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Bloch electrons of a carbon nanotube in a perpendicular magnetic field
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The Peierls substitution in the energy functions of a carbon nanotube’s sub-bands is carried out for a carbon
nanotube of arbitrary chiral indices subjected to a perpendicular uniform magnetic field. The Peierls substitution
represents a zeroth-order term of the asymptotically convergent power series in the magnetic field. It provides
a very good approximation for the electron energy spectrum of a carbon nanotube subjected to a perpendicular
uniform magnetic field, for magnetic fields currently accessible in laboratories.
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I. INTRODUCTION

There is hardly another single-electron problem in quan-
tum mechanics that has attracted as much attention as the
behavior of Bloch electrons in a magnetic field. Since the
pioneering work of Peierls [1] it has been customary to treat
the motion of Bloch electrons in a magnetic field using two
different approaches, both of which are often referred to as the
“Peierls substitution.” The first one amounts to multiplication
of the zero-field matrix elements of the nearest-neighbor tight-
binding Hamiltonian by the phase factors, exp [− ie

h̄

∫
Adr],

containing the line integral of the vector potential, A, along
the straight-line path connecting the nearest neighbors. The
second one involves substituting −ih̄∇ − e

c
A for h̄k in the

energy function for a band. In the simplest case of the one-
dimensional tight-binding Hamiltonian, the equivalence of the
two approaches can be readily established [2]. A discussion
of higher dimensions entails ambiguity of the path connecting
neighboring atoms [3–6], but the straight-line choice can be
justified by requiring gauge invariance of the tight-binding
Hamiltonian [5,6]. It can then be shown that the two approaches
are exactly equivalent for a two-dimensional tight-binding
Hamiltonian on a square lattice, immersed in a uniform
magnetic field perpendicular to it [4,7–9].

The nearest-neighbor tight-binding model on a honeycomb
lattice leads to the electron energy spectrum where the con-
duction and valence bands touch at the K and K ′ points
of the two-dimensional Brillouin zone. One can make the
Peierls substitution in the matrix elements of the tight-binding
Hamiltonian and expand resulting equations near the K and
K ′ points to lowest orders in the wave vector and the vector
potential. This procedure is equivalent to using the effective
massless Dirac Hamiltonian with the Peierls substitution made
for the momentum operator [10–14]. This Hamiltonian can be
used to analyze the low-energy part of the electron spectrum
in carbon nanotubes in applied magnetic fields [11–14].

Beyond the limitations of the tight-binding approximation,
numerous attempts have been made to justify the Peierls
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substitution in the energy function for a band [15,16]. These
attempts culminated in the work of Blount [17], who formu-
lated the problem in the framework of the crystal momentum
representation [17,18]. In this representation the electron
Hamiltonian comprises a matrix diagonal in the band indices, s,
and crystal momenta, k, with the elements εs(k). The difficulty
in treating the problem of a Bloch electron in a uniform
magnetic field is that the vector potential is a linearly growing
function of the coordinates that can be very large. Lifshitz
and Pitaevskii argued that, in the limiting case of a constant
vector potential (which corresponds to a zero magnetic field),
the legitimacy of the Peierls substitution in εs(k) follows
from the gauge invariance [18]. Then εs(q − e

h̄c
Â), where q

is the generalized crystal momentum [18], corresponds to the
Hamiltonian describing the motion of a Bloch electron from the
sth band in a weakly changing vector potential, or in the zeroth
order in the magnetic field, B. Blount devised a procedure
yielding corrections to this Hamiltonian of higher orders in the
magnetic field [17]. This procedure is based on the formalism
of the pseudoclassical representation developed for treating
perturbations which may be large but vary slowly from cell to
cell in a crystal lattice. Blount also showed that this procedure
converges asymptotically [17].

