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Here we present measurements on p-n junctions in encapsulated graphene revealing several sets of
magnetoconductance oscillations originating from quasiclassical snake states and edge state Aharonov-Bohm
interferences. Even though some of these oscillations have already been observed in suspended and encapsulated
devices including different geometries, their identification remained challenging as they were observed in separate
measurements, and only a limited amount of data was available. Moreover, these effects have similar experimental
signatures, therefore for their proper assignment their simultaneous observation and their detailed characterization
is needed. The investigation of the charge carrier density, magnetic field, temperature, and bias dependence of
the oscillations enabled us to properly identify their origin. Surprisingly we have found that snake states and
Aharonov-Bohm interferences can coexist within a limited parameter range. We explain this using a unified
picture of magneto-oscillations and confirm our findings using tight binding simulations. Since p-n junctions are
the most important building blocks of graphene based electron-optical elements and edge state interferometers,
our findings will be crucial for the design and understanding of future devices.
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I. INTRODUCTION

Magnetoconductance effects, the change of the conductance
as a function of magnetic field B, are both of fundamental
significance (e.g., Aharonov-Bohm effect, Shubnikov-de-Haas
oscillations [1,2]) and important for applications (e.g., GMR
[3,4], TMR [5], etc.). Such effects have been investigated
to a great extent also in two-dimensional electron gases
(2DEGs) realized in semiconductor heterostructures [1,2]. At
low perpendicular magnetic fields electrons exhibit cyclotron
motion that follows classical trajectories, allowing for the
realization of electro-optical experiments such as transverse
magnetic focusing [6,7]. At higher magnetic fields Landau
levels are formed and electrons travel along edge channels
[1,2]. Using electrostatic gating these channels can be guided
within the sample, and using beam splitters based on quantum
point contacts electronic Mach-Zehnder interferometers can
be realized [8–10]. These interferometers enable the study of
coherence effects of electronic states [11–13], noise in collision
experiments [14,15], or probing the exotic nature of certain
quantum Hall channels [16,17].

Graphene not only offers similarly high mobility as 2DEGs,
but it also allows for the formation of gapless p-n interfaces not
possible in conventional 2DEGs. Graphene p-n junctions host
quasiclassical snake trajectories at low field [18–23], where
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electrons curve back and forth along the opposite side of the
p-n junction. At high field edge channels propagate along the
junction and coupling between these channels result in a Mach-
Zehnder interferometer displaying the Aharonov-Bohm effect
[24,25]. Both effects result in magnetoconductance oscillations
as a function of magnetic field and gate voltage. However,
their similar signatures make it difficult to distinguish the two
from each other. Moreover, experiments are performed within
the transition between the classical and the quantum regime.
Finally, Coulomb interaction of charge carriers localized in
conducting islands coupled to edge channels can also lead to
magnetoconductance oscillations [26–29].

Here we present measurements on high-mobility encapsu-
lated graphene p-n junctions, where several sets of magneto-
conductance oscillations are observed simultaneously. A part
of these oscillations has been observed [21,22,24,25], but there
is still an ongoing discussion on their origin. Usually only a
limited amount of measurement data is available which makes
their analysis challenging and can lead to misinterpretation of
their origin. Their simultaneous observation, which we report
here, as well as their detailed characterization as a function
of gate, magnetic field, temperature, and bias voltage, allows
for their direct comparison, resulting in a unified picture and
a consistent assignment of the different oscillations. Whereas
previously it was believed that snake states and Aharonov-
Bohm oscillations appear in quite a different parameter regime,
here we show that they can coexist for certain parameters.
We describe our findings taking into account the role of local
electric fields at the p-n junction and discuss a quantum model
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of snake states based on quantum Hall channels. Our findings
are confirmed by tight binding simulations.

