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Spin-Nernst effect in the paramagnetic regime of an antiferromagnetic insulator
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We theoretically investigate a pure spin Hall current driven by a longitudinal temperature gradient, i.e., the spin
Nernst effect (SNE), in a paramagnetic state of a collinear antiferromagnetic insulator with the Dzyaloshinskii-
Moriya interaction. The SNE in a magnetic ordered state in such an insulator was proposed by Cheng et al.
[R. Cheng, S. Okamoto, and D. Xiao, Phys. Rev. Lett. 117, 217202 (2016)]. Here we show that the Dzyaloshinskii-
Moriya interaction can generate a pure spin Hall current even without magnetic ordering. By using a Schwinger
boson mean-field theory, we calculate the temperature dependence of SNE in a disordered phase. We also discuss
the implication of our results to experimental realizations.
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I. INTRODUCTION

Recent years have seen a surge of interest in issues related
to spin transport in magnetic insulators. For practical purposes,
the ability to transfer spin information in the absence of charge
flow holds great potential for energy-efficient applications
[1–9]. On the fundamental side, spin transport measurements
can also provide valuable information about the ground state
and low-energy excitations of correlated electronic systems
[10]. In particular, a thermal Hall effect (THE) of spin excita-
tions has been predicted [11]. In this effect, a longitudinal tem-
perature gradient can drive a transverse heat current carried by
charge-neutral excitations such as magnons or spinons. Since
its prediction, the THE has been observed in a number of mag-
netic insulators [12–15], accompanied by extensive theoretical
efforts [16–24]. It is now recognized that, microscopically,
the THE originates from nontrivial magnon dispersions due
to either chiral spin textures or nonsymmetric spin-spin inter-
actions, such as the Dzyaloshinskii-Moriya interaction (DMI).

However, in certain classes of magnetic insulators, the
THE is symmetry-prohibited. Examples include magnetically
disordered states at high temperatures and collinear antiferro-
magnets with combined time-reversal (T ) and inversion (I)
symmetry. For these systems, a spin Nernst effect (SNE) is
symmetry-allowed nonetheless. In the SNE, spin currents with
opposite polarization flow in the opposite transverse direction
in response to a longitudinal temperature gradient. As a result,
the heat current vanishes, and we are left with a pure transverse
spin current. The relation between the THE and the SNE is
akin to the relation between the anomalous Hall effect and the
spin Hall effect. The SNE has been predicted for magnets on
a honeycomb lattice, either in antiferromagnets (AFM) below
the Néel temperature in which the SNE is realized by magnons
[25–27], or ferromagnets (FM) above the Curie temperature in
which the SNE is realized by spinons [28]. Possible exper-
imental signature of the SNE has also been reported in the
antiferromagnetic insulator MnPS3 in the ordered phase [29].

Actually, the honeycomb magnets can display either the
THE or the SNE depending on their magnetic configurations,
as summarized in Table I. The key ingredient here is a second

nearest-neighbor DMI, which plays a similar role in spin
transport as the spin-orbit interaction in electron transport.
In the ordered phase of a honeycomb FM, the broken time-
reversal symmetry together with the DMI leads to the THE
[22,28]. On the other hand, in both the disordered phase of
the FM and the ordered phase of the AFM, the vanishing
magnetization forbids the THE, but the DMI still allows the
SNE [25,26,28]. These results strongly hint that the SNE
should also exist in the high-temperature disordered phase of
the honeycomb AFM.

In this paper we present a detailed study of this effect using
the Schwinger boson mean-field approach. We show that the
SNE is indeed enabled by the DMI in the high-temperature
disordered phase of a honeycomb AFM, and the transverse spin
current is carried by the two pairs of conjugated spinon states
connected by the combined T I symmetry. Supplemented by
a symmetry analysis, we calculate the reduced mean-field
order parameters of the spinons, establish the disordered
phase regime, and then identify the effect of a T I conjugate
pair on the pure SNE. Finally, we calculate the temperature
dependence of the SNE coefficient in this disordered phase,
and discuss its realization in real materials.

