of the effective model,
the low-energy physics of the system is accurately described.
One can systematically check if enough orbitals have been
included by increasing no and monitoring the convergence
of the results (see Sec. IV C). Finally, we emphasize that
both the auxiliary (infinite wire) problem and the effective
1D problem are solved self-consistently. Using the Green’s
function approach reduces the Poisson components of these
problems to the summations in Eqs. (17) and (28), respectively.

III. ELECTROSTATIC EFFECTS IN INFINITE WIRES

In this section, we illustrate the implementation of the
general scheme described above focusing on the infinite
wire case. We address three basic questions: (i) how are the
spectral features (in particular the effective chemical potential)
modified by the presence of an external Zeeman field, (ii)
what is the dependence on the work function difference VSC,
and (iii) how does the effective SM-SC coupling depend
on the back gate voltage Vg? Throughout this section we
consider an infinitely long wire of radius R = 50nm (see
Fig. 1) described by a Hamiltonian H∞ = H∞

0 + Hint given
by Eqs. (15) and (16). The parameters of the model correspond
to an InSb nanowire and we have m∗ = 0.014m0, where
m0 is the bare electron mass, the nearest-neighbor hopping
matrix element tij = −0.083eV, and the relative permittivity
εr = 17.7. The total number of lattice sites corresponding to
the hexagonal cross section of the wire is N⊥ = 1176. In
Sec. III D, we use a smaller lattice spacing corresponding to
tij = −0.453 eV and N⊥ = 2206. For simplicity, we ignore the
spin-orbit coupling (i.e., we set αR = 0), and use the analytical
solution of the Green’s function described in Appendix A,
except in Sec. III D, where we have a Rasba coefficient of
500 meV Å and we find the Green’s function numerically.
The self-consistent Schrödinger-Poisson scheme that we use
is discussed in Sec. II B.

Before addressing the main questions, we make two general
remarks. First, we note that the potential created by the
charge inside the semiconductor is strongly screened by the
superconductor and the back gate. To illustrate this point and
to show the structure of the Green’s function, we calculate the
potential profile created by an infinite line charge placed inside
the nanowire at a position corresponding to the lattice site i,
i.e., we calculate the Green’s function Gi (r ). The results are
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FIG. 4. Normalized potential profiles corresponding to the
Green’s function Gi (r ) generated by an infinite line charge placed
inside the nanowire at a position given by the lattice site i. Placing the
charge in the vicinity of the superconductor (b) results in a strongly
screened potential.

shown in Fig. 4. Note that a charge placed near the middle
of the wire, i.e., far from the SM-SC interface and the back
gate [panel (a)], generates a potential characterized by a spatial
extent much larger than that of a potential created by a charge
in the vicinity of the SM-SC interface [panel (b)]. This implies
that the effect of Coulomb interactions (at the mean-field level)
is significantly reduced due to screening by the SC. The back
gate has a similar effect. Consequently, the spatial profile of
the (occupied) transverse modes is expected to determine the
strength of interaction effects: the effects will be strong if
the charge is located away from the SM-SC and back-gate
interfaces and weak if (most of) the charge is localized in the
vicinity of an interface.

Second, we would like to estimate the importance of
self-consistency in solving the Schrödinger-Poisson problem.
Are fully self-consistent calculations really necessary? This
is obviously important from a practical viewpoint since the
self-consistent procedure is computationally costly even within
our effective theory approach (and hopelessly complicated in a
brute-force direct 3D approach). To address this question, we
compare fully self-consistent calculations with results obtained
by treating electronic interactions within first-order perturba-
tion theory. We note that the first-order perturbation theory
relies on the assumption that the wave functions associated
with different transverse modes are not affected by interactions
(i.e., that they are solely determined by the external fields).
Therefore any discrepancy between the two methods is a
result of the electronic interactions changing the wave function
profiles. Details concerning the perturbative calculations are
given in Appendix C. A comparison between self-consistent
calculations and perturbative results for two different sets of
parameters is shown in Fig. 5. We plot the energy difference
�En between the eigenstates calculated using the two methods
(for the lowest four bands) as function of the applied gate
voltage. To understand the behavior illustrated in Fig. 5,
we note that positive values of VSC, as well as negative gate
voltages Vg , result in the electrons being pushed toward the
SM-SC interface, where the screening by the superconductor
reduces interaction effects. We emphasize that, even in this
situation, the energies of the eigenstates are significantly
renormalized by interactions, but the profiles of the wave
functions are barely affected, as demonstrated by the low values
of �En in Fig. 5 corresponding to this regime. Applying a
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FIG. 5. Energy difference �En between eigenvalues calculated
(i) fully self-consistently and (ii) using perturbation theory as function
of the back gate voltage, Vg . Only the lowest four bands are shown.
The parameters used in the calculations are: (a) VSC = 150 mV, E0 =
100 meV, and (b) VSC = 50 mV, E0 = −10 meV. Note that the energy
scales in the two panels differ by an order of magnitude. The color
code for the bands is black (n = 1), green (n = 2), gray (n = 3),
orange (n = 4). We note that �En is a measure of how strongly the
wave function profiles are affected by interactions.

positive gate potential moves the charge distribution toward the
center of the wire, where the interaction effects are stronger. In
addition, choosing a negative reference energy E0 [see panel
(b)] corresponds to the isolated nanowire being electron-doped,
i.e., having more charge carriers. Increasing the charge density
enhances the strength of interaction effects, including the
interaction-induced change of the wave function profiles. A
second factor that contributes to the enhancement of �En

in panel (b) is a lower value of VSC [as compared to that
used in panel (a)], which diminishes the attraction of electrons
toward the SM-SC interface and reduces screening. As a final
comment, we note that the energy differences in Fig. 5 can
be large on the scale relevant for Majorana physics. Thus, a
perturbation theoretic treatment of Coulomb interaction may
be quantitatively completely unreliable since the subband
energy scale is large compared with the delicate energy scale
associated with the near-zero-energy Majorana physics. Also,
if one is interested in Majorana devices that contain segments
of the wire that are not covered by a superconductor (e.g.,
a tunnel barrier region), one should expect strong interaction
effects, which requires a fully self-consistent treatment.

A. Electrostatic response to an applied magnetic field

We investigate the response of the system to an applied
Zeeman field focusing on the field dependence of the effective
chemical potential. In Sec. II B, we have defined the chemical
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FIG. 6. Dependence of the effective chemical potential on to
applied magnetic field for a system with single-band occupancy. The
solid blue line corresponds to the analytic solution given by Eq. (C5),
while the orange dots are the numerical results of the fully from self-
consistent calculation. The parameters that control the electrostatic
properties of the system are: VSC = 150 mV, E0 = 100 meV, and
Vg = −30 mV.

potential measured relative to the bottom of a given band
n as μn(�) = − 1

2 [E�
n↑(0) + E�

n↓(0)], where E�
nσ (0) is the

energy (at k = 0) of the corresponding spin-split subband (see
Fig. 2). The dependence of μn on the Zeeman field � has been
studied in Ref. [62] based on a perturbative scheme. Here, we
systematically compare the perturbation theory results with the
fully self-consistent calculation. This has a double purpose:
on the one hand it serves as a test ground for the numerical
implementation of our self-consistent scheme and, on the other
hand, it provides a systematic evaluation of the accuracy of the
perturbation theory approach.

We start with a comparison between the chemical potential
calculated fully self-consistently for a system with single
band occupancy and the low magnetic field analytical solution
obtained in Appendix C. We note that Eq. (C5) is valid
in the low-field (high chemical potential) regime, μ1 � �.
The results are shown in Fig. 6. Note that the two methods are
in excellent agreement, suggesting that the transverse profile
of the lowest-energy band is practically independent of the
applied magnetic field. In the light of the general comments
made at the beginning of this section, these results are not
surprising. Indeed, the relatively large (positive) VSC and the
negative gate voltage strongly push the charge toward
the SM-SC interface. Increasing the Zeeman field changes
the occupation of the lowest band, but the effect is too weak to
modify the transverse profile. Note, however, that the energy of
the band (i.e., the effective potential μ1) changes significantly
with the applied Zeeman field.

Next, we consider several cases characterized by different
values of the parameters that control the electrostatic properties
of the system, VSC, E0, and Vg . In Fig. 7, we fix the intrinsic
system parameters VSC and E0 and tune the device from a
regime characterized by single-band occupancy (top panel) to
a regime characterized by three occupied bands (bottom panel)
by changing the applied gate voltage. The self-consistent
and the perturbative results are shown as points and solid
lines, respectively. The wave function profile corresponding
to the highest energy occupied bands are shown in the lower
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FIG. 7. Dependence of the effective chemical potential �n on
the applied Zeeman field field. The difference δμn is defined as
δμn(�) = μn(�) − μn(0). (Top) System with single band occupancy
corresponding to the parameters VSC = 150 mV, E0 = 100 meV,
and Vg = −125 mV. (Bottom) Same system (i.e., VSC = 150 mV,
E0 = 100 meV), but with three occupied bands, which corresponds
to applying a positive gate potential Vg = 75 mV. The dotted and
solid lines are obtained using the self-consistent approach and the
perturbation method, respectively. The gray, green, and black lines
represent the highest energy, middle, and lowest energy bands,
respectively. The corresponding spectra are shown in the upper right
insets, while the wave function profiles of the highest occupied bands
are shown in the lower left insets.

left insets. Note that the effective chemical potential initially
increases with the Zeeman field, until the highest-energy spin
subband is completely depleted. At higher fields, the effective
chemical potential decreases to reduce the amount of the charge
that is added to the system as the low-energy spin subband
“sinks” with increasing �.

The trends revealed by Figs. 6 and 7 can be naturally inter-
preted as corresponding to the intermediate regime between the
constant chemical potential and constant density limits. Indeed,
in the absence of electronic interactions the effective chemical
potential is independent of the Zeeman field. In the opposite
limit, which corresponds to strong interactions, the effective
chemical potential μ1 for a system with a single occupied band
will decrease in a (nearly) one-to-one correspondence with the
(half) Zeeman splitting � to maintain a constant charge density
(so as to minimize the Coulomb energy cost). The situation is
slightly more complicated in the case of multiple occupied
bands. Nonetheless, the results in Fig. 7 show clearly that the
rates of change of the effective chemical potentials with respect
to � are significantly lower than the expected behavior in the
constant density limit.

