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Robust edge states induced by electron-phonon interaction in graphene nanoribbons
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The search of new means of generating and controlling topological states of matter is at the front of many joint
efforts, including band-gap engineering by doping and light-induced topological states. Most of our understading,
however, is based on a single particle picture. Topological states in systems including interaction effects, such as
electron-electron and electron-phonon, remain less explored. By exploiting a nonperturbative and nonadiabatic
picture, here we show how the interaction between electrons and a coherent phonon mode can lead to a band gap
hosting edge states of topological origin. Further numerical simulations witness the robustness of these states
against different types of disorder. Our results contribute to the search of topological states, in this case in a
minimal Fock space.
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I. INTRODUCTION

The search of topological states of matter is now reshaping
condensed matter physics [1,2]. The pioneering works in the
1980s [3,4] bloomed about 20 years later with the prediction
[5,6] and discovery of topological insulators in two [7] and
three dimensions [8]. This field is today more active than ever,
with new trends and discoveries expanding its frontiers. This
includes, for example, the search for gapless but topological
phases such as Weyl semimetals [9], topological states induced
by time-dependent fields (the so-called Floquet topological
insulators) [10–12], time-dependent lattice distortions [13],
and, more recently, topological states in non-Hermitian sys-
tems [14,15]. Today, topological states have a main role
in the global search for means of achieving on-demand
properties [16].

However, most of the current understanding of topological
states remains at the level of a single particle. The effect of
interactions, both on topological phases predicted on the basis
of a single-particle picture or as a mean of inducing new
ones, stands out as a major problem. Previous studies along
this direction have shown that electron-phonon interaction
can either suppress [17] or even induce [18–21] nontrivial
topological phases as the temperature increases. But the in-
teraction between electrons and coherent phonons can also
induce dressed states (even in the low-temperature limit),
thereby requiring a careful analysis of the excitation spectrum
of the composed system (electron and phonons). This type of
interaction typically requires going beyond the adiabatic limit
and has been predicted to lead to a phonon-induced band-gap
opening in carbon nanotubes [22,23]. Experiments have also
evidenced a breakdown of the Born-Oppenheimer approxima-
tion in graphene with the same type of high-symmetry optical
phonons [24]. The recent observation of chiral phonons in 2D
materials [25] also adds much interest in the context of possible
ARPES experiments [26]. Furthermore, other authors have put
forward the possibility of using optical means to control the
electron-phonon interaction [27].

Here we examine a model for electron-phonon interaction
in a quasi-one-dimensional system and show that it may lead
to robust topological edge states in a sample that otherwise
lacked them. Specifically, we consider a graphene nanoribbon
in the presence of a strong electron-phonon interaction with a
single high-symmetry optical phonon mode. This corresponds
to the �-E2g longitudinal optical mode in graphene, which has
been shown to lead to measurable Kohn anomalies [24,28].
Experimentally, the phonon energy is of about 200 meV and
predictions in carbon nanotubes indicate that the associated
band gap could reach 32 meV [23]. By exploiting a Fock
space picture incorporating nonperturbative and nonadiabatic
effects [29,30], we find that at the center of the phonon-induced
band gaps (located at half the phonon energy above the Dirac
point) there are edge states of topological origin induced by
the electron-phonon interaction. Furthermore, our numerical
simulations show that these states remain robust to different
types of disorder and ribbon geometries.

II. HAMILTONIAN MODEL AND FOCK SPACE
SOLUTION SCHEME

To investigate the effects of the electron-phonon (e-ph)
interaction, we use the framework introduced in Refs. [29,30].
The purpose of this section is to write the system’s Hamiltonian
in a basis for the electron-phonon Fock space corresponding to
a single electron plus the excitations of the phonon mode. Since
the description is coherent and, as such, the quantum phases
are fully preserved, the e-ph interaction does not produce
any phase randomization. This approach has been used for
a variety of problems including vibration assisted tunneling
in scanning tunneling microscopy experiments [31], transport
through molecules [32,33], and resonant tunneling in double
barrier heterostructures [34].

Let us consider a tight-binding description of graphene
nanoribbons (GNRs) through the Hamiltonian

Ĥ = −
∑
〈i,j〉

γij ĉ
†
i ĉj , (1)
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where the sum runs over nearest-neighbor carbon atoms and
γij represents the hopping amplitude connecting them. The
fermion operator ĉ

†
i (ĉi) creates (annihilates) an electron at site

i of the lattice. Carbon displacements δr i from their respective
equilibrium positions r0

i are incorporated as a renormalization
of the bare hopping amplitude γ0 = 2.7 eV through [35]
γij = γ0 exp[−b(dij /a0 − 1)], where dij = |r0

i − r0
j + δr i −

δrj | accounts for the distance between carbons i and j ,
a0 = |r0

i − r0
j | � 1.42 Å is the equilibrium C-C distance, and

b � 3.37 is the rate of decay.
As depicted in Fig. 1(a), we consider a single phonon mode

characterized by a rigid displacement δr = a0Qu between
sublattices A and B, where Q sets the strength of the displace-
ment and u = (cos φ, sin φ) its direction.1 The positions of
the carbon atoms thus depend on which sublattice they belong,
i.e., r i = r0

i ± δr/2, for i ∈ {A, B}, respectively. Assuming
small displacements, i.e., Q � 1, we linearize the hoppings as
γij = γ0(1 − bQ cos αij ), where αij is the angle subtended by
the C-C bond and the displacement direction. Now we impose
quantization on the mechanical coordinate, such that the above
hoppings introduce the electron-phonon interaction. The full
Hamiltonian therefore reads