The paper is organized as follows: First we introduce the
most relevant concepts of snake states and Aharonov-Bohm
oscillations along graphene p-n junctions. Then we present
measurements of several sets of oscillations within the bipolar
regime. These magnetoconductance oscillations are carefully
analyzed with respect to their gate, magnetic field, temperature,
and bias dependence. We show that these oscillations can be
attributed to either snake states or Aharonov-Bohm oscillations
as introduced previously. We furthermore support our findings
with theoretical models and quantum transport simulations.
Finally, we briefly discuss an additional type of magnetocon-
ductance oscillation that has not been reported before.

A. Snake states

In small magnetic fields electrons follow skipping trajecto-
ries which turn to snake states along the p-n junction [19–22].

These trajectories bend in the opposite direction on the two
sides of the p-n junction due to an opposite Lorentz force, as
sketched in Fig. 1(b). Charge carriers with trajectories having
a small incident angle with respect to the p-n junction normal
are transmitted very effectively from the n- to p-doped region
of the graphene device (and vice versa) due to Klein tunneling
[30–32]. In the simplest case the p-n junction is steplike and
symmetric, and the cyclotron radius, RC = λS/2 = h̄kF/(eB),
is the same constant value on both sides. Here kF is the
momentum of the electrons, B the magnetic field, and λS is
the size of the snake period or “skipping length.” By changing
B or the electron density n, and thus the cyclotron radius, the
charge carriers end up either on the left or right side of the p-n
junction, similar to what is shown in Fig. 1(b). This results in a
conductance oscillation, where the conductance is determined
by how the cyclotron radius compares to the length of the p-n
junction.

A more realistic model includes a gradual change of
the charge carrier density across the p-n junction, which is
illustrated in Fig. 1(b). For a p-n junction parallel to the y

direction this gives rise to a position-dependent electric field
�Ex (which in the case of constant E field would lead to the
well known �E × �B drift velocity). By solving the semiclassical
equations of motion for an idealized graphene p-n junction
where the charge carrier density changes linearly from nL to
nR over a distance of dn, the skipping length λS is given by
(see Supplemental Material (SM) [33]):

λS =
(

πh̄

eB

)2 |nL − nR|
dn

. (1)

Note that S = |nL − nR|/dn corresponds to the slope of the
charge carrier density profile. The conductance oscillations
which can be measured across the p-n junction of width W at a
given Fermi energy E can be described by a phenomenological
model according to:

G(E) ∼ cos

(
π

W

λS

)
, (2)

which describes the commensurability between λS and W . The
cosine itself accounts for a smooth conductance oscillation.
Details of this model will be discussed later. We emphasize

FIG. 1. Concept of snake states and Aharonov-Bohm interference
along a graphene p-n junction. (a) False-color SEM image of the
device where the leads are colored yellow, the graphene encapsulated
in hBN is colored cyan, and the local bottom gate (a structured few-
layer graphite electrode underneath the hBN-graphene-hBN stack)
is colored purple. Scale bar equals 200 nm. VBG denotes the voltage
applied to the global back gate and Vlbg is applied to a graphite bottom
gate. (b) Snake states seen in the framework of classical skipping
orbits for two different magnetic field values (blue and red trajectories,
Bred > Bblue). (c) Principle of Aharonov-Bohm interference between
quantum Hall edge states propagating along the p-n interface. At
high bulk filling factors (νL/R) several different areas are enclosed
due to interchannel scattering at the flake edges (green shaded area
and dashed arrows). Of these, the one that involves the least number of
scattering events is expected to dominate (�1). (d) At high magnetic
fields Aharonov-Bohm interference can occur between the spatially
separated edge states of the degeneracy-lifted lowest Landau level.
The green area corresponds to the insulating region with local ν of
0. (e) At even larger magnetic fields full degeneracy lifting occurs,
and two spin-polarized interferometers are formed: purple area for
spin-down (dashed) channels, green for spin-up (solid) channels. The
interferometers are independent, as scattering between them is not
allowed, since the spin is conserved along the edges.

again that phase coherence is not required for this effect to
appear.

