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Confining graphene plasmons to the ultimate limit
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Graphene plasmons have recently attracted a great deal of attention because of their tunability, long lifetime,
and high degree of field confinement in the vertical direction. Nearby metal gates have been shown to modify the
graphene plasmon dispersion and further confine their electric field. We study the plasmons of a graphene sheet
deposited on a metal, in the regime in which metal bands do not hybridize with massless Dirac fermion bands. We
derive exact results for the dispersion and lifetime of the plasmons of such a hybrid system, taking into account
metal nonlocalities. The graphene plasmon dispersion is found to be acoustic and pushed down in energy toward
the upper boundary of the intraband graphene particle-hole continuum, thereby strongly enhancing the vertical
confinement of these excitations. Landau damping of such acoustic plasmons due to particle-hole excitations in
the metal gate is found to be surprisingly weak, with quality factors exceeding Q = 102.
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I. INTRODUCTION

Recently, the fundamental properties of graphene plasmons
and hybrid plasmon-phonon polaritons in graphene encap-
sulated in hexagonal boron nitride (hBN) have been studied
in an extensive manner [1–3]. In encapsulated graphene,
plasmons have record-high lifetimes approaching 1 ps both in
the midinfrared [4] and terahertz (THz) [5,6] spectral ranges,
while at the same time displaying strong vertical confinement.

The plasmon dispersion relation in graphene can be en-
gineered not only by coupling them to standing Fabry-Pérot
phonon polariton modes of hBN slabs [7], but also by placing
metal gates nearby. These have been shown to play two
vital roles. On the one hand, when shaped in the form of
split gates, the associated p-n junctions allow us to detect
plasmons electrically thanks to the photothermoelectric effect
[8]. On the other hand, they screen the long-range tail of
the electron-electron interaction potential, yielding acoustic
plasmon modes [9–12] whose associated electric field is tightly
confined to the small volume between the metal gate and
graphene [5]. The latter is typically filled with an hBN spacer,
which can be thinned down to a single layer or even removed.
The modification of the plasmon dispersion from the usual
unscreened

√
q form [1], q being the in-plane plasmon wave

number, to the metal-screened form ∝q at long wavelengths
yields, for a fixed plasmon frequency ω, modes with large q

and therefore strong vertical confinement ∝q−1.
We also note in passing that hybrid graphene/metal struc-

tures may be of high technological relevance in the fields of gas
and biological sensing [13–15]. Current devices for sensing
usually contain periodic metallic structures, i.e., gratings,
deposited on graphene, which are used to couple far-field
light to plasmons. Understanding the properties of graphene
plasmons in the presence of a nearby metal is therefore of high
technological relevance.

In this context, a natural question arises. What is the
ultimate limit of vertical confinement for graphene plasmons?

The answer seems to be that maximum vertical confinement
can be achieved by depositing graphene directly on the metal
gate. (Note that here we are not interested in the case of samples
where graphene is grown by chemical vapor deposition on
selected metals [16–24]. Often, in this case, hybridization oc-
curs between graphene and metal bands, leading to plasmonic
excitations that share very little with graphene plasmons and
that are usually accompanied by strong damping.) Superfi-
cially, however, this does not sound like a good choice. The
point is that, naively speaking, plasmons in a graphene sheet
deposited very close to a metal gate are expected to decay easily
by emitting electron-hole pairs in the metal and therefore be
strongly Landau damped.

In this article, we study the plasmons of a graphene sheet
deposited on a metal, down to the ultimate limit of zero distance
between the two. The metal is treated beyond the perfect-
conductor approximation. At long wavelength, the problem
can be solved exactly with the Wiener-Hopf method [25] (see
also the supplemental material), in the spirit of Reuter and
Sondheimer’s work on the anomalous skin effect [26]. Such a
theory includes nonlocalities due to the finite electronic mean
free path in the metal, and dielectric nonlocalities quantified by
the metal screening function εM(q,ω). It is fundamental to take
into account such nonlocalities whenever the typical plasmon
momenta are larger than the inverse mean free path of the metal,
i.e., in the clean limit that can be reached in two-dimensional
(2D) heterostructures [27]. We show that graphene plasmons
survive even in the zero-distance limit. The presence of metal
gates proves to be an efficient way to manipulate the plasmon
dispersion and reach ultrahigh levels of field confinement.
Moreover, by showing that the plasmon decay rate due to
Landau damping enabled by the metal scales like ∼ q2 ln(q)
at long wavelength and is numerically small, we also conclude
that these excitations remain well defined in the presence of
metallic substrates. The theory we develop here is very general
and can be used to describe the propagation of plasmons in the

2469-9950/2018/98(3)/035427(5) 035427-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.035427&domain=pdf&date_stamp=2018-07-23
https://doi.org/10.1103/PhysRevB.98.035427


PRINCIPI, VAN LOON, POLINI, AND KATSNELSON PHYSICAL REVIEW B 98, 035427 (2018)

presence of different metal gates, provided no hybridization
occurs between graphene and the metal.