An important feature in Fig. 7 is the good agreement be-
tween the perturbative results and the self-consistent solutions.
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The agreement is slightly better in the case of a single occupied
band (top panel) primarily due to the wave function profile,
which is very localized near the SM-SC interface, resulting
in a nearly complete screening of the electronic interactions.
By contrast, in the lower panel (i.e., for a system with three
occupied bands), the top band has a significant portion of its
wavefunction near the center of the wire, where screening is
incomplete. As a result, the wave function profile acquires a de-
pendence on the applied Zeeman field and the self-consistency
starts to matter. To clearly see why a discrepancy between the
two methods implies a change in the wave function profile,
recall that within first-order perturbation theory one simply
finds the energy shift by calculating the expectation value of
the perturbation using the unperturbed wave functions. In this
case, the perturbation is generated by the change in the charge
density of each band, δnn(�) = nn(�) − nn(0), due to the shift
δμn(�) in the effective chemical potential of the band caused
by the applied magnetic field, δμn(�) = μn(�) − μn(0). As
shown in Appendix C, the first-order perturbation theory yields

δμn = −e2
occ.∑
n′

Pnn′δnn′ , (30)

where the matrix elements of the reciprocal capacitance,
Pnn′ = 〈ψ0

nkσ |Pn′ |ψ0
nkσ 〉 are calculated using the fully self-

consistent wave functions |ψ�
nkσ 〉 (for arbitrary k and σ ) at � =

0. Hence good agreement between the two methods implies
that |ψ�

nkσ 〉 is, practically, �-independent, while discrepancies
reveal the change of the wave function profile with the Zeeman
field.

To further test these findings, we consider a doped wire
(i.e., E0 < 0) with five occupied bands and a wave function
profile heavily peaked in the middle of the wire. The results are
shown in Fig. 8. The self-consistency is clearly more important
in this case, although for low Zeeman fields the perturbation
theory still provides a reasonably good approximation. In
addition, we note that having two nearly degenerate top bands
results in a second increase of δμn with � (in the low-field
regime) associated with the depletion of a spin-split subband.
We conclude that using perturbation theory with a reciprocal
capacitance matrix Pnn′ calculated (fully self-consistently) at
reference field (e.g., � = 0) provides a very good approxi-
mation over a wide regime of parameters. This result can be
understood in the light of our discussion of the results shown
in Fig. 5. Indeed, the typical values of the Zeeman splitting
are small on the energy scale corresponding to the variation
of the gate voltage in Fig. 5. Hence the wave function profiles
are largely determined by the electrostatic parameters VSC, E0,
and Vg and have a very weak dependence on �. However, we
emphasize again that the perturbative approach itself starts with
a self-consistent calculation of the wave function profiles at a
reference field, e.g., � = 0, and then treats the field dependence
perturbartively.

B. Dependence on the work function difference

A key parameter that controls the electrostatic properties of
the system is the work function difference VSC. Unfortunately,
this parameter is not uniquely determined by the materials of
the heterostructure (i.e., the SM and the SC), as it depends on
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FIG. 8. Dependence of the effective chemical potential on the
applied Zeeman field field, δμn(�) = μn(�) − μn(0), for a doped
wire with VSC = 50 mV, E0 = 10 meV, and Vg = 12.5 mV. The
dotted and solid lines are obtained using the self-consistent approach
and the perturbation method, respectively. The green, black, and gray
lines represent the third, fourth, and fifth energy bands, respectively.
The wave function profile of the highest energy band (lower left inset)
shows that most of the charge is localized away from the interfaces
with the SC and the back gate. Consequently, the agreement between
the fully self-consistent calculation and the perturbative result is
significantly weaker than in Fig. 7.

certain details of the SM-SC interface that, in turn, are deter-
mined by the fabrication procedure, e.g., the exact procedure
used for treating the SM wire surface before depositing the
superconductor [67]. In fact, it is rather difficult to obtain the
interface work function difference experimentally, particularly
at the level of accuracy (better than 1%) relevant for Majorana
physics in nanowires. In particular, there could very easily
be sample-to-sample work function differences for the same
type of SM-SC hybrid structures depending on the fabrication
details. In fact, even within a single sample, there could be
local position dependent variations in VSC along the nanowire
length. Here, we treat VSC as an unknown phenomenological
parameter and determine the dependence of the low-energy
spectrum on this parameter by solving the Schrödinger-Poisson
problem self-consistently.

The results for a doped nanowire with E0 = −10 meV and
two different values of the gate potential are shown in Fig. 9.
First, we note that in the presence of a negative gate voltage
[panel (a)] the slope |�En/�VSC| is approximately 0.5 (i.e.,
of order one) for all low-energy bands and for a wide range of
VSC values. This behavior can be understood in terms of the
charge being pushed toward the SM-SC interface, i.e., being
localized in a region where the effective potential is of the order
of VSC. Changing the sign of the applied voltage [panel (b)]
results in wave functions that are more spread over the cross
section of the wire. However, quite remarkably, for VSC > Vg

most of the low-energy modes still exhibit a strong dependence
on VSC. This dependence becomes weaker when VSC < Vg .
Nonetheless, for positive gate potentials and arbitrary values
of VSC, there are many modes that are predominantly localized
near the SM-SC interface and show a strong dependence on the
work function difference. In addition, there are some modes
that are localized away from the interface, which exhibit a
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FIG. 9. Dependence of the band energies En(k) (for arbitrary
k) on the work function difference VSC for a doped system with
E0 = −10 meV and two different gate potentials: (a) Vg = −75 and
(b) 75 mV. Note that the slope |�En/�VSC| is of the order one (more
specifically, approximately 0.5) over a wide range of parameters.
When VSC < Vg , most of the charge is located away from the SM-SC
interface and the bands depend weakly on VSC (b).

significantly weaker dependence on VSC. These modes are
also expected to have weaker proximity-induced supercon-
ductivity, as discussed below. A major consequence of the
strong dependence on VSC illustrated in Fig. 9 is that weak
inhomogeneities in the work function difference (e.g., due to
the surface treatment of the SM wire) could result in significant
inhomogeneities of the effective potential along the wire. For
example, considering the system from Fig. 9, a 2% variation
of VSC may result in a variation of the effective potential of
the order of 1 meV, which is large (typically, by a factor of
4–10) when compared with the induced gap. We emphasize that
the screening by the superconductor plays no role in reducing
these potential variations. On the other hand, screening by the
charge inside the wire may suppress the inhomogeneity. We
will address this problem in Sec. IV in the context of finite
wires.

C. Effective semiconductor-superconductor coupling

Another property that we investigate in the context of infi-
nite wires is the dependence of the effective SM-SC coupling
on the applied gate potential. This parameter is very important
as it determines the strength of the proximity effect, including
the magnitude of the induced gap. In general, we can define
the effective SM-SC coupling as [68,69]

γ̃ij = tii ′
−1

π
Im

[
G

(SC)
i ′j ′ (0)

]
t∗jj ′ , (31)

where tii ′ are matrix elements for hopping across the SM-SC
interface and G(SC)(ω) is the surface Green’s function of the
parent superconductor. Working within a local approximation
[68,69], we have γ̃ij = γ̃iδij , with γ̃i being nonzero if i labels
a site at the SM-SC interface and zero otherwise. As evident
from Eq. (31), the effective coupling γ̃i is determined by the
hopping across the SM-SC interface and by the surface density
of states of the parent SC. Note that the position-dependent
quantity γ̃i is only defined at the interface and does not contain
all the information necessary for evaluating the strength of the
superconducting proximity effect. Indeed, quantities such as
the induced gap or phenomena such as the proximity-induced
low-energy renormalization [66] are controlled by the band-
dependent effective coupling

γmn = 〈ψm|γ̃ |ψn〉, (32)

where |ψn〉 is an eigenstate of the system associated with
the nth confinement-induced band. For example, in the weak
coupling limit, γnn � �0, a nondegenerate band [66] is char-
acterized by an induced gap �n = γnn�0/(γnn + �0) ≈ γnn.
In general, one would expect the coupling matrix γmn to
be nondiagonal and the diagonal terms γnn to be strongly
band-dependent. Note that the key ingredient in Eq. (32) is the
amplitude of the wave function at the SM-SC interface. In turn,
this amplitude is determined by the electrostatic properties of
the system, in particular by the parameters VSC, E0, and Vg .
Consequently, the strength of the superconducting proximity
effect is expected to be strongly affected by these parameters,
in particular by the applied gate voltage.

To evaluate the dependence of the effective SM-SC coupling
on the applied gate potential we consider two systems charac-
terized by the same position-dependent coupling, γ̃i = γ̃ (i.e.,
independent of i) if i is at the SM-SC interface and γ̃i = 0
otherwise, same work function difference, VSC = 200 mV,
and different reference energies, E0 = 100 and −10 meV,
respectively. The dependence of the corresponding effective
coupling γmn on the applied gate potential is shown in Figs. 10
and 11, respectively. Note that the wire with E0 = 100 meV
has 3–7 occupied bands (top panel of Fig. 10), while the doped
wire with E0 = −10 meV is characterized by a significantly
higher occupancy (9–15 occupied bands). Only the values of
γmn corresponding to the bands closest to the Fermi energy are
shown.

The results in Figs. 10 and 11 reveal three important
features. First, we note that the off-diagonal components of
γmn are significantly smaller than the diagonal components,
except in the regime characterized by large positive values of
Vg . Second, there is a clear trend: the strength of the effective
SM-SC coupling decreases with increasing Vg , i.e., as the
electrons are attracted toward the back gate and away from
the SM-SC interface. The trend is less clear in the system
characterized by high occupancy (see Fig. 11) for Vg > 0.
This is due to the presence of different types of modes, some
localized predominantly near the SM-SC interface and some
away from the interface, as discussed in the context of Fig. 9.
Finally, we note that the magnitude of γnn is about the same
for several low-energy bands within a significant range of
parameters. This result is somehow unexpected, considering
predictions based on simple noninteracting models, and has
direct experimental implications. Specifically, in a system
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FIG. 10. (Top) Energy eigenvalues as a function of the applied
gate potential for a system with VSC = 200 mV and E0 = 100 meV.
(Bottom) Dependence of the normalized effective SM-SC coupling
matrix, γmn(Vg )/γ11(−150), on the gate voltage, Vg , for the four
lowest energy bands (n,m = 1, . . . , 4). The solid and dashed lines
represent diagonal matrix elements and off-diagonal elements of the
form m = n − 1, respectively. Note that all diagonal elements have
similar magnitudes, while the off-diagonal elements are negligible,
until Vg becomes comparable to VSC.

with multiband occupancy (a class which probably includes
all experimental nanowires), the existence of (significantly)
different values of the band-dependent coupling γnn should
lead to the observation of different proximity-induced gaps.
By contrast, similar band-dependent couplings will lead to
the observation of a single proximity-induced gap, unless a
high-resolution measurement of the induced-gap features is
possible. The results in Figs. 10 and 11 are consistent with the
second (i.e., single-gap) scenario. Of course, a more detailed
study of the specific experimental setup is necessary in order to
gain complete understanding of any given device. In particular,
the possibility of distinct band-dependent proximity gaps in
SM-SC hybrid systems cannot be ruled out a priori.