B. Aharonov-Bohm oscillations

While at low magnetic fields the motion of the charge
carriers is well described using the picture of skipping and
snake trajectories along edges and p-n junctions, upon increas-
ing the magnetic field one enters the quantum regime where
transport is commonly described by edge states. The concept
of interference formed by spatially separated edge states
has already extensively been studied in 2DEGs, including
the realization of Fabry-Pérot [49] and Mach-Zehnder [8]
interferometers, while in graphene p-n junctions it was first
introduced by Morikawa et al. [24]. Here, edge states propagate
on either side of the p-n junction, and coupling between
them is enabled at the junction’s ends due to scattering on
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disordered graphene edges as illustrated in Figs. 1(c) and 1(d).
Coupling between the edge states across the p-n junction,
illustrated in Fig. 1(c) by the black, dashed arrows, is restricted
to the disordered graphene edges [24,25]. As the edge states
encircle an enclosed area A at finite perpendicular magnetic
field B, the acquired Aharonov-Bohm phase is the magnetic
flux, � = AB. The conductance oscillations can be described
phenomenologically:

G(E) ∼ cos

(
2π

�

�0

)
, (3)

where �0 = h/e is the magnetic flux quantum [50]. In contrast
to snake states, this is a phase coherent effect.

If multiple Landau levels are populated, several different
interferometer loops, enclosing different areas, can contribute.
However, for the measured conductance across the p-n junc-
tion only paths that connect the n to the p side are relevant. Of
these, the ones with the least number of scattering events are
expected to dominate the oscillation. These are the two inner
ones denoted with �1 in Fig. 1(c). The interference signal
involves only one scattering event along each path, while for
loops of type �2 at least two scattering events are necessary
per path.

At high magnetic fields the Landau levels, which have valley
and spin degeneracy at low field, can be partially (or fully) split
[51,52]. This leads to a spatial separation of the edge states
associated with the lowest Landau level by an insulating region
(ν = 0), as shown in Fig. 1(d). Here, the valley degeneracy is
lifted so that the edge state is still spin degenerate.

The idea of an Aharonov-Bohm interference, put forward
in Ref. [24], was generalized by Wei et al. [25] by considering
full degeneracy lifting of the Landau levels, both in spin and
valley. It was shown that the edges can mix the valleys, but
not the spins, as sketched in Fig. 1(e). Therefore scattering
between edge states is only possible if they are of identical spin
orientation. This gives rise to two sets of magnetoconductance
oscillations—one for each spin channel for bulk filling factors
|νL/R| > 2 as described in Ref. [25]. An increase of the spacing
between neighboring edge states is expected to decrease the
scattering rate at the flake edge between edge states, giving
rise to a reduced oscillation amplitude. At the same time the
magnetic field needed to change the flux by a flux quantum is
reduced, which will lead to changing magnetic field spacing.
Details of the magnetic field spacing and the temperature
dependence of the Aharonov Bohm will be discussed later.

II. MEASUREMENTS

The hBN/graphene/hBN heterostructures were assembled
following the dry pickup technique described in Ref. [53]. The
full heterostructure was transferred onto a prepatterned piece
of few-layer graphene used as a local bottom gate. Standard
e-beam lithography was used to define the Cr/Au side contacts,
with the bottom hBN layer (70 nm in thickness) not fully etched
through in order to avoid shorting the leads to the bottom
gates. The graphene samples were shaped into 1.5 μm wide
channels using a CHF3/O2 plasma. A false-color SEM image
of the final device is shown in Fig. 1(a) (for more details see
SM [33]). The charge carrier mobility μ was extracted from
field effect measurements yielding μ ∼ 80 000 cm2 V−1 s−1.