II. MODEL AND GENERAL RESULTS

We consider a two-dimensional (2D) graphene sheet at a
distance d from the surface of a metal gate, which is modeled
as a three-dimensional electron gas (3DEG) occupying the
half-space z � 0. For both systems we will use a jelliumlike
approximation, which is known to be valid in the limit qa < 1,
where q is the characteristic wave vector of the plasmon and a

is the interatomic distance [28–31]. The surface of the metal is
assumed to be flat and the graphene sheet is placed at z = d.
The metal is characterized by the electronic density nM and by
a band-energy dispersion εk,M = h̄2k2/(2mM), mM being the
effective mass of electrons in the metal. Therefore, the metal
Fermi energy is εF,M = h̄2k2

F,M/(2mM), with kF,M = (3π2n)1/3

the Fermi wave number [31]. We also define the metal Fermi
velocity, v̄M = h̄kF,M/mM, the density of states at the Fermi
energy, ν0,M = 3nM/εF,M, and the Thomas-Fermi screening
wave number, qTF,M = √

4πe2ν0,M. We treat electrons in
graphene as massless Dirac fermions [32], characterized by
a density-independent Fermi velocity vF. We assume the
graphene sheet to be doped with an electron density n above
the Dirac point. In what follows, kF is the Fermi wave number
in graphene and εF = h̄vFkF > 0 is its Fermi energy.

Neglecting retardation effects, the plasmon dispersion is
found by solving Poisson’s equation for the self-consistent
electrostatic potential φ(r,z,t), ∇2φ(r,z,t) = −4πρ(r,z,t),
where the density ρ(r,z,t) is self-induced by φ(r,z,t). r
denotes the position of a point in a 2D plane parallel to the
surface of the metal. Assuming translational and rotational
symmetry in the 2D planes parallel to the metal surface,
and taking the Fourier transform with respect to r , Poisson’s
equation becomes(

∂2
z − q2

)
φq,ω(z) = −4πeρq,ω(z), (1)

where φq,ω(z) and ρq,ω(z) are the Fourier transforms,
respectively, of the self-consistent potential and number
density, while e is the electronic charge. The quantity
ρq,ω(z) is rewritten as the sum of the individual contribu-
tions of the metal [ρM,q,ω(z)] and graphene sheet (ρG,q,ω)
as ρq,ω(z) = ρM,q,ω(z)θ (−z) + ρG,q,ωδ(z − d). In the linear-
response regime, ρG,q,ω = χρρ(q,ω)φq,ω(d), where χρρ(q,ω)
is the noninteracting density-density linear response function
of 2D massless Dirac fermions [33]. We will use the Boltzmann
equation for the distribution function of electrons in the metal,
fq,ω(k,z), to calculate the density ρM,q,ω(z) induced by the
field φq,ω(z).

We solve the linear differential problem posed by Eq. (1)
in the three separate regions z > d, 0 < z < d, and z < 0.
We impose the continuity of the potential at z = 0,d, and of
its derivative at z = 0. At z = d we also have the boundary
condition (i.e., discontinuity of the electric field perpendicular
to graphene)

∂zφq,ω(z)
∣∣d+

d− = −4πe2χρρ(q,ω)φq,ω(d). (2)

Solving the resulting linear differential problem, we find
that for φq,ω(z) to be nonzero we must satisfy the

plasmon equationε(q,ω) ≡ 1 − V (q,ω)χρρ(q,ω) = 0, whose
solution ω = ωp(q) gives the plasmon dispersion in graphene
in the presence of the metal gate. Here V (q,ω) =
2πe2/[qεM(q,ω)] is the effective electron-electron interaction
in graphene, and

εM(q,ω) =
(

1 + Zq,ω − 1

Zq,ω + 1
e−2qd

)−1

(3)

is the metal screening function. Here Zq,ω ≡
qφq,ω(z)/∂zφq,ω(z)|z→0− plays the role of a “dimensionless
surface impedance” and depends only on the properties of the
metal. Note that, in the limit Zq,ω → 1, V (q,ω) reduces to
the Coulomb interaction of an isolated graphene sheet [33].
Conversely, in the limit Zq,ω → 0 we recover the result for a
graphene sheet in the presence of a perfect conductor [5,9].
In what follows, we briefly summarize how to calculate this
quantity.