D. Proximity-induced gap in the intermediate coupling regime

So far, our analysis has focused on the weak coupling regime
characterized by γmn � �0. In this section, we consider
the situation when the effective SM-SC coupling is comparable
with the (bulk) superconducting gap, i.e., the intermediate
coupling regime. As mentioned at the end of Sec. II A, our
scheme is applicable to the intermediate and strong coupling
regimes, but the parent superconductor has to be included
explicitly. To illustrate the implementation of our effective
theory method, we consider an infinite wire proximity-coupled
to a thin SC layer, as represented schematically in Fig. 1, and
we calculate the dependence of the induced SC gap on the
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FIG. 11. (Top) Energy eigenvalues as a function of the applied
gate potential for a system with VSC = 200 mV and E0 = −10 meV.
(Bottom) Dependence of the normalized effective SM-SC coupling
matrix, γmn(Vg )/γ10 10(−150), on the gate voltage, Vg , for the energy
bands closest to the Fermi energy (n,m = 10, . . . , 13). The solid
and dashed lines represent diagonal matrix elements and off-diagonal
elements of the form m = n − 1, respectively. Note that all diagonal
elements have similar magnitudes, while the off-diagonal elements
are negligible, until Vg becomes comparable to VSC.

applied gate potential Vg . The calculation is done for a wire
of thickness 2R = 100 nm, with a 10-nm superconducting
shell, and a dielectric of thickness d = 30 nm. The parent
superconductor is described (at the mean-field level) by the
BdG Hamiltonian

HSC =
∑

i,j,k,σ

[
tSC +

(
h̄2k2

2m∗
SC

− μSC

)
δij

]
a
†
ikσ ajkσ

+�0

∑
i

(a†
ik↑a

†
i−k↓ + H.c.), (33)

where a
†
ikσ is the creation operator for an electron with spin σ

and longitudinal wave vector k occupying the (transverse) site
i of a triangular lattice with lattice constant a = 2 nm, tSC =
7.93 meV is the nearest-neighbor hopping (which corresponds
to an effective mass m∗

SC = −0.8m0), μSC is the chemical
potential, and �0 = 0.3 meV is the SC pairing. Note that μSC

is set near the top of one of the confinement-induced bands, so
that the Fermi surface of the SC represents a large hole pocket,
similar to the Fermi surface of Al (in the second Brillouin
zone). The parent SC is coupled to the SM wire through a
coupling term of the form

HSM-SC = −t̃
∑

〈i,j〉,σ
(a†

ikσ cjkσ + c
†
jkσ aikσ ), (34)
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FIG. 12. Low-energy spectrum of the hybrid SM-SC system in
the superconducting state at zero magnetic field. The color scheme
reflects the weight of a state in the superconductor: dark modes
(which are almost invisible) represent SC states, while bright modes
are weakly hybridized SM states. Note that the induced gap is
band-dependent, but has comparable values for different bands. The
electrostatic parameters are: VSC = 200 mV, E0 = 100 mV, and
Vg = −210 mV.

with 〈i, j 〉 being nearest-neighbor sites located on the two sides
of the SM-SC interface and t̃ = 108.86 meV is the hopping
across the interface. The SM wire is described by a Hamil-
tonian having the noninteracting part given by Eq. (15) with
nearest-neighbor hopping t = −453.6 meV (corresponding to
an effective mass m∗ = 0.014m0) and a spin-orbit coupling
coefficient of 500 meV Å. The Schrödinger-Poisson problem
defined by the total (BdG) Hamiltonian H = H0 + Hint +
HSC + HSM-SC is solved using the generalized scheme de-
scribed in Sec. II A. In particular, the charge density in the wire
is calculated in the presence of (induced) superconductivity
using Eq. (13).

We emphasize again that the brute-force approach is rather
costly. For example, in our calculation a cross section of
the hybrid system has a total of N⊥ = 2206 sites, which
implies that the BdG Hamiltonian has 4N⊥ degrees of freedom
for each value of the wave vector k. This number could
increase dramatically if we consider a smaller lattice spacing
or a multiorbital tight-binding model. To efficiently address
this problem, we implement our effective theory scheme by
projecting onto a low-energy subspace defined by a certain
energy window �E (in the calculation �E ≈ 200 meV) and
by constructing an effective low-energy Hamiltonian similar to
that defined by Eq. (24). In our calculation the dimension of the
low-energy (BdG) subspace is 550, i.e., about 16 times smaller
than the dimension of the full Hilbert space. We note that, in
principle, the low-energy subspace is k-dependent. However, a
low-energy basis calculated for a given value of k (e.g., k = 0)
can be shown to be a good basis over a finite range of k values,
so that in practice the projected subspace has to be determined
only for a few different wave vectors.

The results obtained by solving the effective BdG problem
self-consistently are shown in Figs. 12 and 13. First, we note
that the hybridization between SM states and states from the
superconductor is band dependent, as reflected by the color
scheme in Fig. 12. In addition, the modes with a higher

FIG. 13. Dependence of the induced gap � on the applied gate
potential. The induced gap increases relatively smoothly as the gate
voltage becomes more negative, which pushes the electrons from the
wire toward the SM-SC interface. We note that � is correlated with
the weight WSC of the weakest hybridized band.

weight inside the SC (i.e., larger WSC) are characterized by
larger values of the induced gap. However, it is important
to emphasize that the band-dependent induced gap �n has
comparable values for different bands, which is consistent with
the results of Sec. III C. This property will not hold for systems
with more symmetry (e.g., rectangular wires), as SM states
with a given quantum number corresponding to the transverse
direction parallel to the interface will only couple with SC
states with the same quantum number, which may not be
available at low energy. This reveals the key importance of
incorporating the details of the geometry into the model and the
critical need for an efficient approach—like the one proposed
in this work—to address the resulting numerical complexity.
Next, we define the induced gap of the proximitized wire
as � = Min(n)[�n]. The dependence of � on the applied
gate potential is shown in Fig. 13. Note that the induced
gap decreases (relatively smoothly) as the potential becomes
less negative, i.e., as the SM states are less confined near
the SM-SC interface and hybridize less with states from the
superconductor. Of course, the induced gap also depends on
the SM-SC coupling t̃ and on the electrostatic parameters VSC

and E0, but a systematic investigation of this parameter space
is beyond the scope of this proof-of-concept calculation.

IV. ELECTROSTATIC EFFECTS IN FINITE WIRES

In this section we illustrate the implementation of our
general scheme for solving the Schrödinger-Poisson problem
for finite systems by constructing the effective 1D model
described in Sec. II C. As proof-of-concept examples, we
consider two problems that play a major role in understanding
the significance of recent experimental observations on SM-
SC Majorana structures: (i) the Majorana energy splitting
oscillations and (ii) the emergence of trivial low-energy states
(i.e., generic low-energy nontopological Andreev bound states)
in inhomogeneous Majorana wires. In addition, we investigate
the convergence of our effective theory scheme and show that
the low-energy projection is a well-controlled approximation.
Throughout this section we consider a finite wire of radius
R = 50 nm (see Fig. 1), length L = 2μm, and unit cell
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length in the direction parallel to the wire ax = 10 nm, which
corresponds to dividing the wire into Nx = 200 layers. Each
layer contains N⊥ = 1176 sites. The parameters are again
taken to correspond to an InSb nanowire with m∗ = 0.014m0

and relative permittivity εr = 17.7, while the Rashba spin-orbit
coupling coefficient is set to αR = 250 meV Å. We note that
an analytical solution for the Green’s functions is not possible
due to the broken translation symmetry. For this reason, the
Green’s functions are calculated numerically using the finite
element analysis software package FENICS [70].

The results presented in the first two subsections are
obtained using the method described in Sec. II C with a few
additional simplifications. First, we neglect all the terms in the
effective Hamiltonian (24) that are off-diagonal in molecular
orbitals. Explicitly, we set t̃

‖
mα,nβ =˜�U m

αβ = αmn
αβ = 0 for

α �= β. Although naively one may expect different bands
to be decoupled, in general they are not, due to mixing
terms introduced by the mean-field fluctuations ˜�U m

αβ , by
the proximity-induced band coupling �αβ , and by intrinsic
inhomogeneities (e.g., the presence of a barrier region at
the end of the wire), which lead to spatial variations of the
transverse profiles and generate off-diagonal hopping, t̃

‖
mα,nβ

and spin-orbit coupling, αmn
αβ . The last two sources of band

mixing can be neglected assuming weak coupling to the parent
superconductor and weak inhomogeneity. Understanding the
role of the off-diagonal mean-field fluctuations deserves a sep-
arate study. Neglecting band mixing leads to a simplification
of Eq. (28), which becomes

˜�U m
αα =

occ.∑
λ

∑
n,σ

•∑
β

ν̃ αβ
mnA

ββ

λ,nσ − 〈
ϕm

α

∣∣U (m)
∣∣ϕm

α

〉
, (35)

where we use the notation ν̃
αβ
mn = ν̃

ααββ
mn .