Ĥ = Ĥel + Ĥph −
∑
〈i,j 〉

γx cos αij ĉ
†
i ĉj (â† + â), (2)

where â† (â) creates (annihilates) one phonon excitation of
frequency ω, and γx sets the strength of the e-ph interaction.
The pure electronic Hamiltonian is given by the C-C hoppings
in equilibrium, and writes as in Eq. (1) but with the replacement
γij → γ0. In Eq. (2), we also included the phonon Hamiltonian,
given by

Ĥph = h̄ωâ†â. (3)

We work within a Fock space spanned by |i,n〉 = |i〉 ⊗ |n〉
states, where |i〉 describes a single electron state (usually
referred to the site basis), while |n〉 sets the number of phonon
excitations in the lattice. In this basis, the Hamiltonian of
Eq. (2) can be represented as the following matrix:

H = H0 ⊗ 1ph + 1el ⊗ h̄� + H1 ⊗ X . (4)

Here, H0 and H1 are electronic matrices representing the γ0

and γx hoppings in the hexagonal graphene lattice, 1ph and 1el

are the identity matrices in phonon and electron subspaces, re-
spectively, while the remaining phonon matrices are defined as

� =

⎛
⎜⎜⎝

0 0 0
0 ω 0
0 0 2ω

. . .

⎞
⎟⎟⎠, X =

⎛
⎜⎜⎜⎝

0
√

1 0√
1 0

√
2

0
√

2 0
. . .

⎞
⎟⎟⎟⎠.

(5)

Expressed in the Fock space basis, the Hamiltonian in
Eq. (4) can be visualized as the original one without inter-
actions together with the replicas corresponding to different
phonon excitations and the interactions between them. The
presence of these excitations is accounted for by the additional

1Throughout this paper, we will assume a longitudinal optical mode,
such that u = (1,0).

(a)

(b)

(c)

FIG. 1. Armchair GNR with phonon mode E2g . (a) ac-GNR of
Ny = 4 carbon atoms wide (Ly = 8.61 Å). The shaded rectangle
encloses a “transversal layer,” i.e., a single line of Ny carbon atoms.
The longitudinal optical phonon is depicted by red and blue arrows. (b)
Eigenmode decomposition of the lattice. In the noninteracting case,
each eigenmode consists of a dimer chain with intracell hoppings γ (0)

q,a

and intercell hoppings γ
(0)
q,b. (c) Interacting case: Each dimer chain

(eigenmode q), now splits into infinite replicas with different number
of phonon excitations.

energies nh̄ω. In this representation, the e-ph coupling enters
through the last term, which enables the absorption and
emission of a single phonon each time the electron “hops”
between two carbon atoms.

III. ELECTRON-PHONON INDUCED EDGE STATES

As introduced in the previous section, here we consider a
fully quantized vibrational mode of frequency ω, and describe
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the vibrating nanoribbons through a Fock space spanned by
the states |i,n〉, which accounts for both the electronic and
vibrational degrees of freedom.

This might remind the reader of a similar picture used for
time-periodic Hamiltonians: Floquet theory [36]. Indeed, there
are several parallels stemming from a seeming isomorphism
between the Floquet space and the Fock space [37], but a few
crucial differences must be noticed: (i) Unlike for the case of
time-dependent potentials, for the case of phonons, tempera-
ture plays a natural role in defining the phonon population. (ii)
In Floquet theory, the replica index is unbound while in the case
of phonons described here it is bounded from below (n � 0).
(iii) The matrix elements for phonon emission and absorption
change with the phonon population. Both descriptions (i.e.,
Fock space and Floquet space) match only when the system
is in a highly excited state, a fact that is far from correct
for optical phonons with typical energies exceeding kBT at
room temperature. Aside from these differences, inspired from
what we learned from Floquet topological states [10,11,38],
one might then search for similar physics induced by the
electron-phonon interaction.

Another issue one might notice is the role of time-reversal
symmetry (TRS): While a gap in irradiated graphene requires
circularly polarized light so as to break TRS [10,39],2 the
phonons considered here do not break such a symmetry (though
they do open a band gap [22,23,40] at h̄ω/2 in the bulk
material). However, one needs also to point out that, in this
article, we are restricting ourselves to a ribbon geometry (i.e., a
quasi-one-dimensional system) rather than a two-dimensional
system. Interestingly, chiral phonons [25,41], lying at the
corners of the Brillouin zone, could be used in two-dimensional
hexagonal lattices to break TRS (at least locally in the valleys).
Carrying on with the Fock-Floquet analogy, one could expect
in the latter case similar physics as that of irradiated graphene
with circularly polarized light.

A. Vibration induced band gaps

The proposed vibration of the lattice consists of a single
mode characterized by a rigid displacement between the two
sublattices. We will work in the case where the displacement
direction coincides with the longitudinal direction of the
ribbon, i.e., φ = 0, motivated by the strong e-ph coupling
observed in the optical mode A1(L) in CNTs leading to a
Peierls-like mechanism [42–44], and Kohn anomalies [45], and
also in graphene samples [24].

To begin with, we consider a graphene nanoribbon with
armchair edge geometry (ac-GNR). The reason of this partic-
ular choice rests in the possibility that it offers to decompose
the system into a series of decoupled eigenmodes. To do so,
we start from the noninteracting case (γx = 0) and we use the
basis transformation proposed in Ref. [46]. This transformation
takes the ac-GNR into a series of Ny eigenmodes, each one
consisting of a dimer chain with alternating hoppings γ (0)

q,a =
2γ0 cos[πq/(2Ny + 1)] and γ

(0)
q,b = γ0, with q = 1, . . . ,Ny the

2We note the laser-induced band-gap opening has been experimen-
tally observed through ARPES at the surface of a three-dimensional
topological insulator [61].

mode number [see Fig. 1(b)]. In this sense, one can identify
each eigenmode q as an independent Su-Schrieffer-Heeger
(SSH) model [47], for which the topological properties are
well-known [48–50]. Furthermore, the SSH model for time-
dependent hoppings was also investigated in the context of
Floquet topological states, both theoretically [51–54] and
experimentally [55].