This paper is organized as follows. In Sec. II, we introduce
the honeycomb AFM model with a second nearest-neighbor
DMI, and present the mean-field solution to the Schwinger
boson Hamiltonian. This is followed by a discussion of the SNE
in Sec. III, including its dependence on the temperature, the
staggered field, and the DMI strength. Finally, we comment on
the limitations of our theoretical treatment and discuss possible
material realizations of the SNE in Sec. IV.

II. MODEL AND METHOD

A. Honeycomb AFM

We begin with the following spin Hamiltonian on a honey-
comb lattice:

H = J1

∑
〈i,j〉

Si · S j + D2

∑
〈〈i,j〉〉

vij ẑ · (Si × S j )

−hst

∑
i

(−1)iSz
i . (1)
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TABLE I. Summary of the thermal Hall effect (THE) and the
spin Nernst effect (SNE) in honeycomb magnets with a second
nearest-neighbor Dzyaloshinskii-Moriya interaction. Depending on
the symmetry, the system exhibits either a THE or a SNE.

Collinear order Ordered Disordered

FM THEa SNEb

AFM SNEc SNEd

aReferences [22,28].
bReference [28].
cReferences [25,26].
dThis work.

The first term describes the antiferromagnetic nearest-neighbor
(NN) Heisenberg exchange with J1 > 0. The second term is
a second-NN DMI. Here vij = 2

√
3(d1 × d2)z = ±1 with d1

and d2 the vectors connecting site i to its second NN site j , as
shown in Fig. 1. This second-NN DMI is allowed by crystal
symmetry [30,31]; it is intrinsic to the honeycomb lattice. The
third term is a staggered Zeeman field along the z direction
that stabilizes the system in the collinear AFM ground state at
low temperatures.1 Throughout this paper, we will use J1 as
the energy and temperature unit.

In the high-temperature paramagnetic (PM) phase, the
low-energy spin dynamics can be described by spinons. We
introduce the Schwinger boson (SB) representation for the spin
operator [33]

Si ≡ 1

2

∑
s,s ′

c
†
i,sσ ss ′ci,s ′ , (s, s ′ = ±1), (2)

with the constraint that the number of spinons must be con-
served at any given site,

∑
s c

†
i,sci,s = 2S. The index s = ±1

denotes up or down spins. In Eq. (2), σ are the Pauli matrices,
and c

†
i,s (ci,s) denotes the creation (annihilation) operator for

a spinon with spin s at site i. The spin amplitude S = 1/2 is
considered in this paper.

Substituting Eq. (2) into the spin Hamiltonian (1), we obtain

HSB = −2J1

∑
〈i,j〉

−→A†
ij

−→A ij − iD2

2

∑
〈〈i,j〉〉

∑
s

svijF†
ij,sFij,−s

−hst

∑
is

(−1)i

2
sc

†
i,sci,s +

∑
i

μi

(∑
s

c
†
i,sci,s − 2S

)
,

(3)

where
−→A ij ≡ (ci,↑cj,↓ − ci,↓cj,↑)/2 is the antiferromagnetic

NN bond operator, and Fij,s ≡ c
†
iscjs is the second NN bond

operator. μi is a Lagrange multiplier to impose the local

constraint at the mean-field level. We note that
−→A ij = −−→A ji is

1While it is not easy to apply such a field externally, similar effects
could arise when the SU(2) symmetry is broken by the single-ion
anisotropy for S > 1/2 or the Ising-type anisotropy in the exchange
coupling within a Schwinger boson (SB) mean-field approach [32].
This allows magnetic ordering in low-dimensional systems at finite
temperature.

FIG. 1. (a) An AFM honeycomb with DMI. The lattice vectors
are a1, a2, and a3, and the nearest bond vectors are d1, d2, and d3.
(b) The corresponding hexagonal Brillouin zone.

antisymmetric. Next we perform the mean-field decomposition
of the quartic terms of the spinon Hamiltonian. For the NN

bond operator, we set 〈−→A ij 〉 = −〈−→A ji〉 = χij . While, in gen-
eral, χij is complex, we work in the gauge in which χij is real.
The second-NN order parameter can be written as 〈Fij,s〉 ≡
ηS

ij,s + ivij η
A
ij,s = ηij,s , where ηS

ij,s = 〈Fij,s + Fji,s〉/2, and
ηA

ij,s = vij 〈Fij,s − Fji,s〉/(2i). The resulting bosonic Bogoli-
ubovde Gennes (BdG) Hamiltonian is given by

HM
SB = −J1

∑
〈i,j〉

∑
s

(sχij c
†
i,sc

†
j,−s + H.c.)