Another simplifying assumption is that the interaction
matrix between two layers dependents only on the distance
between them, ν̃

αβ
mn = ν̃

αβ

|m−n|. In other words, the 3D Green’s
function for a given site i inside layer m is assumed to be the
same as the Green’s function of corresponding site in layer
n, up to an overall shift by (n − m)ax . This approximation
neglects the edge effects, but reduces the number of Green’s
functions that need to be calculated by a factor of Nx . However,
we expect the edge effects to be small because of the strong
screening provided by the SC and back gate. Indeed, the tensor
elements ν̃

αβ

|m−n| decay rapidly as a function of |m − n|, as
shown in Fig. 14. Notice the nearly exponential decay, which
implies that the interaction tensor elements become negligible
over distances corresponding to a few layers (i.e., lattice sites of
the effective 1D model). This demonstrates that approximation
ν̃

αβ
mn = ν̃

ααββ
mn is accurate everywhere, except the very edge of

the wire. Also note that the diagonal and off-diagonal elements
in band space are of the same order. Consequently, charge
fluctuations in one band will have a large effect on the other
bands through the mean-field interaction term. We note that the
simplifying assumption ν̃

αβ
mn = ν̃

αβ

|m−n| will manifestly break
down if we are interested in the electrostatic properties of a
tunnel barrier region (or any other type of strong inhomogene-
ity). In this case, the full interaction tensor has to be calculated
for the barrier region; the simplifying assumption is still valid
inside the (homogeneous) proximitized segment of the wire.

FIG. 14. Decay of the molecular orbital interaction tensor as
function of distance, |m − n|, for a system with VSC = 200 mV, Vg =
0, and E0 = 100 meV. The solid orange and blue lines correspond
to the elements ν̃

1,1
|m−n| and ν̃

3,3
|m−n|, respectively. The dashed gray line

represents the element ν̃
1,3
|m−n|. Note that the interaction tensor decays

nearly exponentially, with similar characteristic length scales for all
elements. The elements that are not shown in the figure have a similar
behavior.

The final simplification involves the construction of the
auxiliary Hamiltonian (19) for systems with inhomogeneous
electrostatic boundary conditions along the wire. We assume
that the inhomogeneity is weak (in practice we consider a 1%
variation of VSC) and we construct the auxiliary Hamiltonian
using the local boundary conditions, instead of the local elec-
trostatic potential. More specifically, we construct V

(m)
i as the

potential of an infinite wire problem with boundary conditions
given by the local boundary conditions, i.e., VSC(max ) and
Vg , of the full 3D device. Note that, ideally, one has to solve
the Laplace equation for the whole 3D devices and obtain
the electrostatic potential Vim, then construct the auxiliary
Hamiltonians for each layer using V

(m)
i = Vim. However,

if the variations in the boundary conditions are small, we
expect the two constructions to produce similar results, the
only significant difference being the presence of spurious
discontinuities in the approximate construction in regions
where the boundary conditions change abruptly. Taking into
account all the simplifications discussed above, the effective
1D Hamiltonian (24) becomes

Heff =
∑
m,n,σ

•∑
α

t‖mnc
†
mασ cnασ

+
∑

m,n,σσ ′

•∑
α

[iαR (σy )σσ ′ + �(σx )σσ ′δmn]c†mασ cnασ ′

+
∑
m,σ

•∑
α

[
εm
α +˜�U m

αα

]
nmασ , (36)

where t
‖
nn = 2t‖, while the off-diagonal elements are t

‖
mn =

−t‖ if m and n are nearest neighbors and zero otherwise. Note
that the last term in Eq. (36) can be viewed as an orbital- and
position-dependent effective potential,

V α
eff (m) = εm

α +˜�U m
αα. (37)
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We emphasize that the study of the convergence of our low-
energy effective scheme in Sec. IV C does not involve any
simplifying assumption.

A. Majorana energy splitting oscillations

In finite wires, the Majorana modes localized at the opposite
ends of the system will, in general, acquire finite energy as
a result of the hybridization generated by the (exponentially
small) wave function overlap [26,71,72]. This energy splitting
is characterized by an oscillatory behavior determined by the
Fermi wave vector of the top occupied band [71]. Detecting
correlated energy splitting oscillations at the opposite ends
of the wire was proposed as a smoking gun test for the
experimental confirmation of the Majorana modes [73]. This
feature has never been observed in experimental systems in
spite of concerted efforts. An important question concerns the
electrostatic environment associated with such a measurement.
Consider, for example, that our control parameter is the
Zeeman field, which is varied within a certain range. Assuming
a constant chemical potential results in a clear oscillatory
behavior, while constant density will strongly suppress the
splitting oscillations [73]. In Sec. III A, we have shown that
the actual response of the system to an applied Zeeman field
corresponds to the intermediate regime between the constant
chemical potential and constant density limits.

Here, we go one step beyond the analysis done in Sec. III A,
in the sense that we do not simply consider the dependence
of the (effective) chemical potential on the applied Zeeman
field, but calculate the local effective potential that is generated
by the, generally nonuniform, charge distribution along the
wire. In other words, we explicitly take into account the fact
that the mean-field interaction ˜�U m

αα is position-dependent
and evaluate the effect of this position-dependent mean-field
contribution on the Majorana energy splitting oscillations.
The position dependence of the effective potential defined by
Eq. (37) corresponding to the top occupied band of a 2μm long
wire is shown in Fig. 15 for two different sets of parameters.
The overall increase of the effective potential with the applied
Zeeman field can be easily understood based on the results
for infinite wires discussed in Sec. III A. Indeed, defining
the variation of the effective potential with � as δV α

eff (m) =
V α

eff (m)|
�

− V α
eff (m)|0, we have δV α

eff (m) ≈ −δμα (�) for all
sites m that are sufficiently far away from the ends of the
wire. Since δμα (�) decreases with the applied Zeeman field (as
shown, for example, in Fig. 7) the effective potential increases
with �. A more subtle feature, which cannot be captured by
the infinite wire result, are the oscillations of the effective
potential that can be clearly seen in Fig. 15. These oscil-
lations are related (through the mean-field interaction term)
to the Friedel oscillations of the charge density generated by
the presence of the wire ends. Consequently, the periods of
these oscillations are determined by the Fermi wavelengths
of the occupied bands.

As discussed in Sec. III A, upon increasing the Zeeman field
the occupancy of the low-energy spin-subband corresponding
to the top occupied band increases, which results in an overall
increase of the number of electrons in the system. Interactions
tend to moderate this increase by lowering the effective
chemical potential (or, equivalently, increasing the effective

FIG. 15. Position dependence of the effective potential (37) corre-
sponding to the top occupied band (N) for different values of the model
parameters corresponding to one (top) or three (bottom) occupied
bands. (Top) VSC = 150 mV, Vg = −125 mV, and E0 = 100 meV.
(Bottom) VSC = 200 mV, Vg = −135 mV, and E0 = 100 meV. The
Zeeman fields in the bottom panel match those indicated in the top
panel. The large period oscillations (see both panels) are associated
with the Fermi wavelength of the top occupied band, while the small
period oscillations (bottom) are associated with the Fermi wavelength
of the lower occupied bands.

potential Veff ). This is illustrated in Fig. 16, which shows a
comparison between the dependence of the (band) occupation
number �nα = nα (�) − nα (0) on the applied Zeeman field for
an interacting system and the dependence of �nα on � in the
absence of the mean-field term˜�U . Note that the occupation
of the top band is higher in the noninteracting system (orange
lines) as compared to the interacting system (blue lines). The
steplike features correspond to occupying the top band with an
additional electron; going from one step to the next changes
the parity of the top (Majorana) band and is associated with a
node in the low-energy spectrum, as shown in Fig. 17.

The effect of interactions on the Majorana splitting oscil-
lations is twofold, as evident from Fig. 17. On the one hand,
in the interacting system the period of the splitting oscillations
is larger than the oscillation period of the noninteracting wire.
This is a direct consequence of the fact that, in the presence of
interactions, the effective chemical potential decreases with �

(i.e., Veff increases), instead of being constant (as it is the case
in the noninteracting system). This effect was also discussed
in Ref. [62]. On the other hand, the presence of interactions
pins the Majorana mode to zero energy over finite intervals
of Zeeman fields. This behavior, which is in contrast with the
typical zero-energy crossings that characterize noninteracting
system, is similar to the zero-energy pinning reported in
Ref. [63]. However, in our calculation the effect is not due to
interactions with bound charges in the dielectric surroundings,
as the dielectric was neglected in this particular calculation
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FIG. 16. Band occupation number �nα as function of the applied
Zeeman field � for a system with the same parameters as in Fig. 15.
The orange (light gray) lines correspond to the top occupied bands
of a noninteracting system (i.e., a system modeled by an effective
Hamiltonian with˜�U m

αα = 0) with N = 1 (top) and N = 3 (bottom)
occupied bands. The occupation numbers of the interacting system
are shown in blue (dark gray). Note that the increase of �nα with
� (for the top band) is moderated by interactions. The lines with a
negative slope in the bottom panel show the change in occupation of
the two lowest energy occupied bands for N = 3. This allows the top
band to accommodate more charge than in the singly occupied system
(but still less than the noninteracting wire).

(since it is nonessential for Majorana considerations), but it is
the direct result of (mean-field) electron-electron interactions.
Note, that this treatment does not incorporate exchange con-
tributions, which could be important in the case of low-energy
localized states (see below). Nonetheless, it is essential to per-
form a position-dependent self-consistent calculation, rather
than accounting for the interaction effects through a uniform
field-dependent chemical potential (of effective electrostatic
potential), which does not capture the pinning behavior. This
simple example clearly illustrates the importance of being able
to tackle the 3D Schrödinger-Poisson problem, which makes
the scheme proposed in this article highly relevant. Since the
predicted nonlocal correlated Majorana splitting oscillations
have never been observed experimentally, our finding of the
self-consistent Coulomb interaction effect within the wire itself
leading to the possible suppression of such oscillations should
be taken seriously and further investigated using realistic
sample parameters.

We conclude this section with a comment on the importance
of including exchange contributions in our scheme. In general,
there are two types of problems that should be addressed
within a self-consistent Schrödinger-Poisson approach: (i)
finding the effective electrostatic potential inside the SM wire
(e.g., the confinement potential in a 2D electron gas structure,
or the tunnel barrier potential) and/or the parameters that
depend directly on this potential (e.g., the Rashba coefficient,
the g factor, and the pairing potential) and (ii) calculating the
dependence of low-energy subgap states (e.g., Majorana modes
and Andreev bound states) on relevant control parameters (e.g.,
magnetic field). The first class of problems involves energy
scales of the order eV (or higher). In this case, using the
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FIG. 17. Low-energy spectrum as function of the applied Zeeman
field for an interacting system (solid blue lines) and a noninteracting
system (dashed orange lines). Both systems are described by the same
effective Hamiltonian (36), but the noninteracting system has˜�U m

αα .
The electrostatic parameters are the same as in Fig. 15, i.e., VSC =
150 mV, Vg = −125 mV, E0 = 100 meV for the top panel and VSC =
200 mV, Vg = −135 mV, E0 = 100 meV for the bottom panel. The
presence of interactions has two effects: (i) it enhances the period of
the oscillations and (ii) it expands the zero-energy crossing points into
finite zero-energy segments.