When including the e-ph interaction, we can extend this
mode decomposition in the Fock space, such that for each
eigenmode we obtain a series of dimer chains (or replicas
of the noninteracting case), each one belonging to a different
number n of phonon excitations, see Fig. 1(c). This is easy to
see regarding the structure of the Fock Hamiltonian in Eq. (4),
where H0 and H1 commute with each other for this particular
ribbon geometry and phonon mode. So, for a given mode q, the
intrachain hoppings alternate between γ (0)

q,a and γ
(0)
q,b, as in the

noninteracting case. The phonon energy nh̄ω in the n-replica
enters as a site energy along the whole chain, according to the
second term on the right-hand side of Eq. (4), and the interchain
hoppings connecting the n − 1 and n replicas are given by
γ (n)

q,a = √
nγx cos[πq/(2Ny + 1)] and γ

(n)
q,b = −√

nγx .
The degree of complexity imposed by the interaction clearly

makes difficult the possibility of having analytic solutions for
the system. However, the assumed weak coupling between
the replicas (γx � γ0) allows us to estimate the effects of the
vibration on the electronic band structure by using perturbation
theory around half the phonon energy. Other quantities like
the local density of states (LDoS), eigenenergy spectrum,
and wave-function amplitudes will be addressed numerically
through standard techniques.

To begin with, we neglect the coupling γx between the dif-
ferent phonon replicas, such that the (q,n)-dispersion relation
at zeroth order can be written as

ε
(n)
q,±(k) = nh̄ω ±

√
γ

(0)
q,a

2 + γ
(0)
q,b

2 + 2γ
(0)
q,aγ

(0)
q,b cos ka. (6)

This equation represents the band dispersion one would ob-
tain for a dimer chain with unit cell length a = 3a0/2, but
shifted in an integer number of h̄ω, which accounts for the
phonon’s energy. Among the infinite number of replicas, we
will take as reference the lowest energy bands belonging to the
zero-phonon subspace. This is justified for optical phonons
with energies largely exceeding the thermal energy at room
temperature (the stretching mode in graphene has a phonon
energy of about 200 meV, this is about eight times the thermal
energy at 300 K). Hence, the phonon population is zero for
practical purposes. According to Eq. (6), the number of replicas
crossing each other will depend on the relation between the
phonon energy h̄ω and the bandwidth associated with each
replica, given by 6γ0 for Ny > 1.

For h̄ω 
 γ0, the distance between bands belonging to dif-
ferent replicas is much larger than their widths and, therefore,
they do not cross each other. In this limit, the perturbation
on the zero-phonon replica due to replicas with a higher
number of phonons becomes negligible: The electron lying
in a lattice without phonons can never reach enough energy as
to spontaneously emit a phonon.

The symmetry between the conduction (+) and valence (−)
bands with respect to nh̄ω for n = 0 and n = 1 ensures that the
band crossing takes place at half the phonon energy, ε = h̄ω/2.
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This fact, together with the maximum allowed energy for the
zero-phonon band, imposes the condition h̄ω < 6γ0 for the
first band crossing between two different phonon replicas. In
general, for smaller values of ω, the zero-phonon replica will
cross with the n phonon replica once the condition nh̄ω < 6γ0

is fulfilled.
The eigenmode decomposition allows us to simplify the

analysis around the band crossing processes. As in this partic-
ular geometry they are decoupled, the only relevant crossings
are those with the same value of q. We can think, then, in
the crossing between n = 0 and n = 1 bands belonging to the
eigenmode q. To have such a crossing, it is necessary that the
n = 0 conduction band and the n = 1 valence band overlap,
which imposes the following range:∣∣γ0 − γ (0)

q,a

∣∣ <
h̄ω

2
< γ0 + γ (0)

q,a . (7)

If such inequality can not be met, then the bands do not
cross each other, and the zero-phonon replica gets virtually
unperturbed. Conversely, if such inequality is fulfilled, the
bands will cross at the k-points determined by the condition
ε

(0)
q,+(k) = ε

(1)
q,−(k). This equation has two solutions, ±k∗

q , due to
the symmetric dispersion of the bands in Eq. (6) around k = 0.
When we include the e-ph interaction through γx , the crossing
between the bands gets avoided, yielding a gap induced by
the vibration. For these k∗

q the group velocity goes to zero,
meaning that a new backscattering process was introduced.
From the point of view of the n = 0 replica, an electron
traveling in a static ribbon3 with energy ε

(0)
q,+(k∗

q ) may suffer a
reflection, together with the emission of a phonon of energy h̄ω.
Alternatively, from the point of view of the n = 1 replica, an
electron traveling in a vibrating ribbon, such that the composite
e-ph system has energy ε

(1)
q,−(k∗

q ), may also be reflected, after
absorption of the phonon excitation present in the lattice.

Supposing the limit case Ny → ∞, we can take the cosine
argument in γ (0)

q,a as a continuous variable x = qπ/(2Ny + 1)
in the range 0 < x < π/2. Under the perturbative regime, we
estimate the band-gap size from a reduced Hamiltonian which
only includes those bands which are expected to cross (see
Appendix). The size of the gap, as a function of x, writes

	(x) = 3γx

η

√(
η2+ − cos2 x

)(
cos2 x − η2−

)
, (8)

where η = h̄ω/4γ0 and η± = η ± 1/2. In Fig. 2, we show
this vibration-induced band gap for several values of the
phonon frequency in the limit Ny → ∞. To some extent,
one can regard this limit as taking the nanoribbon into a
two-dimensional graphene layer. Here, the set of eigenmodes
becomes dense, meaning that there is always a specific x∗-
value in which the vibration-induced gap necessarily closes.
This is a consequence of the preserved TRS by the phonon
mode. Going back to the finite Ny system, the set of x values
is no longer dense, and the overall gap will be given by the q

mode closest to x∗. This somewhat relaxes the need to break
TRS as to open a gap in quasi-one-dimensional systems.