In this paper we will study the energy spectrum of a
single-walled carbon nanotube with the chiral indices (n,m)
[4] in a uniform magnetic field directed perpendicular to
the nanotube axis. For definiteness, we will choose the z

axis along the nanotube and the y axis along the magnetic
field. Neglecting the atomic bond curvature and assuming
nearest-neighbor tight-binding approximation, one can obtain
the electron energy spectrum of a carbon nanotube in zero
magnetic field in two different ways. On one hand, one can
consider a unit cell of a carbon nanotube containing N =
2 (n2 + m2 + nm)/dR hexagons, or 2N atoms, where dR is the
greatest common divisor of 2n + m and 2m + n [4], and write
down the tight-binding Hamiltonian as a 2N × 2N matrix for
each value of the one-dimensional crystal wave vector k ≡ kz

along z. We will refer to this Hamiltonian as the Hamiltonian
in the tight-binding representation. This Hamiltonian yields
energy dispersion for N sub-bands in the conduction band and
N sub-bands in the valence band. On the other hand, one can
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consider a unit cell of graphene containing just two atoms and
the energy dispersion εc(kx,kz) = −εv(kx,kz) of a graphene
sheet oriented in such a way that rolling it up along the x

direction (to become the nanotube circumference) would pro-
duce a nanotube with given chirality indices. Then εs(μ/R,k),
where R is the nanotube radius and μ = 0,1, . . . ,N − 1, will
yield energy spectra for the N sub-bands of the band s = c,v.
This way of getting the nanotube electron energy spectrum is
known as “zone folding” [4]. The resulting 2N × 2N diagonal
matrix, with εs(μ/R,k) on the diagonal, comprises the electron
Hamiltonian in the crystal momentum representation.

Thus, carbon nanotubes provide a perfect proving ground
to test the two kinds of the Peierls substitution. Indeed, both
ways of getting the electron energy spectrum of a carbon
nanotube can be modified to account for the applied uniform
magnetic field directed perpendicular to the nanotube axis.
Saito et al. [19] modified the Hamiltonian in the tight-binding
representation using the Peierls substitution for its matrix
elements resulting in the phase factors induced by the magnetic
field. Numerical calculations in Ref. [19] were done for a
(10,0) zigzag carbon nanotube for different values of the ratio
R/aB , where aB = √

h̄ c/|e| B is the magnetic length. Their
numerical results were reproduced in numerous textbooks and
review articles [4,20–22]. A similar approach was used in
Refs. [12,23,24]. Most of these studies refer to achiral (zigzag
and armchair) carbon nanotubes [12,19,24].

The aim of the present paper is to account for the uniform
perpendicular magnetic field, applied to a carbon nanotube,
by modifying the electron Hamiltonian in the crystal momen-
tum representation. We have demonstrated [25,26] that, in
the framework of this representation, it is often possible to
obtain straightforward derivations of analytical results having
a “universal” form in the sense that they can be applied to
nanotubes with arbitrary chiral indices, not limited to achiral
nanotubes.

For a nanotube in a uniform perpendicular magnetic field,
one has the freedom to choose the gauge condition. One
possibility is A = B z ex . In this gauge, the vector potential is a
linearly growing function of the coordinate along the nanotube
axis. Therefore, the argument due to Lifshitz and Pitaevskii
applies to nanotubes, and one can expect that the zeroth-order
term in the electron Hamiltonian, corresponding to the Peierls
substitution, prevails at weak magnetic fields. Because of the
gauge invariance, this should be true for any gauge. Another
possible gauge choice is A = −B x ez. This choice will be
made in the present paper. Since, for a nanotube, |x| < R, the
vector potential in this gauge is a bounded function of the
coordinates on the nanotube surface. Therefore, there is no
need to invoke the pseudoclassical approximation, and we can
perform our analysis entirely in the framework of the crystal
momentum representation. Yet, the present treatment is based,
to a large extent, on the work of Blount [17].