Hartree approximation described in this work is expected to
accurately capture the relevant physics. On the other hand,
the second class of problems involves sub-eV energy scales
and a proper treatment (even at a qualitative level) requires
more refined approximations. Fortunately, our scheme can
be easily generalized to incorporate exchange and correlation
contributions, in the spirit of the local-density approximation
(LDA). The detailed implementation of these corrections will
be described elsewhere. Here, we only illustrate the main idea,
focusing on the self-interaction contribution to the Hartree
potential. First, we note that for finite-energy delocalized states
the self-interaction contribution (i.e., the interaction energy of
an electron occupying such a state with itself) is small and
has about the same value for all states. Consequently, we can
neglect this contribution, or include it as a state-independent
correction to the interaction term. By contrast, self-interaction
could represent a significant contribution in the case of low-
energy localized states, such as the Majorana bound states. To
eliminate it from the effective potential of the bound states, we
solve two Schrödinger equations, one for the localized state
and the other for the delocalized states

(
H1 + U 0

int

)
ψ0 = E0ψ0,

(H1 + U ∗
int )ψn = Enψn, (38)
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where H1 is the noninteracting BdG Hamiltonian of the hybrid
structure (including the interactions with external fields), while
U 0

int and U ∗
int are the mean-field Coulomb potentials for the

localized and delocalized states, respectively. Explicitly, we
have

U 0
int (r ) = −e

occ.∑
n

∫
d3r ′[G(r, r ′)

− δn0G0(r, r ′)]|un(r ′)|2,

U ∗
int (r ) = −e

occ.∑
n

∫
d3r ′G(r, r ′)|un(r ′)|2

+ e

�

∫
d3r ′G0(r, r ′),

where G is the Green’s function that satisfies the boundary
conditions imposed by the electrostatic environment and G0 is
the Green’s function for free space. The terms containing G0

represent the self-interaction contributions. For the delocalized
states, we approximated this contribution with the energy of a
charge −e uniformly distributed over the volume � of the wire.
The Schrödinger equations (38) together with the equations for
the mean-field Coulomb potentials are solved self-consistently.
Note that for problems involving multiple low-energy localized
states (ν = 0, 1, . . . ) the corresponding set of equations should
be appropriately expanded. Also, note that the effective poten-
tials Uν

int can incorporate exchange-correlation contributions.
The actual relevance of these corrections will have to be
determined using realistic system parameters. Since exchange-
correlation corrections account for detailed quantitative effects
(which perhaps may be necessary for a quantitative comparison
with the experimental data, although not all the relevant model
parameters corresponding to experimental nanowires can actu-
ally be known, making such a comparison quite challenging),
they are unlikely to affect the general formalism described here
and the qualitative conclusions established in the current work.
We leave the inclusion of these details to future work, as an
extension of the current formalism.

B. System with an inhomogeneous effective potential

The emergence of trivial low-energy states in systems with
nonuniform parameters [25–29,31,32] and in wires coupled to
a quantum dot [34] has been discussed extensively in recent
years. It was recently argued [33–35] that in certain conditions
these low-energy trivial states cannot be distinguished from
“true” Majorana zero modes localized at the ends of the
wire using any type of end-of-the-wire local measurement.
However, a major question concerns the very possibility of an
effective potential inhomogeneity in the active (i.e., proximi-
tized) segment of the wire that has a length scale large-enough
to support stable low-energy trivial modes. After all, the strong
screening due to the parent superconductor suppresses the
interaction matrix elements over characteristic length scales
of the order of tens of nanometers, as demonstrated by the
calculations shown in Fig. 15. In this section, we show that
such long length scale inhomogeneities are, indeed, possible
in systems with nonuniform work function difference, i.e.,
systems with a position-dependent VSC.
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FIG. 18. Position dependence of the effective potential corre-
sponding to the top occupied band for a system with parameters
similar to Fig. 15: VSC = 150 mV, Vg = −125 mV, E0 = 100 meV
(top) and VSC = 200 mV, Vg = −135 mV, E0 = 100 meV (bottom).
A 1% variation of VSC is assumed over a 0.3 μm segment at the left
end of the wire (see the red dashed line). The Zeeman energies in the
bottom panel match those in the top panel.

Consider a 2-μm-long SM nawire proximity coupled to a
superconductor and assume that a 0.3-μm-long segment at the
left end of the wire has a 1% variation of the work function
difference VSC, as shown in Fig. 18. This variation could be
the result of the procedure used for treating the SM wire
surface before depositing the superconductor. Applying our
self-consistent scheme, results in a position-dependent effec-
tive potential V α

eff (m) that has significantly different (average)
values inside the two segments of the wire (i.e., x < 0.3 μm
and x > 0.3 μm, respectively), as shown in Fig. 18 for two sets
of parameters. We emphasize that the screening by the parent
superconductor plays no role in suppressing the variation
of the effective potential. On the other hand, increasing the
occupation of the top band (e.g., by increasing the Zeeman
field) reduces the difference between the (average) values of
the effective potential inside the two segments. This can be
understood in terms of the position-dependent charge density
shown in Fig. 19. Indeed, as charge accumulates in region
I (x < 0.3 μm), the local mean-field contribution given by
Eq. (35) increases and the difference between the (average)
effective potentials in regions I and II (x > 0.3 μm) gets
smaller. We note, however, that having additional occupied
bands (see lower panel in Fig. 18) does not affect significantly
this mechanism, as the charge associated with those low-energy
bands is more or less evenly distributed along the wire.

The expected consequence of having a nonuniform effective
potential is the emergence of trivial low-energy states. This is
illustrated in Fig. 20, which shows the low-energy spectrum
of a system with the same parameters as in Fig. 18. For
comparison, we also plot the spectrum for a noninteracting
system obtained by neglecting the mean-field term ˜�U m

αα

in the effective Hamiltonian (36). First, we note that, as
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FIG. 19. Particle density as a function of position for the system
with single-band occupancy (top panel in Fig. 18). Increasing the
Zeeman field adds more charge to the system; for � < 0.66 meV,
the charge accumulates in region I (x < 0.3 μm), while for � >

0.66 meV, the additional charge starts to leak into region II (x >

0.3 μm). Note that � = 0.41 meV corresponds to a trivial zero mode,
while � ≈ 0.66 meV represents the critical field associated with the
topological quantum phase transition, as shown in the top panel of
Fig. 20.

expected, the effective potential inhomogeneity generates triv-
ial low-energy states. These states are already present in the
noninteracting system with N = 1 (see the dashed orange lines
in the top panel of Fig. 20). For N = 3 (bottom panel), the
noninteracting trivial mode has a sizable gap, but this could
be reduced by fine tunning some parameters (e.g., the gate
potential Vg). What is more important is that including the
interaction effects (at the mean-field level) not only does not
eliminate the trivial low-energy modes, but stabilizes them. For
N = 1 (top panel), the zero-energy crossing points are replaced
by a finite field range over which the mode is pinned at zero
energy. In the N = 3 case (bottom panel), the noninteracting
gap collapses and the trivial mode goes all the way to zero
energy. We note that one can easily obtain more “spectacular”
trivial modes that are pinned to zero energy over a significant
range of Zeeman fields by increasing the size of region I (i.e.,
the length scale of the potential inhomogeneity). However,
our main point is that such long-range inhomogeneities can
exist within reasonable assumptions (e.g., a 1% variation of
the work function difference, which almost seems inevitable
in a generic experimental situation) and have to be taken
seriously. A second important result is that pinning to zero
energy of trivial low-energy modes is enhanced by interac-
tion effects. In the light of these findings, a detailed study
of the low-energy physics generated by the presence of a
quantum dot at the end of the wire within the framework
developed in this paper is well-warranted. Earlier work on
Majorana wires coupled to quantum dots [34,35] ignores
self-consistent Coulomb effects. This study suggests that the
realistic situation (which is characterized by the presence of
self-consistent Coulomb interaction effects) could be even
worse that earlier predicted in terms of the indistinguishability
between trivial Andreev bound states and topological Majorana
modes.
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FIG. 20. Low-energy spectrum as function of the applied Zeeman
field for a system with the same parameters as in Fig. 18. The
spectrum of the interacting model corresponds to the full (blue) lines;
for comparison, we also show the noninteracting spectrum (orange
dashed lines) obtained by neglecting the mean-field term ˜�U m

αα in
the effective Hamiltonian (36). Note the topological quantum phase
transition signaled by the minimum of the bulk quasiparticle gap. The
Majorana splitting oscillation associated with the topological regime
have features similar to those discussed in Sec. IV A. A low-energy
mode that sticks to zero over a finite range of � emerges in the trivial
regime as a result of the effective potential inhomogeneity.

C. Convergence of the effective theory scheme

In this section, we address the key question regarding
the accuracy of the effective theory scheme proposed here:
how large are the errors generated by the projection onto
the low-energy space spanned by the molecular orbitals and
how can one systematically reduce them? We start from the
basic observation that including all molecular orbitals (i.e., all
transverse bands) provides the exact (mean-field) solution of
the original tight-binding problem. Consequently, addressing
the above question implies studying the convergence of the
results as the number no of molecular orbitals included in
the low-energy basis increases. Considering, for example, the
energies En of the eigenstates, we have a well-controlled
scheme if (i) the errors δEn decrease monotonically with no

and (ii) the maximum error in the energy of the occupied states
can be made much smaller than some relevant low-energy scale
(e.g., the induced gap) by including a relatively small number
of molecular orbitals, no � N⊥. To test whether or not our
scheme satisfies these requirements, we consider a strongly
nonuniform hybrid system consisting of a finite nanowire
of length L = 0.8 μm having a 400 nm segment covered
by a superconductor with VSC = 150 mV, while the other
half is uncovered. A potential gate with V SC

g = −30 mV is
placed under the proximitized segment, while another gate with
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FIG. 21. (Top) Energy En of the nth low-lying state for a nonin-
teracting effective Hamiltonian with no molecular orbitals in the basis.
The shaded region corresponds to the occupied states. For no > 13,
the result is practically indistinguishable from that corresponding to
no = 13. (Bottom) Dependence of the “effective potential” εm

α [see
Eq. (24)] on the position along the wire for a noninteracting system.
The segment 0 < x < 400 nm is covered by a SC, while the rest of the
wire is uncovered. Three back gates with different applied potentials
are present, as described in the main text.