+D2

∑
〈〈i,j〉〉

∑
s

ivij

2
sηS

ij,−s (c†i,scj,s − H.c.)

+D2

∑
〈〈i,j〉〉

∑
s

s

2
ηA

ij,−s (c†i,scj,s + H.c.)

+
∑
is

(
μi − (−1)ihst

2
s

)
c
†
i,sci,s , (4)

where the trivial constant terms such as 2J1
∑

〈i,j〉 χ
2
ij are

neglected for simplicity.
This Hamiltonian can be simplified by symmetry con-

siderations. The spin Hamiltonian (1) has the combined
T I symmetry, which persists even in the low-temperature
AFM phase. Therefore, it is natural to expect that the high-
temperature PM phase also preserves the T I symmetry. For
the purpose of symmetry analysis, it is convenient to introduce
sublattice-specific notations. We use ai,s and bi,s to denote the
annihilation operators on the A and B sublattices, respectively.
The corresponding second-NN bond order parameter is then
denoted by Aij,s and Bij,s . The T and I symmetry are defined
as2 (more details in Appendix A)

T ci,sT −1 = i(σ2)s,s ′ci,s ′ , (5)

I
[
ai

bi

]
I−1 = σ3σ1

[
a−i

b−i

]
. (6)

2Note that our definition of the I operator has an additional matrix
σ3. It flips the sign of the spinon operator on the B site, and is needed
to make sure the NN bond term (χij ) transforms into itself under the
T I operation. The σ3 matrix is allowed since there is an extra phase
freedom in the spinon representation.
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Imposing the T I symmetry on the mean-field Hamiltonian (4)
yields

A∗
ij,−s = B−i−j,s . (7)

We now assume that the bond order parameters and the
chemical potential are spatially uniform. They are Aij,s =
AS

s + ivijA
A
s , Bij,s = BS

s + ivijB
A
s , χij = χ0, and μi = μ.

Fourier transforming into the momentum space �ks =
[ak,s , b

†
−k,−s]

T = (1/
√

N )
∑

i e
−ik·Ri [ai,s, b

†
i,−s]

T
, and using

the condition (7), we obtain the mean-field spinon Hamiltonian
in the momentum space

HM
SB =

∑
k,s,μ

�
†
ksh

s
μ(k)σμ�ks , (8)

where σμ = {I2×2, σx, σy, σz} and

hs
0(k) = μ − s

hst

2
+ D2s

4
MA

−sgS (k), (9a)

hs
1(k) − ihs

2(k) = −J1χ0sf (k), (9b)

hs
3(k) = D2s

4
P S

−sgA(k), (9c)

with MA
s ≡ AA

s − BA
−s and P S

s ≡ AS
s + BS

−s . The structure fac-
tors are gA(k) ≡ −2

∑
i sin(k · ai ), gS (k) ≡ 2

∑
i cos(k · ai ),

and f (k) = ∑
i e

idi ·k. gA(k) is an odd function of k, and gS (k)
and |f (k)| are even functions of k.

B. Schwinger boson mean-field solution

The spinon Hamiltonian (8) contains six parameters that
need to be determined self-consistently, namely, μ, χ0, and
MA

s and P S
s (with s = ±1). To diagonalize the Hamilto-

nian (8), we perform the Bogoliubov transformation �k,s =
U−1

s (k)�k,s = [αk,s , β
†
−k,−s]

T
, where U−1

s (k) is a paraunitary
matrix given by

U−1
s (k) =

[
cosh θs (k)

2 sinh θs (k)
2 e−iϕs (k)

sinh θs (k)
2 eiϕs (k) cosh θs (k)

2

]
. (10)

Here the Bogoliubov angles θ and ϕ are defined by hs

in Eq. (9): hs
1 = hs sinh θs cos ϕs , hs

2 = hs sinh θs sin ϕs ,
and hs

0 = hs cosh θs , with hs ≡
√

hs2
0 − hs2

1 − hs2
2 .