II. CRYSTAL MOMENTUM REPRESENTATION FOR
BLOCH ELECTRONS OF A CARBON NANOTUBE

WITHOUT A MAGNETIC FIELD

The wave function of a Bloch electron in a carbon nanotube
belonging to the band s = c,v and having the sub-band index

μ and one-dimensional wave vector k can be written as

〈z,ϕ|s,μ,k〉 = us,μ,k(z,ϕ) eikz, (1)

where the periodic Bloch amplitude, us,μ,k , within the zone-
folding scheme is related to the atomic orbital, �b(r − Rb),
by

us,μ,k(r) = 1√
N

∑
b=A,B

Cb(s,μ,k)

×
∑
Rb

eiμϕb eik(zb−z) �b(r − Rb).

Here the first sum is over the two atoms in the unit cell
of graphene and N is the number of graphene unit cells in
a sample. Within the zone-folding scheme the coefficients
CA(s,μ,k) and CB(s,μ,k) are found to be [4,26](

CA(c,μ,k)

CB(c,μ,k)

)
= 1√

2

(
eiφ

1

)
,

(
CA(v,μ,k)

CB(v,μ,k)

)
= 1√

2

(−eiφ

1

)
, (2)

where

φ =
⎧⎨
⎩

arctan B
A , A > 0

arctan B
A + π, A < 0

, (3)

A = 2 cos (Kxa/2
√

3) cos (Kya/2) + cos (Kxa/
√

3),

B = 2 sin (Kxa/2
√

3) cos (Kya/2) − sin (Kxa/
√

3),

Kx = μ/R cos α − k sin α, Ky = μ/R sin α + k cos α, a is
the lattice constant of graphene, R is the nanotube radius, and
the angle α is related to the nanotube chiral angle θ by α =
π/6 − θ . The band energy is given by

εc(v)(k) ≡ εc(v)(μ,k)

= ±γ0

√
1 + 4 cos

√
3 Kx a

2
cos

Ky a

2
+ 4 cos2

Ky a

2
,

(4)

where γ0 is the transfer integral of the tight-binding method
and k = (μ/R,k).

III. PEIERLS SUBSTITUTION IN THE BAND
ENERGY DISPERSION

We consider a carbon nanotube parallel to the z axis
subjected to a uniform magnetic field B directed along the
y axis. Then the vector potential can be chosen in the form
A = −B x ez. The essence of the Peierls substitution is [18]
(i) to introduce the generalized quasimomentum

q = k + e A
h̄ c

= k + 2 π R B cos ϕ

�0
ez, (5)

whereϕ is the polar angle, k = (μ/R,k) is the quasimomentum
in the absence of the magnetic field with the quantized com-
ponent along the nanotube circumference, and �0 = hc/|e| is
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FIG. 1. Electron energy spectrum for a (10,0) zigzag nanotube in
a perpendicular magnetic field corresponding to R/aB = 1 calculated
using the tight-binding Hamiltonian (blue dashed lines) and Eq. (25)
(red solid lines). Black dotted lines show the electron energy spectrum
of the same nanotube without magnetic field.

the flux quantum, and (ii) to consider

εs

(
q−2 π R B cos ϕ

�0
ez

)
≡ εs

(
q − N B Shex cos ϕ

�0 |T| ez

)
,

(6)

where s = c,v is the band index, Shex is the area of a hexagon,
and T is the translational vector of the nanotube [4], as a

Hamiltonian in the q representation. The difficulty here arises
from the fact that, in this representation, the operator cos ϕ

has only inter-sub-band matrix elements on the electron Bloch
states. As a result, the electron Hamiltonian is nondiagonal
even in the zeroth order in the magnetic field. In order to
formally circumvent this difficulty we use the fact that εs(μ,k)
is a periodic function of k:

εs(μ,k) = εs

(
μ,k + 2 π

|T|
)

.

Therefore, εs(μ,k) can be expanded into a Fourier series:

εs(μ,k) =
∑
m

Asm(μ) ei k m |T|, (7)

where

Asm(μ) = |T|
2 π

∫ π
|T|

− π
|T|

dk εs(μ,k) e−i k m |T|.