We notice that Eq. (8) has physical meaning as long as
the argument of the square root is positive. This sets the

3We here neglect the zero point motion of the lattice.

FIG. 2. Band-gap estimation according to Eq. (8) as a function
of the eigenmode number in the limit Ny → ∞, for several values of
the phonon frequency, and γx = 0.1γ0. The n = 0 and n = 1 phonon
bands are shown as shaded regions in black and red, respectively. The
dashed blue lines delimit the gapped regions.

condition for those eigenmodes in which there is a band
crossing, and it results to be 0 < x < acos(η−) for η > 1/2 and
acos(η+) < x < π − acos(η−) for η < 1/2, in agreement with
Eq. (7). On the other hand, the band-gap size depends linearly
on γx , and there is also some dependence with the phonon
frequency through the η parameter. Interestingly, while for
semiconducting GNRs the band gap around the central region
ε = 0 can only be closed by increasing Ny , the vibration-
induced band gap could be controlled, to some extent, through
the modulation of the e-ph coupling [27]. We can, in turn,
determine the maximum value of the gap as a function of
h̄ω. This yields two regimes: (i) for η <

√
3/2, a frequency

independent regime with maximum gap 	max = 3γx , and
(ii) for η >

√
3/2, a frequency dependent regime where the

maximum gap decreases and it closes in the limit h̄ω = 6γ0.

B. Spectral properties and characterization of the edge states

Throughout the following analysis, we will consider a
high-frequency regime by choosing h̄ω = 5γ0. 4 For this value,
the conduction band belonging to the zero-phonon replica
only crosses with the valence band of the one-phonon replica,
since the condition nh̄ω < 6γ0 can only be fullfilled by n = 1.
Although the chosen h̄ω largely exceeds the typical phonon
energy of the optical mode, this high-frequency regime, to-
gether with the weak e-ph coupling assumption (γx � γ0),
allows us to truncate the infinite Fock space in the first two

4For the chosen value h̄ω = 5γ0, the band crossings occur for those
eigenmodes fulfilling q < qmax = (2Ny + 1) acos(3/4)/π .
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(a) (b)

(c) (d)

FIG. 3. LDoS plots for an ac-GNR of Ny = 11 carbon atoms
wide (Ly = 25.82 Å) and coupled to a longitudinal optical mode.
(a) LDoS in log scale weighted over the zero-phonon replica (solid
red, shaded area), evaluated at the border of a semi-infinte ac-GNR.
(b) Zero-phonon LDoS in bulk situation, i.e., evaluated at the center
of an infinite ac-GNR. In (a) and (b), the black lines show the
noninteracting case (γx = 0). Panels (c) and (d) show the same
densities (in grayscale) as in panels (a) and (b), respectively, but
resolved in eigenmodes. The vibration parameters are h̄ω = 5γ0 and
γx = 0.1γ0.

phonon replicas, thereby simplifying the discussion of the
vibration effects on the electronic properties of the ribbon.
In particular, this ensures both the valence band (ε < 0) and
the semiconducting gap (ε = 0) regions being unaffected by
the vibration, at least in lowest order in the e-ph coupling.
This allows us to establish a clear distinction between the
well-known “native” edge-states [56–58] at ε = 0, and the
expected e-ph induced edge-states, located at ε = h̄ω/2. In any
case, the same analysis can be carried out for h̄ω � 200 meV,
but keeping in mind that a competition between the native
topology and the e-ph induced edge states may occur near the
charge neutrality point [53].

In Fig. 3(a), we show the LDoS weighted over the zero-
phonon replica (red shaded area), evaluated at the lateral border
of a semi-infinite ac-GNR of Ny = 11 carbon atoms wide
(Ly = 25.82 Å). Except for some region around ε = h̄ω/2,
the shape of the LDoS is qualitatively the same as that of
the non-interacting case (solid black), with a central peak
related with the native edge states. This is expected as the e-ph
interaction only becomes effective in the band crossing region
at h̄ω/2. Here, we observe a similar behavior as in the ε = 0
region, i.e., a depletion in the LDoS with a pronounced peak
rising in its center.

To infer whether the peak at h̄ω/2 survives far away from
the border of the ribbon, we show in Fig. 3(b) the zero-phonon

LDoS evaluated at the center of an infinite ac-GNR. The
pronounced peaks at ε = 0 and h̄ω/2 are no longer visible,
and instead we can observe band-gap openings around these
energies (blue arrows). For h̄ω/2 this is the e-ph interaction-
induced band gap, which was also predicted in vibrating CNTs
[22,23,40]. As it is expressed in Eq. (8), the size of the vibration
induced gap depends on the eigenmode we are looking at,
which is observed in the LDoS maps of Figs. 3(c) and 3(d). For
the chosen values h̄ω = 5γ0 and Ny = 11, the band crossings
occur for those eigenmodes fulfilling q < qmax � 5.29. The
minimum gap occurs for the mode with q closest to qmax, which
in this case is q = 5. Here, the effective interchain coupling
between the phonon replicas [cf. Eq. (A3)] is the smallest, and
it increases for smaller q modes.

The absence of peaks in the bulk LDoS makes us suspect
that, as in the case of the native edge states at ε = 0, the peak at
h̄ω/2 is also related with states localized at the ribbon’s border.
Let us see, now, the behavior of the vibration-induced peak
as we move inside the ribbon. In Fig. 4(a), the zero-phonon
LDoS evaluated at half the phonon energy is shown as a
function of the transversal layer number j [vertical lines of
carbon atoms, see Fig. 1(a)]. The LDoS decays exponentially,
such that for j ∼ 40 it becomes negligible. The way in which
the peak decays is quite irregular, due to the superposi-
tion of the contributing eigenmodes (see inset plots in the
figure).