To calculate Zq,ω we need to determine the ratio
φq,ω(z)/∂zφq,ω(z) at z → 0− or, equivalently, ∂zφq,ω(z)|z→0−
as a function of φq,ω(0). The latter quantity, momentarily
unspecified, represents an alternative boundary condition that
we can use to solve Poisson’s equation (1) for z < 0. The
quantity φq,ω(0) accounts in fact for the distribution of charges
in the half-space z > 0 (including the graphene sheet). This
fact allows us to employ a mathematical trick that dramatically
simplifies our calculation. In fact, we can now introduce the
new function φ̄q,ω(z), which coincides with φq,ω(z) for z < 0
and equals φq,ω(−z) for z > 0. φ̄q,ω(z) is clearly an even
function of z. We can then solve Eq. (1) for φ̄q,ω(z) with
the boundary condition φ̄q,ω(0) = φq,ω(0). By the uniqueness
of the solution of Poisson’s equation, we are guaranteed that
φ̄q,ω(z) coincides with φq,ω(z) for z < 0, and therefore Zq,ω =
qφ̄q,ω(z)/∂zφ̄q,ω(z)|z→0− .

For the sake of brevity, from now on we omit the subscript M
when referring to the properties of the metal. This should not
generate any confusion, since all quantities in the following
equations [(4)–(10)] refer to the metal. Only when strictly
necessary will we reinstate the subscript M. We consider the
following Boltzmann equation for the distribution function
fk ≡ fk(r,z,t):

∂tfk + eE · ∇kfk + vk · ∇rfk = −τ−1
(
fk − f 0

k

)
, (4)

where E ≡ −∇φ(r,z,t) is the self-induced electric field, vk =
h̄k/m is the 3D particle velocity, and f 0

k = [eβ(εk−μ) + 1]−1

is the equilibrium Fermi-Dirac distribution. Finally, τ models
a finite transport lifetime in the metal. Setting fk(r,z,t) =
f 0

k + δfk,q,ω(z)ei(qx+ωt) and φ(r,z,t) = φq,ω(z)ei(qx+ωt), and
linearizing Eq. (4) with respect to δfk,q,ω(z) and φq,ω(z), we
get (in the remainder of the section we omit the variables
q and ω)

vz
k[Akδfk(z) + ∂zδfk(z)] = e∂εf

0
k �k(z), (5)

where ε = εk, �k(z) ≡ iqvx
kφ(z) + vz

k∂zφ(z), Ak = (iω +
τ−1 + iqvx

k )/vz
k, and vα

k , with α = x,z being the components
of the velocity vk. The general solution of this equation is
(recall that z < 0)

δfk(z) = e−Akz

[
F (vk) + e∂εf

0
k

vz
k

∫ z

−∞
dζ eAkζ �k(ζ )

]
. (6)
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We now determine F (vk) for the two cases, vz
k > 0 and vz

k < 0,
separately. When vz

k > 0, δfk(z) describes particles traveling
from deep inside the metal toward its surface. In this case,
we choose F (vk) in such a way that δfk(z) (and hence metallic
properties deep inside the bulk) does not diverge for z → −∞.
This implies that F (vk) = 0 for vz

k > 0, and

δf +
k (z) = e∂εf

0
k

vz
k

∫ z

−∞
dζ �k(ζ )eAk(ζ−z), (7)

where the superscript “+” recalls the fact that here vz
k > 0.

Here we replaced φ(ζ ) → φ̄(−ζ ), since z < 0. When vz
k < 0,

we consider the scattering at the boundary to be specular
with probability p and diffusive with probability 1 − p. The
assumption p = const is required to solve the problem an-
alytically [26]. In realistic models of surface scattering, p

is strongly dependent on the incidence angle [34,35]. Under
this assumption, δf −

k (z = 0) = pδf +
k (z = 0)|vz→−vz

, where
δf −

k (z) describes electrons moving with velocity vz
k < 0. This,

in turn, implies

δf −
k (z) = e∂εf

0
k∣∣vz

k

∣∣
∫ ∞

z

dζ �
(p)
ζ �k(ζ )eAk(ζ−z), (8)

where �
(p)
ζ = p + (1 − p)�(−ζ ), �(ζ ) being the usual

Heaviside step function. From δfk(z) = �(vz
k)f +

k (z) +
�(−vz

k)f −
k (z) we can calculate the density of the metal as

ρ(z) = ∑
k δfk(z). After some algebra, we find

ρ(z) = eν0

∫ ∞

−∞
dζ

[
�

(p)
ζ κ(z − ζ )φ̄(ζ ) + (1 − p)κz(z)φ̄(0)