Using the generating function for the Bessel functions in the
form

e−i t cos ϕ =
∑

l

(−i)l e−i l ϕ Jl(t), (8)

we obtain

εs

(
q − 2 π R B cos ϕ

�0
ez

)

=
∑
m

Asm(μ) ei q m |T| ∑
l

(−i)l e−i l ϕ Jl

(N B Shex m

�0

)
,

(9)

where we used 2 π R |T| = N Shex, and N is the number
of hexagons within a unit cell of the nanotube. Equation
(9) represents an operator acting on the states in the crystal
momentum representation. However, we can interpret

〈s,μ,q|H |s ′,μ′,q〉 =
∑
m

ei q m |T| Asm(μ) + As ′m(μ′)
2

∑
l

(−i)l 〈s,μ,q|e−i l ϕ|s ′,μ′,q〉 Jl

(N B Shex m

�0

)
(10)

as the matrix element of the Hamiltonian in the q representation (cf. the limit at B = 0).
The next step is then to calculate the matrix element 〈s,μ,q|e−i l ϕ|s ′,μ′,q〉. We first neglect the effect of the magnetic field on

the electron wave function. Then, using the wave function (1), we obtain

〈s,μ,q|e−i l ϕ|s ′,μ′,q〉 =
∑

n

δμ′−μ−l,nN
∑

b

C∗
b (s,μ,q) Cb(s ′,μ′,q). (11)

Here we used

1

N

∑
Rb

ei mϕb =
∑

n

δm,nN . (12)

Equation (10) can be rewritten as

〈s,μ,q|H |s ′,μ′,q〉 =
∑

l

(−i)l 〈s,μ,q|e−i l ϕ|s ′,μ′,q〉 |T|
2 π

∫ π
|T|

− π
|T|

dk
εs(μ,k) + εs ′ (μ′,k)

2

∑
m

ei (q−k) m |T|Jl

(N B Shex m

�0

)
. (13)

Summation over m in Eq. (13) can be performed using the identity

∞∑
m=−∞

δ(x − m) =
∞∑

n=−∞
e2 π i n x. (14)

035416-3



S. V. GOUPALOV PHYSICAL REVIEW B 98, 035416 (2018)

We obtain∑
m

ei (q−k) m |T| Jl

(N B Shex m

�0

)
=

∑
n

∫ ∞

−∞
dx Jl

(N B Shex x

�0

)
ei [(q−k) |T|+2 π n] x = 2 il

�0

N B Shex

∞∑
n=−∞

Tl(yn)√
1 − y2

n

θ (1 − |yn|),

where

yn = (q − k) |T| + 2 π n

N B Shex
�0,

Tm(y) = cos (m arccos y) is the Chebyshev polynomial, and we used the following integral [27]:∫ ∞

−∞
dz Jl(c z) ei p z = 2 il

Tl

(
p

c

)
√

c2 − p2
θ
(

1 −
∣∣∣p
c

∣∣∣). (15)

We have two restrictions on the variable yn:

−1 < yn < 1

and

− π

|T| < k = q − yn N B Shex

�0 |T| + 2 π n

|T| <
π

|T| .

Because εs(μ,k) is a periodic function in k with the period 2 π/|T|, Eq. (13) reduces to

〈s,μ,q|H |s ′,μ′,q〉 =
∑

l

〈s,μ,q|e−i l ϕ|s ′,μ′,q〉 1

π

∫ π

0
dθ

εs

(
μ,q − NBShex cos θ

�0 |T|
) + εs ′

(
μ′,q − NBShex cos θ

�0 |T|
)

2
cos lθ . (16)

This allows one to combine Eqs. (11) and (16) to yield

〈s,μ,q|H |s ′,μ′,q〉 = 1

π

∫ π

0
dθ

εs

(
μ,q − NBShex cos θ

�0 |T|
) + εs ′

(
μ′,q − N B Shex cos θ

�0 |T|
)