To characterize the eigenenergy spectrum and the localized-
state wave functions we now consider a finite ac-GNR of
Nx = 200 carbon atoms long (Lx = 211.58 Å) and Ny = 11
wide (Ly = 25.82 Å). In Fig. 4(b), we show the eigenenergy
spectrum resolved in eigenmodes. To visualize such a spectrum
as a perturbation of that in the noninteracting case, we weight
each eigenstate over the n = 0 replica, i.e., the zero-phonon
subspace. Given a k-eigenstate belonging to the eigenmode q,
we can decompose it as the following superposition among the
n replicas according to

|ψq,k〉 =
∑

n

∑
j

〈
ϕ

(n)
q,j

∣∣ψq,k

〉∣∣ϕ(n)
q,j

〉 =
∑

n

∣∣ψ (n)
q,k

〉
, (9)

and take its projection over the n = 0 subspace, i.e.,

pq,k = ∣∣〈ψ (0)
q,k

∣∣ψq,k

〉∣∣2
. (10)

Although the number of replicas is infinite, the fact that we
work in a perturbative regime allows us to truncate the full Fock
space in a few replicas. In our case, where h̄ω = 5γ0 and γx �
γ0, the subspace associated with those replicas with n > 1 has
negligible impact on the n = 0 replica. In Fig. 4(b), the red dots
reveal how the valence band belonging to the n = 1 replica
mixes with the conduction band of the n = 0 replica (black
dots) for ε ∼ h̄ω/2. Around this value, we can observe band-
gap openings for those modes with q < qmax, together with the
presence of two degenerate midgap states per eigenmode (blue
arrow).

In Fig. 4(c), we show one of the two midgap states for q = 4.
As we move toward the center of the ribbon, the probability
density oscillate according with the weights this particular
q-mode has on the sites composing the transversal layer. As
it happens with the LDoS peak, the wave function also shows
an exponential decay along the longitudinal direction, with
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(a) (b) (c)

FIG. 4. (a) LDoS evaluated at ε = h̄ω/2 as a function of the transversal layer j for a semi-infinite ac-GNR with Ny = 11 carbon atoms
wide and normalized to its maximum value at j = 3. The used phonon energy is h̄ω = 5γ0 and the e-ph interaction is γx = 0.1γ0. Inset: Same
LDoS as in (a), for eigenmodes q = 1, 3, and 5 and normalized to their respective maximum values. (b) Eigenenergy spectrum for a finite
ac-GNR of dimensions Nx = 200 (Lx = 211.58 Å) and Ny = 11 (Ly = 25.82 Å). The other parameters coincide with those of panel (a). We
use a color scale to indicate the eigenstates weight with respect to the zero-phonon replica: Full weight (pq,k = 1) is in black, while zero weight
(pq,k = 0) is in red. (c) Probability density |ψj |2 (normalized to its maximum value and weighted over the n = 0 replica) as a function of the
transversal layer j for one of the two eigenenergies at ε = h̄ω/2 and eigenmode q = 4 in panel (b).

a typical “inverse gap” localization length. However, as the
ribbon in this example has a finite length, the wave function
has weight in the two borders. We can think of this state
as bonding or antibonding combination of two states, |ψL〉
and |ψR〉, localized at the left and the right border of the
ribbon, respectively. For a ribbon with a large number of
transversal layers (as it happens here), the overlap 〈ψL|ψR〉
can be neglected and one can consider |ψL〉 and |ψR〉 as linear
combinations of the two degenerate midgap states.

C. Topological origin of the edge states

As discussed before, when decreasing the phonon energy
from h̄ω = 6γ0 on we will observe band crossings between
different phonon replicas which, in turn, generate band-gap
openings as new backscattering processes are introduced. This
can be regarded as a band inversion process: In the crossing
region, the valence band from then = 1 replica happens to have
less energy than that of the conduction band from the n = 0
replica. This band inversion is characteristic in topological
phase transitions, together with the formation of localized
midgap states. This strongly motivates the calculation of the
Zak phase to infer about the topological nature of the vibration
induced localized states. Although there is an infinite number
of bands due to the structure of the Fock space, we can again
truncate this by taking only those bands belonging to the n = 0
and n = 1 replicas. The corresponding topological invariant
can be calculated as the integral of the Berry connection
[59]

Zα = i

∮
dk〈uk,α|∂kuk,α〉, (11)

with |uk,α〉 the Bloch states belonging to the α-band and the
integral taken over the first Brillouin zone. The bulk-boundary
correspondence then allows us to characterize the existence
of topological states with the Zak phase. Summing up Zα

for all the bands with energy below a given gap yields the

cumulative phase (modulo 2π ), which indicates the existence
(with cumulative phase π ) or absence (zero cumulative phase)
of topological midgap states.

Although the Zak phase can be obtained analytically in
the SSH model [50] and GNRs [57], we here proceed with
a numerical calculation of the invariant. Computationally
speaking, the Zak phase involves the calculation of wave-
function amplitudes with some arbitrary gauge introduced by
the diagonalization algorithm. In consequence, their possible
outcomes, i.e., Zα = 0 or π , do not fully determine the
band topology. However, one can infer its topology from the
variation of Zα with respect to a reference case in which such
a phase is known. In the previous sections, we concluded
that for very high phonon energies, given by the condition
h̄ω > 6γ0, there are no band crossings, and in consequence the
zero-phonon replica remains unperturbed. This high-frequency
limit represents our reference case, where the Zak phase is well
known for all band replicas.