The diagonalized Hamiltonian has the form HM
SB =∑

ks (Es
α (k)α†

ksαks + Es
β (k)β†

ksβks ). It is clear that HM
SB

has two degenerate modes with Es
α (k) = E−s

β (k) =
hs (k) + hs

3(k),

Es
α (k) = D2s

4
P S

−sgAk

+
√(

μ − s
hst

2
+ D2s

4
MA−sgSk

)2

− |J1χ0fk|2 .

(11)

The wave function of the αks (βks) quasiparticle is given in
Appendix C.

This degeneracy originates from the combined T I symme-
try of our mean-field Hamiltonian. We note that the annihilation
operator of a spinon αks transforms into into sβk,−s under the

FIG. 2. The solution of order parameters with staggered field
hst = 0 for (a) and (c), and hst = 0.1J1 for (b) and (d).

T I operation defined in Eq. (5). From this, we find

Es
α (k) = E−s

β (k) . (12)

We call such a pair of degenerate modes as a T I symmetry
conjugate pair. This conjugate pair is crucial for the appearance
of a pure transverse spin current as we discuss below.

We compute mean-field order parameters by solving a
set of self-consistent equations detailed in Appendix B. The
temperature dependence of order parameters at D2 = 0.24J1

with different hst are shown in Fig. 2, along with the spinon
dispersion in Fig. 3. We first note that all order parameters
vanish above Tc ∼ 0.826J1. This is an artifact of the mean-field
approach, and Tc should be interpreted as a characteristic
crossover temperature above which the system behaves as a
paramagnet with local moments [33]. On the other hand, as
the temperature approaches zero, the spinon gap at the � point
closes (Fig. 3), and the system undergoes a phase transition
into the collinear AFM phase at the Néel temperature TN via
the spinon condensation [34].

FIG. 3. The dispersions along high symmetry lines � − M −
K − � for (a) hst = 0 and T = 0.1J1, (b) hst = 0.1J1 and T = 0.1J1,
(c) hst = 0 and T = 0.5J1, and (d) hst = 0.1J1 and T = 0.5J1.
α(β )↑(↓) denotes the mode Es

α(β )(k) with s = ±1 for spin ↑ (↓).
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For the current two-dimensional model, TN is strictly zero
because single-site spin anisotropy or anisotropic exchange
coupling is absent. Spin ordering at finite T is mimicked by
the nonzero staggered field hst .

III. SPIN NERNST EFFECT OF SPINONS

A. Spin conservation and mirror symmetry

With a firm understanding of the spinon spectra, we now
turn to the SNE. As a first step, we examine how many spins
are carried by the spinon modes. In general, this is not a trivial
question because, in the presence of the DMI, the spin angular
momentum does not have to be conserved. Fortunately, our
model also has the mirror symmetryMz about the lattice plane,
which leads to the conservation of the total spin Sz,

Sz = h̄

2

∑
ks

s�
†
ksσz�ks = h̄

2

∑
ks

s�
†
ksσz�ks . (13)

We see that the αks and βk−s modes have opposite angular
momentum 〈0|αksSzα

†
ks |0〉 = h̄s/2 and 〈0|βk−sSzβ

†
k−s |0〉 =

−h̄s/2, respectively. Here |0〉 is the vacuum state of spinons.
The SNE is due to the opposite transverse motion of the two
spin species driven by a longitudinal temperature gradient.