]
,

(9)

where κ(z) = κ̃(z) − δ(z), and

κ̃(z) = iω + 1/τ

2v̄

∫ π/2

0
dθ

sin(θ )

cos(θ )
e−Bθ |z|J0[q|z| tan(θ )].

(10)

Here Bθ ≡ (iω + 1/τ )/[v̄ cos(θ )], and θ is the angle between
k and the ẑ axis. κz(z) is not relevant here, and is given in
the supplemental material [36], where we provide analytical
results for the case p = 0. Here we analyze the case p = 1
(perfect reflection at the interface) providing both analytical
and numerical results.

III. ANALYTICAL RESULTS FOR p = 1

In this case, Poisson’s equation is rewritten as

(
∂2
z − q2)φ̄(z) = −q2

TF,M

∫ ∞

−∞
dζ κq,ω(z − ζ )φ̄(ζ ), (11)

where φ̄(z) is continuous everywhere, while ∂zφ̄(z) has a jump
for z = 0. Solving Eq. (11), we find

Zq,ω =
∫ +∞

0

dqz

π

2q

q2
z + q2 − q2

TF,Mκq,ω(qz)
. (12)

Setting ω = cpq in the plasmon equation ε(q,ω) = 0 and
taking the q → 0 limit (neglecting the imaginary part), we

find Zq,ω = q/qTF,M and the acoustic-plasmon dispersion

ωp(q) = vFq
1 + �√
1 + 2�

, (13)

where � = 4πe2(d + q−1
TF,M)ν(εF) and ν(εF) =

NFεF/(2πh̄2v2
F) is the density of states of graphene at the Fermi

energy. Equation (13) allows us to define the acoustic-plasmon
group velocity cp = vF(1 + �)/

√
1 + 2� > vF.

Let us now derive the plasmon lifetime τp(q) [36]. We set
ω = ωp(q) + i/[2τp(q)] in the plasmon equation. Expanding
it for small τ−1

p (q) and for q → 0, we get

1

τp
→ cp

(
c2

p − v2
F

)
v2

Fv̄MqTF,M

cp −
√

c2
p − v2

F

1 + dqTF,M
q2[2 ln(qTF,M/q) − K],

(14)

where

K = ln
(
c2

p/v̄
2
M − 1

) + (π2/4 − 1)c2
p − v̄2

M/2

c2
p − v̄2

M

. (15)

This dependence of the damping on wave vector q, parametri-
cally smaller than the plasmon frequency, shows that acoustic
plasmons are long-lived excitations.

IV. NUMERICAL RESULTS AND DISCUSSION

We numerically calculate and fit the loss function [31,37]
− Im[ε−1(q,ω)] for the case d = 0. We compare these results
with the analytical ones of Eqs. (13) and (14). We find that
acoustic plasmons in graphene are pushed toward the boundary
of the particle-hole continuum ω = vFq by the screening
exerted by the metal. This fact implies that they become
extremely localized in the direction perpendicular to graphene,
at much lower frequencies than those of graphene/dielectric
stacks.

We have performed numerical calculations for the following
electron densities: nM = 1021 cm−3 and n = 1012 cm−2. For
these parameters, the acoustic plasmon group velocity is cp ≈
1.04vF. The Fermi velocity of the metal is 35% of vF. Figure 1

0.1 0.101 0.102 0.103 0.104 0.105
0

5

10

15

20

25

FIG. 1. The loss function of a graphene sheet on a metal gate
(p = 1). Solid line: the quantity −Im[ε−1(q,ω)] (for a color plot, see
Fig. 2) is plotted as a function of ω (in units of ωF = εF/h̄) for a fixed
value of q = 0.1kF. Dashed line: a Lorentzian fit used to determine
the lifetime.
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FIG. 2. A color plot of the loss function − Im[ε−1(q,ω)] as a
function of q/kF and ω/ωF. A sharp acoustic plasmon mode is visible
just above the upper edge of the graphene intraband particle-hole
continuum, ω = vFq.