We show in Table I the Zak phases corresponding to the four
bands belonging to replicas n = 0 and n = 1 for the phonon
energies h̄ω = 5γ0 and h̄ω = 3γ0. As can be seen from the
table, in this example, the role of the interaction is to open a
gap between bands 2 and 3, and adding a factor π to the band’s
cumulative phase. For h̄ω = 5γ0 this implies that modes with
q = 1, . . . ,5 host vibration induced topological states between
bands 2 and 3, while modes with q = 8, . . . ,11 host native
topological states in the gap between bands 1 and 2 (related
with the zero-phonon replica) and between bands 3 and 4
(related with the n = 1 phonon replica). For h̄ω = 3γ0, the
band crossing condition is fulfilled for q = 1, . . . ,9. For these
modes, the Zak phase for the lowest energy band (valence band
of the n = 0 replica) is equal to π , which means that native
edge states are present. However, more interesting is the case
of the q = 8,9 modes, where the topological invariant for the
second lowest energy band is equal to zero (cumulative Zak
phase of π ), which implies that these modes host both native
and vibrational induced topological states.
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TABLE I. Zak phases for the four bands belonging to the Ny = 11
eigenmodes in an ac-GNR for the cases h̄ω = 5γ0 and h̄ω = 3γ0. In
both cases, we used γx = 0.1γ0.

h̄ω = 5γ0 h̄ω = 3γ0

q 1 2 3 4 1 2 3 4

1 0 π π 0 0 π π 0
2 0 π π 0 0 π π 0
3 0 π π 0 0 π π 0
4 0 π π 0 0 π π 0
5 0 π π 0 0 π π 0
6 0 0 0 0 0 π π 0
7 0 0 0 0 0 π π 0
8 π π π π π 0 0 π

9 π π π π π 0 0 π

10 π π π π π π π π

11 π π π π π π π π

We therefore notice that the condition for the formation
of interaction-induced topological states is the band crossing,
while the native states appear when the intracell hopping γ (0)

q,a
is smaller than the intercell hopping γ0 [50]. As we shall
see next, this difference in the formation of the native and
interaction-induced topological states brings with it important
consequences when evaluating the robustness of such states
against changes in the ribbon geometry and the introduction of
several types of disorder.

D. Ribbon geometries and robustness against disorder

So far, we have been discussing the effects of the e-ph
interaction on a particular ribbon geometry where the eigen-
modes remain decoupled even in the presence of the vibration.
It therefore becomes natural to ask whether the topological
states survive in other geometries and, in turn, if they are robust
against different types of disorder which might couple these
eigenmodes. In this section, we provide an answer to these
questions by analysing the LDoS along the ribbon edges for

different geometries and by incorporating either vacancy or
impurity disorder.

In Fig. 5, we show the LDoS evaluated around the edge
region for different GNR geometries. As in Fig. 3, we plot the
quantity ln(1 + ρ) as to compensate the peak’s height from the
rest of the data. In these examples we considered randomly-
generated vacancy disorder of 0.5% over the complete sample.
In all panels, we show the zero-phonon LDoS without disorder
(solid black), a single disorder realization (shaded blue area),
and an ensamble average over N = 200 realizations (red line).
The insets in each panel show zoom regions around ε = 0
(bottom inset) and ε = h̄ω/2 (top inset) to help visualization,
while the schemes describe the type of ribbon geometry,
characterized by longitudinal (cyan) and transversal (orange)
borders. In all cases, we used Nx ∼ 1 000 to ensure a ribbon
length much larger than the localization lengths of all edge
states.

Comparing the panels in Fig. 5, we first notice that, in
absence of vacancy disorder, the LDoS peak in ε = 0 can
be present or not depending on the ribbon geometry. This is
illustrated by the black lines in the figure (see bottom inset in
each panel), where Figs. 5(b) and 5(c) show no peak at this
energy while, in Figs. 5(a) and 5(d), such a peak is certainly
visible. The peak in ε = h̄ω/2, on the other hand, is present in
all panels. This important result allows for a clear distinction
between the ε = 0 and the ε = h̄ω/2 edge states. While the
native states may appear or not, depending on the particular
ribbon geometry, the presence of topological states induced by
the e-ph interaction is ensured by the crossing of conduction
and valence bands belonging to different phonon replicas. For
this reason, we believe the native states are rather marginal:
Although they admit a topological characterization [57,58],
their emergence is strictly determined by the ribbon’s edge
geometry [56].

When we include a 0.5% concentration of vacancies along
the full sample, the main structure of the LDoS holds (blue
lines), though it obviously displays a noisy pattern around
the LDoS without disorder (black lines). Such a perturbative
behavior can be tested by taking an ensamble average over sev-
eral ribbon samples with the same vacancy concentration. The

(a) (b) (c) (d)

FIG. 5. Zero-phonon LDoS evaluated around the edge of different ribbon geometries, including vacancy disorder of 0.5%. The evaluation
region consists of ten transversal layers of carbon atoms starting from the left edge of the ribbon. Black lines show the case without vacancies
for comparison reasons, blue lines (shaded area) show a single disorder realization, and red lines show an ensamble average over 200 disorder
realizations. The used geometries are (see schemes): (a) armchair-zigzag (Ny = 11 → Ly = 25.82 Å), (b) armchair-Klein (Ny = 11 → Ly =
25.82 Å), (c) armchair-armchair (Ny = 12 → Ly = 20.91 Å), and (d) zigzag-armchair (Ny = 12 → Ly = 22.01 Å). The insets in each panel
are zoom areas around ε = 0 (bottom) and ε = h̄ω/2 (top). We used two phonon replicas and the other parameters are h̄ω = 5γ0, γx = 0.1γ0.
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(a) (b) (c)