V b
g = 300 mV extending from x = 400 nm to x = 550 nm acts

as a potential well at the end of the superconducting region.
Finally, a potential gate with V u

g = 170 mV is placed under
the rest of the uncovered segment, 550 < x < 800 nm.

First, we consider a noninteracting problem and construct
the effective 1D Hamiltonian (24) by solving the auxiliary
problem (19) without including the mean-field contribution
U

(m)
i , i.e., by solving the Laplace equation for the external

potential Vim with boundary conditions given by VSC and the
gate potentials. We also neglect the mean-field contribution
˜�U in Eq. (24). The energies En of the low-lying states
obtained by considering orbital bases of increasing dimension
are shown in the top panel of Fig. 21. The results satisfy the con-
ditions discussed above, i.e., the errors decrease monotonically
with no and the energies of the occupied states are practically
converged (i.e., |δEn| � 1 meV) for no > 13, which is about
two orders of magnitude smaller than the total number of bands,
N⊥ ∼ 103. Note that we have done calculations for larger
values of no to verify the consistency of these conclusions.

Next, we perform a fully self-consistent calculation of
the same model, this time including the electron-electron
interaction. The convergence of the scheme is illustrated in
the top panel of Fig. 22, which clearly supports our previous
conclusions. Two remarks are warranted. First, the number no

of molecular orbitals that have to be included in the low-energy
basis in order to obtain a desired value of the maximum error
increases if the system becomes more nonhomogeneous and
if more bands become occupied. Second, the noninteracting
basis corresponding to the calculation in Fig. 21 turns out to
be an excellent basis for constructing the interacting effective
Hamiltonian if the occupation is low. In other words, instead of
solving the auxiliary problem self-consistently (for each slice),
we can determine the transverse bands by simply considering
the effect of the external potential. This is due to the fact that

FIG. 22. (Top) Energy En of the nth low-lying state for a
fully interacting effective Hamiltonian with no molecular orbitals
in the basis. Both the auxiliary problem (19) and the 1D effective
problem (24) have been solved self-consistently. (Bottom) Position
dependence of the “effective potential” εm

α +˜�U m
αα , which includes

(diagonal) mean-field contributions. Note that the potential profiles
differ significantly from the noninteracting approximations shown in
Fig. 21.

in systems with low charge density the transverse profile of
the wave functions is practically determined by the external
potential (and only weakly perturbed by electron-electron
interaction). Of course, at high occupancy, the low-energy
basis has to be calculated self-consistently to ensure a fast
convergence of the scheme. In the example discussed here,
while calculating the low-energy basis does not require self-
consistency, including the mean-field contribution ˜�U in the
effective 1D Hamiltonian is essential. The major effect of
this term can be seen by comparing the lower panels in
Fig. 21 (effective potential without mean-field contributions
and Fig. 22 (effective potential with mean-field contribu-
tions). The dramatic difference is due to the fact that in
nonhomogeneous systems electron-electron interaction leads
to a redistribution of the charge along the wire. This charge
redistribution is accounted for when solving the effective
Hamiltonian self-consistently. The stark difference between
the noninteracting and the interacting results emphasizes once
more the importance of using a self-consistent Schrödinger-
Poisson scheme when studying inhomogeneous hybrid sys-
tems, e.g., proximitizedd nanowires with uncovered barrier
regions or nanowires coupled to quantum dots.

V. SUMMARY AND CONCLUSION

We have developed a practical effective theory approach to
the Schrödinger-Poisson problem in semiconductor Majorana
devices that enables one to efficiently model realistic 3D
structures, including gate potentials, inhomogeneities, and
multiorbital physics. The proposed method, which is specif-
ically designed for lattice models and is significantly more
computationally efficient than the brute-force 3D numerical
methods, is based on two key ideas. (i) For a given geometry,
the Poisson problem is solved once using a Green’s function
scheme and the results are stored as an interaction tensor,
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which, in essence, contains information about the interaction
energy between electrons occupying local orbitals. Thus, the
Poisson component of the iteration loop reduces to a few
straightforward summations. (ii) The 3D problem is reduced to
an effective multiorbital 1D problem with molecular orbitals
calculated self-consistently as the transverse modes of an
infinite wire with the same electrostatic potential as the local
electrostatic potential of the finite 3D device. The basic insight
is that the transverse profiles of the low-energy states at a given
position along the wire are similar to the profiles of the low-
energy confinement-induced bands of an infinite wire under the
same electrostatic conditions. Consequently, a relatively small
number of molecular orbitals obtained by solving the auxiliary
infinite-wire problem provide a good basis for the low-energy
subspace of the 3D problem.

We describe in detail an implementation of our method that
addresses the Schrödinger-Poisson problem in weakly cou-
pled semiconductor-superconductor structures and we briefly
discuss a strong-coupling generalization of this scheme that
explicitly incorporates the parent superconductor, which is
described at the mean-field level using a simple tight-binding
Hamiltonian. The generic strong-coupling regime necessitates
additional considerations and will be discussed elsewhere. To
demonstrate the capabilities of our approach, we implement
it for both infinite and finite systems, which are modeled
using single-orbital tight-binding Hamiltonians, and address
several questions that are relevant in the context of Majorana
physics in hybrid devices. More specifically, for an infinite
wire we calculate the response of the system to an applied
Zeeman field, the dependence of the low-energy spectrum
on the work function difference at the SM-SC interface, and
the dependence of the effective semiconductor-superconductor
coupling as well as the induced gap (in the intermediate
coupling regime) on the applied gate potential. In addition,
for a finite wire we investigate the effect of interactions on the
Majorana energy splitting oscillations and the emergence of
effective potential inhomogeneities induced by variations of
the work function difference at the SM-SC interface and we
discuss the convergence of our scheme as the low-energy basis
used in the construction of the effective theory is enlarged.

The first step in the implementation of our method consists
of solving the Laplace equation with nonhomogeneous bound-
ary conditions determined by the parameter VSC, which char-
acterizes the work-function difference at the SM-SC interface,
and the gate potential(s) V n

g , with n = 1, . . . , ng . In practice,
one can take advantage of the linearity of the solution and solve
the Laplace equation ng + 1 times, each time setting one of the
boundary conditions to unity, e.g., V 1

g = 1, while the others
are zero. The general solution can be expressed as a linear
combination of these particular solutions with coefficients
VSC, V 1

g , . . . , which allows one to efficiently explore a large
parameter space. The next step is to divide the 3D system into
Nx layers and solve an auxiliary infinite-wire problem for each
layer. The (translation invariant) electrostatic potential for a
given auxiliary problem has a transverse profile given by the
solution of the Laplace equation (obtained previously) over the
corresponding layer. Note that the auxiliary problem is solved
self-consistently. The Green’s function used in the calculation
of the interaction tensor is obtained by solving the Poisson
equation with homogeneous boundary conditions, since the

nontrivial boundary conditions are already incorporated into
the external potential. The transverse profiles of the low-energy
confinement-induced bands are then used as the basis for
the effective 1D problem defined on Nx lattice sites. The
interaction tensor for the molecular orbitals is calculated using
the Green’s function for the 3D structure, which is the solution
of a Poisson equation with homogeneous boundary conditions
that has to be solved once (for each local orbital). Since the
elements of the interaction tensor decrease rapidly with the
distance between the molecular orbitals, the size of the relevant
set of elements scales linearly with the length of the wire.
Moreover, if the system has long homogeneous segments,
the number of distinct elements can be drastically reduced.
Finally, the effective 1D problem is solved self-consistently.
This (second) self-consistency loop ensures that the charge
is properly redistributed along the wire. The accuracy of
the scheme can be tested and improved systematically by
increasing the number of molecular orbitals in the basis. We
emphasize that the final solution is a solution of the original 3D
problem. The full 3D spatial dependence of various quantities
(e.g., effective potentials and charge distributions) can be
easily reconstructed using the (known) spatial profiles of the
molecular orbitals.

The basic applications of our method discussed in this
work demonstrate its potential, as well as the critical im-
portance of electrostatic effects in the low-energy physics
of semiconductor-superconductor Majorana devices. We note
that all numerical calculations presented here were done on a
standard laptop computer and involved typical running times of
the order of minutes. By contrast, a brute-force 3D approach
requires a large parallel cluster with many nodes and huge
memory. Our main results can be summarized as follows.
We demonstrate that terms in the Hamiltonian (such as, for
example, the Zeeman splitting) with energy scales much lower
that the typical values of the electrostatic potentials (i.e.,
tens/hundreds of meV) can be treated using a perturbative
scheme that involves a fully self-consistent solution calculated
for a single (reference) value of the relevant parameter (e.g.,
zero magnetic field). Focusing on the electrostatic response
to an applied magnetic field, we evaluate the accuracy of the
perturbative scheme by comparing its predictions with the fully
self-consistent solution. We also show that the strength of the
effective semiconductor-superconductor coupling can be tuned
by varying the applied gate potential. Rather remarkably, we
find that in a wide range of parameters several low-energy
bands are characterized by similar effective couplings. A direct
experimental consequence of this finding is that, in certain
conditions, hybrid structures with multiband occupancy are, in
fact, characterized by a single induced gap feature (rather than
multiple, band-dependent induced energy scales). In addition,
we investigate the electrostatic effects in finite 3D nanowires
and show that they result in a partial suppression of the
Majorana energy splitting oscillations. We find that properly
describing the effects of Coulomb interaction on low-energy
localized states requires a careful treatment of the effective
potential for the localized states, including the elimination of
self-interaction and addition of exchange contributions. We
note that a detailed study of the Majorana oscillations has to
be done in the context of the strong-coupling implementation
of our Schrödinger-Poisson scheme, where the electrostatic
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effects are expected to combine with the proximity-induced
energy renormalization, both acting as suppressing factors for
the splitting oscillations.

Finally, we show that the effective potential along the wire
has a strong dependence on the work-function difference at the
SM-SC interface. Thus a position-dependent (inhomogeneous)
work-function difference, which is a possible result of the
device-fabrication process (e.g., of the procedure used for treat-
ing the SM wire surface before depositing the superconductor),
results in an inhomogeneous effective potential. In turn, the
inhomogeneous potential can induce trivial low-energy states
that mimic the phenomenology of Majorana zero modes.
Variations of the order of a few percent in VSC can induce
variations of the effective potential of the order of 1–2 meV,
i.e., significantly larger than the induced gap. We emphasize
that screening by the superconductor plays no role in reducing
these inhomogeneities. On the other hand, the charge inside
the wire can partially suppress the variations of the effective
potential, but this screening mechanism is really efficient only
at high occupancy.