2

×
∑

b

C∗
b (s,μ,q) Cb(s ′,μ′,q)

∑
n

cos (μ′ − μ + nN )θ. (17)

Now we can use ∑
n

cos (μ′ − μ + nN )θ = 2 π

N cos (μ′ − μ)θ
∑
m

δ

(
θ − 2πm

N

)
. (18)

Therefore, we obtain

〈s,μ,q|H |s ′,μ′,q〉=
∑

b

C∗
b (s,μ,q) Cb(s ′,μ′,q)

1

N

N /2∑
m=0

2 − δm,0 − δm,N /2

2
[εs(μ,q − qm) + εs ′ (μ′,q − qm)] cos (μ′ − μ)

2πm

N ,

(19)

where we have introduced the following notation:

qm = NBShex

�0 |T| cos
2πm

N . (20)

IV. BASIS TRANSFORMATION INDUCED BY A MAGNETIC FIELD

The wave function 〈z,ϕ|s,μ,q〉 is also affected by the magnetic field [18]:

〈z,ϕ|s,μ,q〉 →
〈
z,ϕ

∣∣∣∣s,μ,q − 2πRB cos ϕ

�0

〉
= us,μ,q− 2πRB cos ϕ

�0
(z,ϕ) eiqz.

We will follow Blount [17] and introduce the following transformation matrix:

S
(0)
s,μ;s ′,μ′

(
q − 2πRB cos ϕ

�0
; q

)
≡

〈
s,μ,q − 2πRB cos ϕ

�0

∣∣∣∣s ′,μ′,q
〉
. (21)

Using Eq. (1) we obtain

S
(0)
s,μ;s ′,μ′

(
q − 2πRB cos ϕ

�0
; q

)
=

∑
b

∑
Rb

ei(μ′−μ) ϕbC∗
b

(
s,μ,q − 2πRB cos ϕb

�0

)
Cb(s ′,μ′,q). (22)
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Using the direct and the inverse Fourier transforms, one can write

C∗
b

(
s,μ,q − 2πRB cos ϕb

�0

)
= 1

π

∫ 1

−1
dy C∗

b

(
s,μ,q − N B Shex y

�0 |T|
) ∑

m

eimϕbTm(y)√
1 − y2

, (23)

where y = (q−k) |T|
N B Shex

�0 and we used Eqs. (8) and (15). Then, using Eqs. (12), (18), and (23), Eq. (22) can be easily transformed
into

S
(0)
s,μ;s ′,μ′

(
q − 2πRB cos ϕ

�0
; q

)
= 2

N

N /2∑
m=0

2 − δm,0 − δm,N /2

2
cos (μ′ − μ)

2πm

N
∑

b

C∗
b (s,μ,q − qm) Cb(s ′,μ′,q). (24)

V. ZEROTH-ORDER HAMILTONIAN

In this section we give an explicit expression for the Hamiltonian describing Bloch electrons of a carbon nanotube in a
perpendicular magnetic field valid in the zeroth order in the field (but not in the vector potential, see Refs. [17,18]).

Applying transformation (21) to the Hamiltonian (19) we obtain

〈s,μ|S(0)HS(0) †|s ′,μ′〉 =
∑

s1,s2,μ1,μ2

〈
s,μ,q − 2πRB cos ϕ

�0

∣∣∣∣s1,μ1,q

〉
〈s1,μ1,q|H |s2,μ2,q〉

〈
s2,μ2,q

∣∣∣∣s ′,μ′,q − 2πRB cos ϕ

�0

〉
.