FIG. 6. Impurity disorder effects in the zero-phonon LDoS for three ribbon geometries: (a) armchair-armchair (Ny = 12 → Ly = 20.91 Å),
(b) armchair-zigzag (Ny = 11 → Ly = 25.82 Å), and (c) zigzag-armchair (Ny = 12 → Ly = 22.01 Å). In all panels, we evaluated the LDoS
along 40 transversal layers of carbon atoms from the left border and other 40 lines from the right border. Solid lines show the average LDoS
over 250 disorder realizations, where we used W = 0.01γ0 (red), 0.02γ0 (blue), and 0.03γ0 (green). Black lines correspond to the case without
disorder, while orange dotted lines (shaded) show a single realization for W = 0.03γ0. Main panels sweep the e-ph induced band-gap region,
centered at ε = h̄ω/2, while the insets show the Dirac point region, centered at ε = 0. The other parameters coincide with those of Fig. 5.

red lines show the LDoS averaged over N = 200 realizations,
and superimpose the LDoS without disorder along almost the
entire spectrum. However, looking closer at ε = 0 in Figs. 5(b)
and 5(c) (see bottom insets), we notice that, in average, the
zero-energy peak returns when vacancy disorder is included.
The fact that the average LDoS (red) in Fig. 5(b) shows a
peak at ε = 0 while the trial LDoS for a single realization
(blue) shows no peak, and that this peak is present in both
cases in Fig. 5(c) indicates that this is an intermittent effect:
In those cases where the LDoS shows no central peak without
disorder, when including disorder this peak may appear for
some vacancy configurations. In fact, these peaks have nothing
to do with the native edge states appearing in Figs. 5(a) and
5(d), but these are related to localized states that surround
the vacancies in the sample [60]. Thus, depending on the
presence (or absence) of vacancies nearby the region where
the LDoS is being evaluated one can see (or not) a peak
in the LDoS. In the considered examples of Figs. 5(b) and
5(c), the region where the LDoS was evaluated involves ∼100
carbon atoms, and since the vacancy concentration is 0.5%,
one expects ∼0.5 vacancies in this region, so the chances of
observing a peak in this region are one in two. Obviously,
since the chances to have one or more localized states due to
the presence of vacancies within the evaluation region grow
with the vacancy concentration, we expect a simple relation
between this quantity and the average height of the central
peak. Having understood the role of disorder in the central
peak of Figs. 5(b) and 5(c), we now observe that the shape
and intensity of the central peak in Figs. 5(a) and 5(d) change
little when including disorder, meaning that the native states,
if present, are robust against moderate vacancy disorder. For
the e-ph induced topological states, we can arrive to the same
conclusion as the peaks in h̄ω/2 are all the same, regardless of
the vacancy disorder.

We now investigate the role of impurity disorder on the
ribbon’s LDoS. This is modeled through a random varia-
tion of the on-site energies within the range [−W,W ]. This
means that the pure electronic Hamiltonian in Eq. (2) is

replaced by

Ĥel =
∑

i

εi ĉ
†
i ĉi −

∑
〈i,j 〉

γ0ĉ
†
i ĉj , (12)

with −W � εi � W the random on-site energy. In Fig. 6, we
show the LDoS around the e-ph band-crossing point, centered
at ε = h̄ω/2, together with the LDoS around the Dirac point at
ε = 0 (insets). In these examples, we evaluate the zero-phonon
replica LDoS over 40 transversal layers of carbon atoms for
both left and right borders, considered as mirror images of
each other. This was done for three ribbon geometries (see
schemes in each panel), and we used W = 0.01γ0 (red), 0.02γ0

(blue), and 0.03γ0 (green). In these examples, we calculated
the average LDoS over 250 disorder realizations. Black lines
exhibit the case without disorder (W = 0), while dotted orange
lines (shaded area) illustrate the case of a single disorder
realization for W = 0.03γ0.

For the shown ribbon geometries, we can see that the e-ph-
induced LDoS peak at h̄ω/2 (dotted orange) now splits out into
several peaks lying within the band-gap region. To understand
why this type of disorder produces such an effect, first notice
that the LDoS peak at h̄ω/2 without disorder (black lines) can
be decomposed into several peaks, each one belonging to a
topological edge state. The position of these peaks depends on
the average of the on-site energies around the region where
the probability density is finite. If we imagine the impurity
disorder [first term in Eq. (12)] as a perturbation, and ψk(r i)
represents the wave-function amplitude of the (unperturbed)
e-ph-induced topological state k at position r i , then the energy
εk (and thus the peak position in the LDoS) will depend on the
on-site energies as

εk � h̄ω

2
+

∑
i

εi |ψk(r i)|2, (13)

which can be interpreted as the original position (i.e., without
disorder), plus the k-state weighted average of the on-site
energies. As for the considered ribbon sizes the topological
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edge states have finite weight over a small number of sites, the
last term in the above equation may not vanish in general.
In fact, this quantity tends to increase with the degree of
disorder W . This is reflected as a broadening of the averaged
LDoS peaks (solid red, blue, and green) when W increases.
Importantly, the area below the LDoS peak remains always
constant, meaning that the number of topological states in the
sample is independent of disorder. Of course, though W does
not change the number of topological states, for larger W values
these states may be located in energy regions outside the overall
gap, thus difficulting a clear separation between localized and
extended states.

The same disorder-induced peak broadending can be ob-
served in the central region around ε = 0 (see insets), but it
is important to notice that, as in the vacancy disorder case,
the native states can be present or not depending on the ribbon
geometry. Additionally, due to the zoom factor, one can observe
that the average peaks are not perfectly centered at ε = 0, but
slightly shifted to the left. This is not related to disorder (the
black line peaks are also shifted) but a second-order effect in
the coupling between the zero- and one-phonon replica bands.

The marked difference in the behavior of the localized edge
states can be attributed to the breaking of the particle-hole (p-h)
symmetry in the noninteracting Hamiltonian of Eq. (12). While
for vacancy disorder the p-h symmetry remains unaffected, and
thus the energies for the edge states are pinned to the symmetry
points ε = 0 and h̄ω/2, for impurity disorder this symmetry
clearly breaks down. Although the edge states (both native
and e-ph induced) survive to rather weak W , the lack of such
a symmetry explains the obtained energy shifts.