B. Spin Nernst effect coefficient in disordered state

Since spinons do not carry charge, they cannot be driven by
an external electric field, but they can respond to a statistical
force, such as the temperature gradient ∇T . Due to the
conservation of Sz, spin current can be written as JSN =∑

s,λ s(h̄/2) J s
λ, where J s

λ is the spinon current of mode λ

and spin s. According to the authors of Refs. [16,17,20,25],
the transverse J s

λ due to ∇T is given by

J s
λ = ẑ

h̄
× ∇T

∫
dk

(2π )2
c1

(
nλ

s (k)
)
�s

λ(k) , (14)

where c1 is the weight function c1(x) = x ln x − (1 +
x) ln(1 + x), and nλ

s (k) and �s
λ(k) are the Bose-Einstein

distribution functions and the Berry curvature (defined below)
for the mode Es

λ(k), respectively.
We now analyze the symmetry properties of the Berry

curvature, which for the mode Es
α (k) is expressed as

�s
α (k) = i∂ku

s†
α (k) × σ3∂ku

s
α (k)

= 1
2∇k cosh θs (k) × ∇kϕs (k), (15)

where us
α (k) is the wave function of the αk,s quasiparticle as

presented in Appendix C. Under the T I operation, α → β,
s → −s, and k → k. In addition, the Berry curvature should
also flip sign due to the factor i in its definition. As such, under
the T I operation, we have

�−s
β (k) = −�s

α (k) . (16)

Together with the energy dispersion relation Es
α (k) = E−s

β (k)
[see Eq. (12)], this relation indicates that J s

α and J−s
β are always

opposite in sign, resulting in a pure transverse spin current.
Next we focus on a particular mode α. For bosonic BdG

equations, there is a general relation of the Berry curvature

between the α and β mode (see Appendix D)

�s
β (k) = �−s

α (−k) . (17)

Combining this relation with Eq. (16), we have

�s
α (k) = −�s

α (−k) . (18)

This is clearly seen in Fig. 4(a). If the spinon dispersion is
inversion symmetric, the transverse current J s

α would vanish.
However, as we can see from Eq. (11), the presence of the
DMI breaks this symmetry, i.e., Es

λ(k) 
= Es
λ(−k) as illustrated

in Fig. 4(b). After summing over all occupied states, there
should be a net spinon current. Therefore the second NN DMI
is crucial for the appearance of the SNE.

We numerically calculate the spin Nernst coefficient given
by [16,17,20,25]

αxy =
∑

s

∫
dk

(2π )2
c1

(
nα

s (k)
)
�s

α (k). (19)

where αxy is defined by the relation JSN = αxy ẑ × ∇T .
The temperature dependence of αxy is calculated at different
staggered field hst and DMI strength D2 in Fig. 5. We find
that αxy will be zero at two ends of the temperature zone, i.e.,
T = 0 and T = Tc. When T approaches zero, the fluctuating
component of spinons is decreased. On the other hand, when
the temperature approaches T = Tc, Ps is reduced to zero.
This will cause the SNE to vanish because the vanishing of
Ps effectively restores the inversion symmetry of the spinon
dispersion.

In addition, the peak of the spin Nernst coefficient at a
special temperature results from the competition between the
enhancement of excited spinons engaging in transport and the
reduction of the second-NN order parameter Ps and Ms as
the temperature increases. The staggered field will weaken the
spin Nernst coefficient in opposite to that of DMI because
the staggered field supports a collinear configuration, but
DMI favors a perpendicular one between two second-NN spin
polarizations. In reality, TN could be finite due to a variety
of effects neglected here, and the temperature dependence
of the spin Nernst coefficient is expected to depend on the
competition between these effects and the DMI, especially
near TN . Nevertheless, the spin Nernst coefficient is shown
to change continuously with increasing hst . This implies
that the spin Nernst coefficient changes continuously at the
magnetic transition temperature as long as it is the second-order
transition.

FIG. 4. The distributions of Berry curvature and spectrum for αk,s

spinon with spin s = −1 at temperature T = 0.1J1 without staggered
fields: (a) The Berry curvature; (b) The spectrum.
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FIG. 5. The spinon Nernst coefficients as a function of temper-
ature (a) at different staggered fields hst and a fixed DM interaction
D2 = 0.24J1 and (b) at different DM interaction D2 and without a
staggered field.