The ability of our scheme to efficiently solve position-
dependent 3D problems suggests that it can be a valuable tool
for studying realistic devices. Important types of problems
that can be approached using this scheme include the study
of the tunnel barrier regions at the ends of proximitized
Majorana wires, the possible formation of quantum dots inside
or at the ends of a wire, and the electrostatic confinement of
nanowires made lithographically in a 2D electron gas hosted by
a semiconductor heterostructure. In all these problems, which
are critical for the practical realization of Majorana zero modes,
the electrostatic effects play a dominant role. Therefore, they
can be viewed as particular aspects of the Schrödinger-Poisson
problem discussed in this work. In particular, our effective
theory approach is well suited for a quantitative analysis of the
spurious low-energy subgap states induced by the presence of
junctions in Majorana devices consisting of 1D proximitized
nanowires or 2D semiconductor heterostructures [74]. Fur-
thermore, the method developed in this work is ideally suited
for calculating the lever arms of various potential gates used
in experimental devices, e.g., the change of the electrostatic
potential inside the semiconductor wire corresponding to a
certain variation of an applied back-gate potential. Of course,
this type of analysis is relevant when considering specific
devices, i.e., when taking into account details regarding the
device geometry and materials properties, while a generic
study is largely meaningless. However, once the details of
the experimental device and gate configurations are specified,
it is straightforward to calculate the lever arms using the
scheme introduced here. We emphasize that our method is of
general applicability in modeling mesoscopic hybrid devices,
including different SM-SC hybrid systems, such as gatemons
and quantum dot based spin qubits in 2D semiconductor
heterostructures, as well as other types of hybrid devices,
e.g., topological insulator-superconductor structures. Finally,
the fact that our introductory effective theory is numerically
efficient and provides insight into several intriguing proper-
ties of Majorana nanowires (e.g., the possible suppression
of Majorana splitting oscillations, the possible proliferation
of trivial zero-energy modes, the possible band-independent
single induced proximity gap) that are not accessible within

the non-self-consistent minimal model used extensively in the
literature implies that our self-consistent approach should be
utilized systematically to understand the behavior of specific
experimental SM-SC hybrid devices.

Note added. After the completion of this work (see
Ref. [75]), we became aware of two other recent stud-
ies that address the issue of electrostatic effects in
semiconductor-superconductor structures within a self-
consistent Schrödinger-Poisson approach: Ref. [76] and
Ref. [77]. This activity reflects the critical importance of
Coulomb interaction effects in hybrid Majorana structures and
the fact that the scientific community recognizes the urgency of
properly accounting for these effects. However, while [76] and
[77] represent applications of the Schrödinger-Poisson scheme
to systems with simplified geometries, i.e., slab geometry
(which represents an effective 1D problem) in [77] and infinite
wire geometry (i.e., an effective 2D problem) in [76], we
propose a new approach that enables the treatment of realistic
models of three-dimensional (3D) hybrid devices. The major
challenge in doing Schrödinger-Poisson calculations using a
realistic model is numerical complexity. Consequently, the
“standard” approach is usually implemented for single-band
models with simplified geometries and can be used to estimate
“bulk” effective parameters, such as the induced superconduct-
ing gap and the Lande g factor. By contrast, we have developed
a Schrödinger-Poisson approach that is applicable to realistic
3D models. Our method enables the efficient treatment of
multiband models (which is essential for properly calculating
the effective g factor and the spin-orbit coupling) and 3D
geometries (a key step towards realistic device modeling). This
includes problems related to the presence of quantum dots cou-
pled to Majorana wires, inhomogeneous gate potentials, barrier
potentials, electrostatic confinement, and wire junctions, which
are essential to understanding the physics of actual hybrid
devices. The numerical complexity of the “standard” approach
to these problems is extreme. This study provides a solution to
this challenge.
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APPENDIX A: ANALYTIC GREEN’S FUNCTION FOR THE
INFINITE WIRE USING CONFORMAL MAPPING

In this Appendix, we derive an analytic expression for the
Green’s function defined by Eq. (10) for the case of infinite
nanowires (see Sec. II B). To simplify the calculations, we
neglect the dielectric layer and the fact that the superconductor
has finite thickness. The simplified geometry is shown in
Fig. 23(a). We note that changing the thickness of the SC
changes very little the field lines inside the wire, hence it is
expected to have a small effect. On the other hand, the exclusion
of the dielectric layer results in overestimating the screening
due to the back gate. Indeed, imagine a test charge placed in the
SM wire, close to the back gate. The image charge occurring in
the back gate (to satisfy the homogeneous boundary condition)
is close to the SM surface, so that the potential caused by the
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ε0φ = VSC

φ = Vg

R
RCεr

ε0φ = VSC

φ = Vg(a) (b)

FIG. 23. (a) Schematic representation of the SM(yellow)-
SC(blue) devices with simplified geometry used in the calculation
of analytical Green’s functions. Compared to Fig. 1 (see the main
text), the simplified geometry neglects the dielectric layer and the
finite thickness of the superconductor. (b) Conformal mapping of the
structure from (a) used in the calculation of the analytical Green’s
function.

test charge is nearly completely screened. If, on the other hand,
a dielectric layer is present, the image charge is farther away
from the SM surface and the screening is reduced. However,
if the test charge is localized near the SM-SC interface,
the difference between the two situations is quite small. In
practice, we actually expect most of the charge to be near the
SM-SC interface (to ensure an effective proximity coupling
to the superconductor). Therefore the effect of eliminating the
dielectric is expected to be small. Quantitatively, this effect can
be determined using a numerical method to solve the Green’s
function for different values of the dielectric thickness.

Another simplification concerns the basis states ϕi , which
are chosen to be of the form ϕi (r) = δ2(r − ri ), where ri is
the center of the ith lattice site. With this choice, Gi becomes
the standard Green’s function used in electrostatics. Note that
due to the nonphysical nature of the Dirac delta orbitals the
diagonal elements νii of the interaction matrix (11) diverge. To
address this issue, we calculate the interaction matrix elements
using the average of the potential sampled at the vertices of the
two-dimensional unit cells, as shown in Fig. 24. Explicitly, the
interaction matrix elements become

νij = − e

6

∑
τ

Gi (rj,τ ), (A1)

where τ runs over the six vertices of the j th unit cell.
The actual calculation of the Green’s function is done using

a cylindrical geometry. To connect it with the original geometry
of the structure, we perform a conformal mapping, as shown
in Fig. 23. More specifically, the conformal mapping from the
unit disk D in panel (b) to the hexagon H in panel (a) is given
by

z = wF
(

1
6 , 1

3 , 7
6 ; w6

)
, (A2)

where w ∈ D, z ∈ H, and F (a, b, c; z) is the hypergeometric
function. The lattice of the hexagonal wire is mapped onto
the unit disk using the inverse of this conformal mapping.
Technically, the transformation is only valid within the unit
disk. Therefore the features from the two panels that are outside
the nanowire do not perfectly map into each other. However,

i

j

× ×
×

× ×
×

rj,1

rj,6

rj,5

rj,2

rj,3

rj,4

FIG. 24. Sampling scheme used for calculating the interaction
matrix when the basis states are singular, ϕi (r) = δ2(r − ri ). The
interaction matrix element, νij is calculated by sampling Gi at the six
vertices of the j th unit cell of the hexagonal lattice [see Eq. (A1)].

the solution within the nanowire should only weakly depend
on the details of the outside geometry.

The details of the setup for the Poisson problem are shown
in Fig. 25. We divide the domain on which the problem is
defined into three regions: region I—the nanowire—contains
a filamentary charge, while regions II and III are empty and
extend to infinity. The solution of the Poisson equation in
region I can be written as GI = GP + GL, with

∇2GP = −λ

ε
δ2(r − r ′),

∇2GL = 0. (A3)

Note that GI should satisfy homogeneous boundary conditions
at the boundaries with the back gate and the superconductor,
as discussed in Sec. II A. A specific solution of the Poisson
equation is Gp(r) = −λ

2πε
ln ( |r−r′|

R
). The general solution of the

ρ′ λ

β′ y

z

R

θ2θ1

απ − α

I

II

III

FIG. 25. Setup of the Poisson problem (to be solved analytically)
for the Green’s function of an infinite wire. A filament of charge
(purple dot) with charge density λ is placed at r ′ of cylindrical
coordinates (ρ ′, β ′) within in the nanowire (yellow). The conducting
regions (dark gray) have zero potential. The problem is defined on a
domain divided into three regions (labeled I, II, and III).
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Laplace equation has the form

GL(ρ, φ) = G0A0 + G0

∞∑
m=1

[Cm cos (mφ)

+ Dm sin (mφ)]

(
ρ

R

)m

(A4)

with G0 = λ/2πε. Similarly, for regions II and III, we have

GII(ρ, φ) = G0

∞∑
m=1

Fmsin(km(φ − α))

(
ρ

R

)−km

,

GIII(ρ, φ) = G0

∞∑
m=1

Hmsin(lm(φ − θ2))

(
ρ

R

)−lm

, (A5)

with

km = mπ

θ1 − α
, lm = mπ

π − α − θ2
. (A6)

In Eq. (A5), we have already taken into account homogeneous
boundary conditions at the boundaries with the back gate and
the SC (see Sec. II A). It is helpful to write GP as

GP (ρ, φ) = G0 ln

(
R

ρ>

)
+ G0

∞∑
m=1

(
1

m

(
ρ<

ρ>

)m

× [cos(mβ )cos(mφ) + sin(mβ )sin(mφ)]

)
,

(A7)

where ρ> and ρ< are the greater and lesser of ρ and ρ ′,
respectively.