shows the loss function [31,37] plotted as a function of ω (in
units of ωF = εF/h̄) and for a fixed value of q = 0.1kF. A
plasmon mode is clearly visible in the form of a Lorentzian
peak, centered at a frequency slightly above the particle-hole-
continuum threshold ω = vFq. In Fig. 2 we show a 2D color
plot of the same quantity as a function of q/kF and ω/ωF. A
linearly dispersive plasmon mode can be easily recognized at
energies slightly above the upper edge of the interband particle-
hole continuum (ω = vFq). In spite of the damping introduced
by the metal, the plasmon dispersion remains extremely sharp.
Moreover, the acoustic plasmon carries a much larger spectral
weight of that carried by the intraband particle-hole excitations.
We therefore conclude that surface-science techniques such
as electron-energy-loss spectroscopy [37] or scattering-type
near-field optical spectroscopy [1–3] can efficiently probe this
acoustic plasmon mode and distinguish it from the incoherent
continuum of particle-hole excitations.

In Fig. 3(a) we compare the numerical results of the fitting
procedure with the analytical asymptotic expressions given in
Eqs. (13) and (14). At small q, a good match is found. The
width τ−1

p (q) of the plasmon peak is always much smaller
than the distance in energy between the plasmon and the
upper boundary of the particle-hole continuum [�ω(q) =
ωp(q) − vFq], showing that the plasmon remains well-defined
and extremely sharp. Note also that subleading corrections to
the formula (13) introduce only small deviations of the plasmon
dispersion from linearity. In fact, comparing �ω(q) given in
Fig. 3(a) with the plasmon frequency ωp(q) extracted from
Fig. 2, we see that�ω(q)/ωp(q) � 3%. Therefore, the plasmon
remains acoustic to a very good approximation in a wide range
of momenta. Finally, in Fig. 3(b) we show the quality factor
Q = ωp(q)τp(q) as a function of the wave vector q (in units
of the Fermi wave vector kF). The strong suppression of the
metal-induced lifetime at small momenta leads to astonishingly
large values of Q. This allows us to conclude that plasmon
lifetimes will rather be limited by the same extrinsic effects
(such as impurities or phonons) present in graphene/dielectrics
heterostructures. We can expect graphene on metal devices to
exhibit figures of merit similar to those of other devices, with

0 0.02 0.04 0.06 0.08 0.1
0

300

600

900

1200
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0 0.02 0.04 0.06 0.08 0.1
0.0

0.001

0.002

0.003

0.004
(a)

(b)

FIG. 3. Plasmon dispersion, lifetime, and quality factor. (a) Plas-
mon dispersion relation and lifetime. The red circles show the
normalized distance �ωp(q)/ωF of the acoustic plasmon dispersion
from the upper bound of the intraband particle-hole continuum, as
obtained from Lorentzian fits to the numerical data. The solid red line
shows the same quantity as from the analytical result in Eq. (13). The
green squares show the normalized width [τp(q)ωF]−1 of the plasmon
obtained from the half-width at half-maximum of the Lorentzians,
while the green line shows the analytical result in Eq. (14). (b)
The acoustic plasmon quality factor Q = ωp(q)τp(q) is plotted as
a function of q/kF.

the added value of an ultrastrong vertical confinement, even in
the THz range.

V. CONCLUSIONS

In this work, we theoretically studied the plasmons of
graphene on a metal substrate. We calculated their dispersion
and intrinsic lifetime, showing (i) that they acquire an acoustic
dispersion because of the screening exerted by the metal, and
(ii) that their vertical confinement is greatly enhanced when
compared with that in samples on dielectric substrates. Finally,
(iii) we proved that acoustic plasmons remain well-defined
excitations, even in the presence of the metal, since their
damping rate is always parametrically and numerically much
smaller than their energy. Although acoustic plasmons in
graphene are pushed by the presence of the metal toward the
upper bound of the intraband particle-hole continuum, their
width remains so sharp that they are well separated from it in
a wide range of wave vectors.

Even more interestingly, our work allows us to extract
plasmon lifetimes and figures of merit due to Landau damp-
ing in the metal that are much larger than that observed
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experimentally [22]. In fact, we predict that, in the absence
of extrinsic effects such as grain boundaries, disorder, or
phonons, quality factors larger than ∼ 600 can be achieved.
This allows us to conclude that current experiments are far
away from the intrinsic regime, and that the short plasmon
lifetimes that are observed should be attributed to extrinsic
mechanisms.
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