C. Relation between magnons and spinons in antiferromagnets

We now explore the connection between the SNE in the PM
phase and the SNE in the AFM phase. In the Schwinger boson
picture, the transition from the PM to AFM phase takes place
via the spinon condensation [34]. Take Fig. 3(b) as an example.
As the temperature is lowered to the Néel temperature TN , the
spinons will condense into the α↑ and β↓ modes. Consequently,
the resulting state will have a macroscopic occupation of spin
up (down) at A (B) sites, giving rise to the AFM order. At
the same time, the two upper modes, α↓ and β↑, will evolve
into magnons. In fact, upon the spinon condensation, the order
parameter MA

−s vanishes, and the dispersion of the α↓ mode
becomes

Eα↓(k) = −D2

4
P S

+gA(k) +
√

(μ + hst/2)2−|J1χ0f (k)|2.
(20)

Comparing the above expression with that of magnons
Em(k) = SD2gA(k)+

√
(J1S+hst )2−S2J 2

1 |f (k)|2 [25,26],
we see that they share the basic algebraic structure. The slight
difference is due to the incomplete condensation of spinons.

It is obvious that across the phase boundary between the PM
and AFM phase, the symmetries relevant to the SNE, namely,
the combined T I symmetry and the breaking of the spin
rotational symmetry due to D2 remains the same. Hence the
SNE in both the PM and AFM phase has the same microscopic
origin, as shown in Fig. 6.

FIG. 6. It illustrates the spin Nernst effect on a honeycomb AFM
carried by spin fluctuations (a) at T > TN , the SNE is carried by
spinons in the paramagnetic phase and (b) at T < TN , the SNE is
carried by magnons.

IV. SUMMARY AND DISCUSSION

In summary, we study the pure SNE in the PM state on
an antiferromagnetic honeycomb lattice with a second-NN
DMI, using the Schwinger boson mean-field method. We
find that the pairs of the combined T I conjugate modes of
spinons support a transverse spin current without a transverse
thermal current. Because of the competition between the
short-range spin correlations, represented by the temperature-
dependent mean-field order parameters, and spin fluctuations,
represented by the thermal population of spinons, the spin
Nernst coefficient shows a nontrivial temperature dependence
for a rather simple model considered here. This might suggest
that a paramagnetic insulator with AFM interaction of spins
could serve as a spintronics device even above the magnetic
transition temperature to generate or detect the spin current.

Before closing, we would like to discuss several issues
left for future studies. Throughout this paper, we neglect
the fluctuations from the mean-field solution. In fact, the
Schwinger boson mean-field treatment is the result of the
zeroth order of O(1/N ) in a large-N expansion of a spin
SU(N ) model [33]. Rigorously speaking, the low-energy part
of fluctuations, i.e., the phase fluctuation of order parameters,
could couple with the U (1) gauge field, the dynamics of which
may exhibit a confined or deconfined phase. Exploring these
effects of fluctuations on spin transport will be an interesting
problem in the future [35,36]. However, since our argument
about the finite SNE in the PM state of the honeycomb AFM is
based on the combined T I symmetry, our conclusion would
not be altered in a qualitative manner.

We do not use the full projected symmetry group method
to analyze the spinon Hamiltonian. Such analyses would be
necessary for spin liquid systems at low temperatures described
by fermionic spinons. On the other hand, for investigating the
pure SNE at high temperatures, it is sufficient to consider only
the combined T I symmetry based on the unprojected spinon
wave function.

So far we only considered the so-called intrinsic contribu-
tion to the spinon SNE due to the Berry curvature of the spinon
bands. Similar to the anomalous Hall effect [37], there should
be extrinsic effect due to the scattering between spinons and
other relevant physical degrees of freedom such as phonons.
We note that there is an analogous effect of electrons [38,39]
for which the impurity scattering has been discussed [40].

In real materials, such as transition-metal trichalcogenides,
the situation is more complicated. In addition to the interactions
described in Eq. (1), longer-range exchange interactions are
present, stabilizing complex magnetic ordered states [41].
Furthermore, single-ion anisotropies and anisotropic exchange
interactions could exist, making finite-temperature magnetic
ordering possible even for the two-dimensional limit [42].
These effects not only require solving a set of self-consistent
equations for many order parameters, but also require extend-
ing the current formalism as demonstrated in Ref. [32]. For
S > 1/2 systems, hst is related to the single-ion anisotropy K2

as hst ∼ K2(S − 1/2)/SMz with Mz = ∑
s,s ′ (σ3)s,s ′ 〈c†i,sci,s ′ 〉

[32]. For MnPS3 as discussed in Ref. [25], hst/J could become
as large as 0.01 at low temperatures. This value is an order
of magnitude smaller than the ones used in our analyses.
Therefore, it is expected that the spin Nernst coefficient does
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not change significantly across a magnetic transition tempera-
ture. Detailed material dependence of the SNE including these
effects is left for future studies.
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APPENDIX A: SYMMETRY OPERATIONS