Next, we impose the continuity condition for the potential
and the normal component of D = ε E at the boundaries
between different regions. Explicitly, we have

GI|ρ=R = GII,III

∣∣
ρ=R

,

εr

∂GI

∂ρ

∣∣∣∣
ρ=R

= ∂GII,III

∂ρ

∣∣∣∣
ρ=R

. (A8)

In addition, GI vanishes at the boundaries between region I and
the conducting regions. The equations matching the potentials
at the boundaries lead to Fourier series for A0, Cn, and Dn

in terms of the sets of coefficients Fm and Hm. Similarly,
Eq. (A8) allows us to solve for Fn and Hn in terms of the
set of coefficients Cm and Dm. This leads to an infinite system
of linear equations. Since we are not interested in the potential
outside the nanowire, we eliminate the variables Fm and Hm

and get

∞∑
p=1

(
p�γ γ δδ

np + δn,p

)
Cp + p�γ σδω

np Dp = Sn,

∞∑
p=1

p�σγωδ
np Cp + (

p�σσωω
np + δn,p

)
Dp = Tn,

(A9)

where �abcd
np , Sn, and Tn are coefficients of the form

�abcd
np = 2εr

π2

∞∑
m=1

1

m
(amnbmp + cmndmp ),

Sn = �
γ γ��

n0 − 1

n

(
r

R

)n

cos(nβ )

+
∞∑

p=1

(
r

R

)p(
�γ γ��

np cos(pβ ) + �γ σ�ω
np sin(pβ )

)
,

Tn = �
σγω�

n0 − 1

n

(
r

R

)n

sin(nβ )

+
∞∑

p=1

(
r

R

)p(
�σγω�

np cos(pβ ) + �σσωω
np sin(pβ )

)
,

(A10)
with the matrix elements amn, bmn, cmn, and dmn being one of
following matrix elements:

γmn = −mπ (θ1 − α1)

n2(θ1 − α1)2 − (mπ )2

× (cos(nα1) − cos(mπ ) cos(nθ1)),

σmn = −mπ (θ1 − α1)

n2(θ1 − α1)2 − (mπ )2

× (sin(nα1) − cos(mπ ) sin(nθ1)),

�mn = −mπ (α2 − θ2)

n2(α2 − θ2)2 − (mπ )2

× (cos(nθ2) − cos(mπ ) cos(nα2)),

ωmn = −mπ (α2 − θ2)

n2(α2 − θ2)2 − (mπ )2

× (sin(nθ2) − cos(mπ ) sin(nα2)). (A11)

In Eq. (A11), we have used the notation α2 = π − α1. This is
an infinite system of equations. However, one can show that
Sn and Tn decrease rapidly with increasing n. This is also true
for the matrices �abcd

np , which decrease with increasing n and
p. Therefore Cn and Dn will also decrease as n increases. The
solution can be approximated by taking a finite number of terms
(e.g., N = 200) and solving the corresponding (finite) matrix
equation. We benchmark the solution by taking an average of
GI over the conducting boundary regions, which ideally should
be zero. This benchmark allows us to accurately determine
when enough terms have been kept in the Fourier series.

APPENDIX B: MATRIX ELEMENTS
FOR THE EFFECTIVE HAMILTONIAN

Here we discuss the construction and structure of the various
matrices in Eqs. (21) and (24). Consider a generic matrix, D,
in the 3D Hamiltoninan (18). If we allow the matrix to couple
two general basis states being localized on transverse sites i
and j of layers m and n with spins σ and σ ′, respectively, we
need six indices to specify each matrix element. Explicitily,
we have Dijmnσσ ′ . In Sec. II C we defined D̄��′ = Dijmnσσ ′

labeled by � = �(m, i, σ ) = 2(m − 1)N⊥ + 2i − 1 + σ and
�′ = �′(n, j, σ ′) = 2(m − 1)N⊥ + 2i − 1 + σ so that we do
not have to deal with the cumbersome six index notation.
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The six index notation is useful, however, when determining
the structure of the various barred matrices in Eq. (21). For
example, we can write the generic matrix element of t⊥ as
t⊥ijmnσσ ′ = t⊥ij δmnδσσ ′ . One can then clearly see that t̄⊥ will be
a block diagonal matrix of the form

t̄⊥ =

⎡⎢⎢⎢⎢⎢⎣
t̄⊥(1) 0 0 . . . 0

0 t̄⊥(2) 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . t̄⊥(Nx )

⎤⎥⎥⎥⎥⎥⎦, (B1)

where t̄⊥(m) in the 2N⊥ × 2N⊥ hopping matrix within the mth
layer. If the structure of the layers doesn’t change along the
wire then t̄⊥(1) = t̄⊥(2) = · · · = t̄⊥(Nx ). The interlayer hopping
t‖ has a similar structure given by

t̄‖ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2t̄
‖
0 t̄‖(1,2) 0 . . . 0 0

t̄‖(2,1) −2t̄
‖
0 t̄‖(2,3) . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −2t̄
‖
0 t̄‖(Nx−1,Nx )

0 0 0 . . . t̄‖(Nx,Nx−1) −2t̄
‖
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(B2)
where we have included only the 2N⊥ × 2N⊥ nearest-neighbor
hopping matrix t̄‖(m,n) between the mth and nth layers and t̄

‖
0

is a diagonal matrix to bring the bands to zero energy in the
presence of no additional terms in the 3D Hamiltonian (18). If
the structure of the layers does not change along the wire then
t̄‖(i,i+1) = t̄‖(1,2) for all i.

It is also instructive to look at the structure of the matrices in
the molecular orbital basis, which are found using the relation
D̃ = S̄D̄S̄†. Consider a wire with translationally invariant
electrostatic conditions. This results in identical auxiliary
Hamiltonians (19) for each layer, which further implies iden-
tical S matrices for each layer (up to a phase we take to zero).
One can clearly see that the resulting matrix S̄ is given by

S̄ =

⎡⎢⎢⎢⎢⎢⎣
S 0 0 . . . 0

0 S 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . S

⎤⎥⎥⎥⎥⎥⎦, (B3)

where S is a 2N⊥ × 2N⊥ matrix specifying the eigenstates of
each layer’s Hm

aux [see Eq. (20)]. Using the form of t̄‖ above, one
can show that this t̃

‖
νν ′ = t‖δν,ν ′±2N⊥ − 2t‖δνν ′ , and we remind

the reader that t̃
‖
νν ′ is in the molecular orbital basis with labels

ν = ν(m,α, σ ) = 2(m − 1)N⊥ + 2α − 1 + σ . Writing t̃ ‖ us-
ing the (m, α) indices gives t̃

‖
mα,nβ = (t‖δm,n±1 − 2t‖δm,m)δαβ .

Therefore, for the case of homogenous conditions (i.e., infinite
wire), we have shown that the various molecular orbitals
interlayer hopping decouples into separate bands as expected.

The situation is more interesting if the electrostatic potential
is not translationally invariant. S̄ is then composed of blocks
that are not identical, resulting in off-diagonal hopping be-
tween the various “molecular bands” of the wire. Explicitly,
t̃

‖
mα,(m±1)β �= 0 for α �= β. One can then imagine that if the

electrostatic potential varies a large amount over a sufficently
small length scale, there will be large off-diagonal coupling
between the low-energy orbitals of neighboring layers. This
may lead to a “hopping barrier” between layers that acts much
like an electrostatic barrier. We stress that this off-diagonal
hopping cannot be taken account in the simplified 1D models
used extensively in the literature.

APPENDIX C: PERTURBATION SCHEME
FOR INFINITE NANOWIRES

To understand how large of a role the electronic interactions
play in determining the transverse profiles of the eigenstates,
we compared our self-consistent method with perturbation
results in Sec. III. Here we present details concerning the two
perturbative methods used in that comparison.

First, we describe the perturbation method used in Sec. III.
In this case, we treat Hint as a perturbation. Standard first-order
perturbation theory gives

E1
n = 〈

ϕ0
n

∣∣Hint

∣∣ϕ0
n

〉
, (C1)

where |ϕ0
n〉 are the eigenstates of H0 in Eq (15). An issue arises

when calculating the terms in Eq (C1). Since Hint depends on
the eigenenergies and states of the complete Hamiltonian (i.e.,
Hint = Hint ({Ei}, {ϕi})), the calculation is not straightforward.
Rather, Eq. (C1) needs to be solved self-consistently with the
energy levels assumed in the form of Hint to coincide to with
the final energy levels. We use a simply iterative method to find
the self-consistent solution.

Second, we describe a first-order perturbation theory de-
voloped by Vuik and coworkers [62] to calculate the response
of the effective chemical potentials of bands given a self-
consistent solution when no magnetic field is applied. This
perturbation scheme is used in Sec. III A.

They define a reciprocal capacitance

Pi (y, z,�) = φi (y, z,�)

−eni (−μi − δμi,�, α)
, (C2)

where φi is the potential due to all the occupied states in the ith
band, and ni is the 1D electron density of the ith band. They
find the relation

δμi = −e2
N∑

j=1

Pij δnj , (C3)

where δμi (�) = μi (�) − μi (0), δni (�) = ni (�) − ni (0), and
N is the number of occupied bands. The matrix elements Pij

are given by

Pij = 〈ψi,k|Pj |ψi,k〉, (C4)

where |ψi,k〉 is the ith eigenstate of the tight-binding Hamil-
tonian for any kx value. Pij is essentially the correction to
the energy of the ith band coming from the addition of an
electron to the jth band. By Green’s reciprocity theorem, we
have Pij = Pji .

We can see that the reciprocal capacitance Pi is the potential
due to a normalized charge occupying a state in the ith band.
In other words, this quantity is independent of how many
states within the band are occupied. The main approximation in
the above formulation is to assume Pi (y, z,�) ≈ Pi (y, z, 0).

035428-26



EFFECTIVE THEORY APPROACH TO THE SCHRÖDINGER- … PHYSICAL REVIEW B 98, 035428 (2018)

Thus the reciprocal capacitance becomes magnetic field-
independent, and the effective chemical potentials become
entirely determined by the self-consistent solution under no
applied magnetic field. Since the reciprocal capacitance is
independent of the occupation filling factor, the magnetic field
independence is accurate over the range of Zeeman energies
for which the wave function profiles of the various subbands
remain essentially constant.

The 1D electron density of each band has nontrivial de-
pendence on the effective chemical potential and magnetic
field (i.e., nj = nj (μj ,�)). Therefore Eq. (C3) must usually

be solved numerically. However, for single-band occupation,
zero spin-orbit coupling, and low magnetic field, we find the
analytical solution

δμ1 = η�2

4
(
μ0

1

)3/2(
1 + η

(μ0
1 )

1/2

) + O
((

�

μ0
1

)4)
, (C5)

for μ1 � �, where μ0
1 is the effective chemical potential at

zero magnetic field and η is given by

η = e2

√
2m∗

π2h̄2 P11. (C6)
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