The p-n junction is formed by a global back gate and a local
bottom gate which allows for independent tuning of the doping
on each side of the p-n junction. The presence of Fabry-Pérot
oscillations (see SM [33]) also attests to the high quality
of our device. We have observed the magnetoconductance
oscillations on ∼10 p-n junctions in two separate stacks.
Measurements were performed in a variable temperature insert
with a base temperature of T = 1.5 K and a He-3 cryostat
with a base temperature of T = 260 mK, using standard low-
frequency lock-in techniques.

A. Gate-gate dependence

In Fig. 2 the two-terminal conductance (top panels) and its
numerical derivative (bottom panels) are shown as a function
of the global back gate (VBG) and the local bottom gate (Vlbg)
within the bipolar regime at selected magnetic fields. Zero
voltage of the global back gate or local bottom gate corresponds
roughly to zero doping in the left or right side of the sample.
In the gate-gate map, fine curved lines are visible along which
the conductance is approximately constant, and perpendicular
to these lines the conductance oscillates. Within the measured
gate and field range we identify three different types of magne-
toconductance oscillations which are labeled with red, orange,
and cyan arrows/dashed lines. All of them have a roughly
hyperbolic line shape being asymptotic with the zero-density
lines related to either of the two sides of the samples. However,
they are observed within different parameter ranges. The filling
factors ν = nh/(eB), corresponding to the bulk values of the
two sides tuned by the global back gate and local bottom gate,
are indicated with the green and purple arrows in Fig. 2. The
yellow dashed lines correspond to |ν| = 1 and |ν| = 2, for
either side.

Upon comparing the different magnetoconductance os-
cillations it can be seen that the cyan ones exist at very
low filling factors (starting at |ν| > 1), the red ones exist
at intermediate filling factors (νBG,νlbg) ∼ (−4,4), and the
orange ones appear at the highest filling factors. For one orange
set, the filling factor values where the oscillations start to
appear are around (νBG,νlbg) ∼ (−4,8), for the other orange
set around (νBG,νlbg) ∼ (−8,4). Furthermore, the spacing of
neighboring conductance oscillations as a function of charge
carrier doping differs significantly for the cyan, red, and orange
oscillations. An additional conductance modulation is also
present where high and low conductance values follow lines
that fan out linearly from the common charge neutrality point.
The effect is more pronounced at higher magnetic fields and
was attributed to valley-isospin oscillations [54–56] which are
discussed in detail in Ref. [57].

Whereas for the red magnetoconductance oscillations only
one set is observed, two sets are observed for the orange and
cyan ones. The latter ones are furthermore shifted in doping
with respect to each other. Using a device with a geometry
enabling gate defined p-n-p or n-p-n junctions (see SM [33])
we have excluded the possibility that the two orange sets of
magnetoconductance oscillations originate from an additional
p-n junction formed between n-doped graphene near the
Cr/Au contacts and a p-doped bulk. This is in agreement with
quantum transport simulations (discussed later in this paper),
which reproduce a double set of oscillations, in the same
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FIG. 2. Conductance (top panels) and its numerical derivative (bottom panels) of a p-n junction in the bipolar regime for different magnetic
fields. The filling factors, obtained from a parallel-plate capacitor model, are given in green for the cavity tuned by the global back gate (νBG)
and in purple for the cavity tuned by the local bottom gate (νlbg). The yellow, dashed lines indicate filling factors 1 and 2. The different types
of magnetoconductance oscillations are indicated with the red, orange, and cyan arrows/dashed curves. The lines indicate where the magnetic
field dependencies of Fig. 3 were taken, whereas the stars indicate the position of the bias dependent measurements of Fig. 5.

range where the orange ones are observed, without introducing
contact doping. Therefore, a double set of oscillations must
be the sign of two different interferometer loops working
simultaneously near the p-n junction in the bulk [see Fig. 1(b)].