We discuss symmetry operations on the spinon Hamiltonian
in the momentum space. These symmetry operations include
inversion operation I, time-reversal operation T , and mirror
operation Mz.

The spinon Hamiltonian matrix at each k point is given by

Hs (k) =
∑

μ

hs
μ(k)σμ. (A1)

For the inversion operation, we follow the definition of Eq. (6)
in the lattice space, which ensures thatISi,A(B )I−1 = S−i,B(A).
Accordingly, the Hamiltonian matrix Hs (k) is transformed as

IHs (k)I−1 = σ2H
T
−s (k)σ, (A2)

where T stands for the matrix transposition.
The time-reversal operator T is defined in Eq. (5), and

transforms Hs (k) into

T Hs (k)T −1 = σ3H
∗
−s (−k)σ3. (A3)

Under the combined T I operation, Hs (k) is thus transformed
as

T IHs (k)(T I )−1 = σ1Hs (−k)σ1. (A4)

Therefore, if the system has the combined T I symmetry, then
Hs (k) should satisfy

σ1Hs (−k)σ1 = Hs (k) . (A5)

The mirror symmetry operatorMz with respect to the lattice
plane is defined as

Mzci,sM−1
z = i(σ3)s,s ′ci,s ′ , (A6)

which leads to MzS
z
i M−1

z = Sz
i and MzS

x,y

i M−1
z = −S

x,y

i .
The Hamiltonian matrix is invariant under mirror operationM

MHs (k)M−1 = Hs (k) . (A7)

APPENDIX B: MEAN-FIELD SELF-CONSISTENT
EQUATIONS

The mean-field order parameters and the Lagrange multi-
plier μ are determined by minimizing the free energy involving
these parameters. By differentiating the free energy with
respect to these parameters and equating to zero, one arrives

at the following set of self-consistent equations:

1 + 2S = 1

2N

∑
ks

[
hs

0(k)

hs (k)

(
nα

k,s + n
β

−k,−s + 1
)]

, (B1a)

4χ0 = J1χ0

3N

∑
ks

[ |f (k)|2
hs (k)

(
nα

k,s + n
β

−k,−s + 1
)]

, (B1b)

MA
s = 1

6N

∑
k

gA(k)
(
nα

k,s − n
β

−k,−s − 1
)
, (B1c)

−P S
s = 1

6N

∑
k

gS (k)
hs

0(k)

hs (k)

(
nα

k,s + n
β

−k,−s + 1
)
, (B1d)

where n
α/β

k,s = [exp (Es
α,β (k)/T ) − 1]−1 is the Bose distribu-

tion function, and N is the number of unit cells.

APPENDIX C: BDG EQUATION AND BERRY CURVATURE

In this section we present a detailed discussion of the
bosonic BdG equation and the associated wave functions.
Our starting point is the spinon mean-field Hamiltonian (8),
reproduced here for convenience

H =
∑
k,s

�
†
ksHs (k)�ks , (C1)

where �ks = [ak,s , b
†
−k,−s]

T
with ak,s and bk,s being the

Fourier transform of the spinon operators on the A and B

sublattices, respectively. Introducing the Bogoliubov transfor-
mation (

ak,s

b
†
−k,−s

)
= Us (k)

(
αk,s

β
†
−k,−s

)
. (C2)

The boson commutation relation dictates that Us (k) is a
paraunitary matrix, i.e.,

Us (k)σ3U
†
s (k) = σ3 . (C3)

By demanding that the Bogoliubov transforma-
tion diagonalizes the Hamiltonian, i.e., H =∑

ks [Es
α (k)α†

ksαks + Es
β (k)β†

ksβks], we obtain the BdG
equation

Hs (k)Us (k) = σ3Us (k)σ3�(k), (C4)

where �(k) = diag(Es
α (k), E−s

β (−k)) is the eigenvalue ma-
trix. We note that both the excitation energies Es

α (k) and
E−s

β (−k) must be positive. Otherwise the mean-field solution
is unphysical. The explicit expression of Us (k) is given
Eq. (10).