(25)

A straightforward derivation leads to the following result:

〈s,μ|S(0)HS(0) †|s ′,μ′〉 = 〈s,μ|S(0)H1S
(0) †|s ′,μ′〉 + 〈s,μ|S(0)H2S

(0) †|s ′,μ′〉, (26)

where

〈c,μ|S(0)H1S
(0) †|c(v),μ′〉 = 1

2N

N /2∑
m=0

2 − δm,0 − δm,N /2

2
cos (μ′ − μ)

2πm

N

× [ei φ(μ′,q)−i φ(μ,q−qm) εc(μ′,q − qm) ± ei φ(μ′,q−qm)−i φ(μ,q) εc(μ,q − qm)], (27)

〈c,μ|S(0)H2S
(0) †|c(v),μ′〉 = 1

N 2

N−1∑
μ′′=0

N /2∑
m=0

2 − δm,0 − δm,N /2

2

N /2∑
m′=0

2 − δm′,0 − δm′,N /2

2

× [ei φ(μ′′,q)−i φ(μ,q−qm) εc(μ′′,q − qm′ ) ± ei φ(μ′,q−qm′ )−i φ(μ′′,q) εc(μ′′,q − qm)]

× cos (μ − μ′′)
2πm

N cos (μ′′ − μ′)
2πm′

N , (28)

and qm is given by Eq. (20). We note, however, that, for numerical calculations, it is more efficient to directly use Eq. (25) and
perform matrix multiplication numerically.

In Fig. 1 black dotted lines show the energy spectrum of an electron in a (10,0) zigzag carbon nanotube without a magnetic field.
Blue dashed lines show the electron spectrum of the same nanotube in the perpendicular magnetic field for R/aB = 1 calculated
using the tight-binding Hamiltonian [19]. Red solid lines show the same spectrum calculated using Eq. (25). The results of the
two calculations agree rather well, although the magnetic field corresponding to R/aB = 1 is quite strong (B ≈ 4.3 × 103 T).

We also note that, as can be demonstrated by numerical calculations, the eigenenergies of the two terms in Eq. (26), S(0)H1S
(0) †

and S(0)H2S
(0) †, are very close to one another.

VI. BLOUNT’S PERTURBATIVE PROCEDURE

One can check that the transformation matrix S
(0)
s,μ;s ′,μ′(q − 2πRB cos ϕ

�0
; q) is not unitary. To be more precise, it is unitary only

in the zeroth order in the magnetic field. Therefore, one can calculate corrections to the unitarity condition up to a certain order
in the magnetic field and modify the transformation matrix as a means to eliminate these corrections in that order. This is the
essence of the perturbation procedure proposed by Blount [17].

For example, up to the first order

〈s,μ|S(0) S(0) †|s ′,μ′〉 = δs,s ′ δμ,μ′ + i

2

NBShex

�0 |T| C∗
A(s,μ,q) CA(s ′,μ′,q)

(
dφ(μ,q)

dq
− dφ(μ′,q)

dq

)

× (
δμ′,μ+1 + δμ′,μ−1

) ≡ δs,s ′ δμ,μ′ + 〈s,μ|g(1)|s ′,μ′〉.
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Therefore, one can define

S(1) = S(0) − 1
2 g(1) S(0),

which will be unitary to the first order in the magnetic field.
However, this procedure has only asymptotic convergence [17,28]. For this reason, we will not go beyond zeroth order in

numerical calculations.

VII. CONCLUSIONS

We have shown how the perpendicular uniform magnetic field acting on a carbon nanotube can be introduced into the electron’s
Hamiltonian in the crystal momentum representation and discussed legitimacy of the so-called Peierls substitution in the energy
function for a band. This substitution is not exact but, for magnetic fields currently accessible in laboratories, it provides a very
good approximation. Generally speaking, the Peierls substitution represents a zeroth-order term of the asymptotically convergent
power series in the magnetic field. Due to a nontrivial geometry of a carbon nanotube, carrying out Peierls substitution in the
energy functions of its numerous sub-bands turned out to be a not so easy task. We have shown how this task can be accomplished
and derived analytical expressions for the electron Hamiltonian in the crystal momentum representation in the zeroth order in the
magnetic field, valid for nanotubes of arbitrary chiralities.
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