B. Magnetic field dependence

Next we measured selected line cuts as indicated in Fig. 2
with “Cut (a)” and “Cut (b)” as a function of magnetic field.
The differential conductances as a function of magnetic field
and gate voltage are shown in Figs. 3(a) and 3(b). The three
magnetoconductance oscillations, which are labeled with the
red, orange, and cyan arrows, follow a roughly (but not exactly)
parabolic magnetic field dependence where the oscillations
shift to higher absolute gate voltages with increasing magnetic
field. Furthermore, we observe a coexistence of multiple
oscillations within a limited parameter range. The coexistence
of the red and orange oscillations is seen in both Fig. 3(a)
and Fig. 3(b). The conductance as a function of the magnetic
field, while keeping the charge carrier densities on both sides
of the p-n junction fixed, is plotted in Figs. 3(c)–3(e) for three
selected configurations. In Figs. 3(c) and 3(d) large oscillations
(red in the previous graphs) with peak-to-peak amplitudes
reaching nearly 2 e2/h can be seen. Within a limited parameter
range there are smaller oscillations (orange in the previous
graphs) superimposed on top of the red oscillations, having

amplitudes reaching up to ∼0.6 e2/h. The cyan oscillations
show amplitudes in the range ∼0.05–0.1 e2/h. The magnetic
field spacing (�B) between neighboring peaks is given in
Figs. 3(f)–3(h) for the corresponding oscillations shown in
Figs. 3(c)–3(e). Even though all three types of magnetocon-
ductance oscillations reveal a different spacing of �B, they
share a common trend, namely the decrease of �B with
increasing B. Nevertheless, the rate of �B as a function of
B is quite different for the red compared to the orange and
blue magnetoconductance oscillations, which is an indication
that different physical mechanisms are involved.

C. Temperature dependence

In Fig. 4 the temperature dependence of the red, orange, and
cyan magnetoconductance oscillations is given. Figure 4(a)
shows the red oscillations as a function of gate voltage and
temperature (|nBG| ∼ |nlbg| and B = 3.5 T). We characterize
the temperature dependence of each oscillation by calculating
the area A under the oscillation with respect to the high-T
smooth background. From this the normalized area, which is
defined as Anorm. = A(T )/A(T = 1.6K), can be extracted at
different densities, and is plotted as a function of temperature
in Fig. 4(b). A characteristic temperature for the disappearance
of the oscillations, Tc, is then defined according to Anorm(Tc) =
0.1. In Fig. 4(c), TC is plotted as a function of the density for all
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FIG. 3. Magnetic field dependence. (a) Numerical derivative of the conductance as a function of magnetic field and gate voltage as labeled
in Fig. 2 with “Cut (a).” Within a limited parameter range the magnetoconductance oscillations indicated with the red and orange arrows
coexist. The latter can be better seen in (b), along the line cut labeled in Fig. 2 with “Cut (b).” (c)–(e) Conductance as a function of magnetic
field for representative gate-gate configurations of the red (VBG = −20 V, Vlbg = 1.8 V), orange (VBG = −27.5 V, Vlbg = 4 V), and cyan
(VBG = −18.5 V, Vlbg = 1.27 V) magnetoconductance oscillations. The peak positions are indicated with the red, orange, and cyan dots.
(f)–(h) Magnetic field spacing between successive peaks (�B) extracted from (c)–(e). A 1/B and linear dependence of �B as a function of B

is indicated with the black dashed curve/lines for the snake states and Aharonov-Bohm interferences, respectively.