For the purpose of calculating the Berry curvature, it is
necessary to clarify the wave function of a spinon quasiparticle.
Let us write Us (k) = [us

α (k), u−s

β̄
(−k)], where us

α (k) and

u−s

β̄
(−k) are two-component column vectors. Inserting this

expression into the BdG equation (C4), we have

Hs (k)us
α (k) = Es

α (k)σ3u
s
α (k) , (C5a)

Hs (k)u−s

β̄
(−k) = −E−s

β (−k)σ3u
−s

β̄
(−k) . (C5b)

It is clear that us
α (k) and u−s

β̄
(−k) are the wave functions of the

quasiparticle αk,s with positive energy Es
α (k) and the quasihole

035424-6



SPIN-NERNST EFFECT IN THE PARAMAGNETIC REGIME … PHYSICAL REVIEW B 98, 035424 (2018)

β−k,−s with negative energy −E−s
β (−k), respectively. We

denote the quasihole wave functions by the subscript ᾱ or β̄.
The above discussion suggests that to find the quasiparticle

wave function of the β−k,−s mode, we just need to recast

the spinon Hamiltonian in the basis �̃ks = [bk,s , a
†
−k,−s]

T
. To

do that, we make use of the particle-hole conjugate operator,
defined by

Cci,sC−1 = c
†
i,s . (C6)

Acting C on the basis �ks , we have

C�ksC−1 = σ1

[
bk,−s

a
†
−k,s

]
. (C7)

Consequently,

H̃s (k) = CHs (k)C−1 = σ1H
∗
s (−k)σ1. (C8)

We can then deduce that

u−s
β (k) = σ1u

−s∗
β̄

(k) . (C9)

If the system has T I symmetry, according to Eq. (A4)

H̃s (k) = σ1H
∗
s (−k)σ1 = H ∗

s (k) . (C10)

Since H̃s (k) and H ∗
s (k) describe the same physical system, we

have

u−s
β (k) = us∗

α (k) . (C11)

APPENDIX D: PROPERTY OF BERRY CURVATURE

The Berry curvature is generally defined by the projection
operator

�n(k) = −iεij Tr[P̄n(k)∂ki
Pn(k)∂kj

Pn(k)], (D1)

where Pn(k) is the projection operator for the nth band at the
momentum k, and P̄n ≡ 1 − Pn. Note that for the generalized

eigenvalue problem given by Eq. (C5), the projector operator
is defined by [19]

Pn = |n〉〈n|σ3

〈n|σ3|n〉 . (D2)

For our disordered AFM described by the bosonic BdG
Hamiltonian Hs (k), this leads to the formula

�s
λ(k) = i∂ku

s†
λ (k) × σ3∂ku

s
λ(k)/

(
u

s†
λ (k)σ3u

s
λ(k)

)
, (D3)

where uλ,s (k) is the wave function of λ-type quasiparticle or
quasihole, and the normalization u

†
λ,s (k)σ3uλ,s (k) = ±1 for

quasiparticle and quasiholes, respectively.
For a two-level system, it follows from Eq. (D1) that the

Berry curvature has the property

�n(k) = −�n̄(k), (D4)

where n and n̄ refers to the quasiparticle and quasihole bands,
respectively. This property is a special case of

∑
n �n(k) = 0

with n � 2. Applying this relation to our Hamiltonian Hs (k),
we have

�s
α (k) = −�−s

β̄
(−k). (D5)

Using Eq. (C9), one can deduce the relation

�−s
β (k) = −�−s

β̄
(k). (D6)

The result can be also applied to a general reduced BdG
Hamiltonian.

In the presence of the T I symmetry, the Berry curvatures
for the two modes α and β could be also related. Using
Eq. (C11), we find

�s
α (k) = −�−s

β (k). (D7)
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