IV. SUMMARY AND FINAL REMARKS

In summary, we have shown that novel and robust states
of topological origin form as a consequence of the electron-
phonon interaction in GNRs. This study, based on a specific
model for the electron-phonon interaction given by a stretching
mode in GNRs, serves as a proof of concept. The topological
states form at the center of a band gap (induced by the
same interaction) located at half the phonon energy above
the charge neutrality point. This was confirmed in several
ribbon geometries and for vacancy and impurity disorder
configurations. While both the native and the e-ph induced
states were characterized through the Zak phase, and shown
to be robust against disorder, the native states only appear in
some specific ribbon geometries. Conversely, for a nonnegli-
gible e-ph interaction, the presence of the vibration-induced
topological states is guaranteed as long as the phonon energy
does not exceed the typical band width, i.e., h̄ω < 6γ0. Such
a condition provides the required band inversion between the
first two phonon replicas.

Interestingly, this physics happens in our case even when
the phonons do not break TRS, similar to a driven one-
dimensional topological insulator [53]. In two dimensional
systems, however, the e-ph induced band gap finally closes for
some particular mode k (see discussion on the Ny → ∞ limit
around Fig. 2) and one should break TRS to restore the gap
(as is required for light to induce Floquet topological states
in the same material). In this sense, the recent observation
of chiral phonons in two-dimensional materials [25] may

open a promising way for studying electron-phonon induced
topological phase transitions.
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APPENDIX: VIBRATION INDUCED BAND GAPS

Let us think of two replicas (zero- and one-phonon) of a
dimer chain for a particular eigenmode q (see Fig. 1). Each
dimer chain develops a valence and a conduction band, and
the energy difference between the two replicas is h̄ω. Let us
suppose that h̄ω is small enough such that the n = 0 conduction
band and the n = 1 valence band cross. If k denotes the Bloch
quasimomentum, there are two k-values (±k∗) where the band
crossing occurs. If we focus on one of these points, say k∗,
we have two k-states at the same energy, each one belonging
to one of the two replicas. This degeneration gets removed by
the electron-phonon interaction, which in our case corresponds
to the coupling between the replicas, and yields the band-gap
opening. In this Appendix, we estimate the gap size produced
by the e-ph interaction.

When using the eigenmode decomposition, the hopping
term between sites depends on the mode q we are looking
at, with a factor cos[qπ/(2Ny + 1)], and q = 1, . . . ,Ny . We
take the cosine argument as a continuous variable x, within
the range 0 < x < π/2, and we simplify this analysis by
truncating the full Fock space so we only keep the n = 0 and
n = 1 replicas. Considering the bulk situation (i.e., an infite
long dimer chain) we can use Bloch theorem and obtain the
following Hamiltonian:

Hq =

⎛
⎜⎜⎜⎜⎝

0 v(0)
q 0 v(1)

q

v̄(0)
q 0 v̄(1)

q 0

0 v(1)
q h̄ω v(0)

q

v̄(1)
q 0 v̄(0)

q h̄ω

⎞
⎟⎟⎟⎟⎠, (A1)

where

v(n)
q = ∣∣v(n)

q

∣∣ exp
[
iϕ(n)

q

] = −γ (n)
q,a − γ

(n)
q,be

−ika, (A2)

with a = 3a0/2 the unit cell length, and the bar standing for
complex conjugation. Since we are only interested in the n = 0
conduction and n = 1 valence bands, we can reduce even more
this Hamiltonian. To do so, we first diagonalize the 2 × 2
block matrices in the diagonal. As they commute each other,
we can diagonalize the n = 0 block, and obtain the energies
ε = ±|v(0)

q |. Similarly, for the n = 1 block we obtain ε =
h̄ω ± |v(0)

q |. The next step is to write the Bloch Hamiltonian in
this new basis, such that it allows the proper truncation

H̃q =
( ∣∣v(0)

q

∣∣ −i
∣∣v(1)

q

∣∣ sin(	ϕ)
i
∣∣v(1)

q

∣∣ sin(	ϕ) −∣∣v(0)
q

∣∣ + h̄ω

)
, (A3)
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where 	ϕ = ϕ(1)
q − ϕ(0)

q . This Hamiltonian has the following
eigenvalues

εq,± = h̄ω

2
±

√(
h̄ω

2
− ∣∣v(0)

q

∣∣)2

+ (∣∣v(1)
q

∣∣ sin(	ϕ)
)2

. (A4)

With these expressions, we found the new eigenenergies for k

close to the band crossing point. We can, in turn, particularize
to the point in which this band crossing occurs and obtain an
expression for the size of the gap 	(x). Recalling that the band
crossing takes place at ε = h̄ω/2, we take |v(0)

q | equal to this
energy, and using the definitions for v(n)

q given in Eq. (A2), we
obtain

	(x) = 2

√
9γ 2

x cos2 x sin2 ka

1 + 4 cos2 x + 4 cos x cos ka
. (A5)

By finding the k-value for which |v(0)
q | = h̄ω/2 is satisfied, and

defining the adimensional parameter η = h̄ω/4γ0, we obtain
that the size of the e-ph interaction induced band gap is given
by

	(x) = 3γx

η

√
(η2+ − cos2 x)(cos2 x − η2−), (A6)

where η± = η ± 1/2. The size of the gap will depend, there-
fore, on this parameter η and the particular eigenmode q

(through the x variable) we are looking at. The square root
argument defines the band-crossing regimes, as this quantity
needs to be always positive. This yields the condition

|η−| < cos x < η+, (A7)

which is equivalent to Eq. (7) of the main text.
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