FIG. 4. Temperature dependence. (a) Red magnetoconductance
oscillations as a function of the global back gate (Vlbg is chosen such
that |nBG| ∼ |nlbg|) and temperature at B = 3.5 T. (b) Anorm of the red
oscillations [the dominant ones in (a)] is plotted here as a function
of temperature at various densities. The color coding corresponds to
the x axis of panel (a). (c) The solid lines/dots show the experimental
values of TC, defined as the temperature for which the oscillation
amplitude is reduced to 10% of its low temperature value of the red,
orange, and cyan magnetoconductance oscillations (extracted at B =
3.5 T, B = 3 T, and B = 8 T, respectively) as a function of charge
carrier doping. The red, dashed line corresponds to the vanishing
of snake states according to equation (6) using dn = 50 nm and
W = 1500 nm.

three types of magnetoconductance oscillations. While the red
magnetoconductance oscillation reveals a significant temper-
ature dependence as a function of the charge carrier density,
surviving up to T ∼ 100 K at high doping, the orange and
cyan magnetoconductance oscillations vanish at temperatures
around T ∼ 10 K irrespective of the charge carrier density.
This suggests again that different mechanisms are responsible
for the red magnetoconductance oscillations compared to the
orange and cyan magnetoconductance oscillations. Ballistic
effects, such as snake states and transverse magnetic focusing,
are known to survive to temperatures up to T ∼ 100 K to
150 K [7,22,58]. On the other hand, phase coherent transport
in similar devices vanishes at temperatures around ∼10 K (see
Ref. [59]).

D. Bias dependence

We have also investigated the bias dependence of the differ-
ent oscillations as a function of magnetic field while keeping
the charge carrier densities fixed. The bias was applied asym-
metrically at the source, while the drain remained grounded.
The red magnetoconductance oscillations evolve from a tilted
line pattern at smaller magnetic fields into a checkerboard
pattern at high magnetic field as shown in Fig. 5(a) (a smooth
background is subtracted). At high magnetic field the visibility
of the checkerboard pattern decreases with increasing VSD

while a similar behavior is absent (within the applied bias
range of ±10 mV) for the tilted pattern. The bias dependence
of the orange and cyan magnetoconductance oscillations is
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FIG. 5. Bias spectroscopy. (a)–(c) Measurement of the red, orange, and cyan magnetoconductance oscillations as a function of bias and
magnetic field where a smooth background was subtracted. Gate voltages remain fixed and are indicated in Fig. 2 with the yellow (red
and orange oscillations) and green (cyan oscillation) stars. (d)–(f), Phenomenological simulations of the bias dependence of snake state
and interference-induced oscillations (a)–(c). Parameters used: W = 1.5 μm, dn = 100 nm (red oscillations), kF corresponding to n ∼ 1.7 ×
1012 cm−2 (red, orange) or n ∼ 0.8 × 1012 cm−2 (cyan). For the Aharonov-Bohm oscillations we considered a bias dependent gating effect with
α = 0.32 nm/mVSD and d = 40 nm (orange oscillation) or α = 0.25 nm/mVSD and d = 20 nm (cyan oscillations), while a renormalization
of the edge state velocity is neglected (β = 1).

shown in Figs. 5(b) and 5(c), both revealing a tilted line
pattern within the measured magnetic field range, as shown
by the dashed lines and arrows. The bias dependence of the
orange oscillations persists to ±10 mV, whereas that of the
cyan oscillations vanishes around roughly ±2 mV. In Fig. 5(c)
additional magnetoconductance oscillations with a narrow
spacing of roughly �B ∼ 4 mT to 6 mT can be observed,
indicated by green arrows and green dashed lines. These
oscillations will be briefly discussed at the end of the paper.

III. DISCUSSION

We have observed different magnetoconductance oscilla-
tions, marked with red, orange, and blue. All of the oscillations
have roughly hyperbolic line shapes in the gate-gate map, but
the magnetic field spacing, the temperature dependence, and
the fact that there is only a single set of red oscillations suggest
that they are governed by different physical mechanisms.
Based on the experimental evidence presented until now, it is
suggestive to assign the red oscillations to snake states and the
others to the Aharonov-Bohm effect. This will be substantiated
further on below.

A. Magnetoconductance oscillations marked in red

The red magnetoconductance oscillations start to appear in
the range |ν| ∼ 3–6 as can be seen in Fig. 2. This corresponds
to an occupation of roughly two edge states (ν = ±4, Landau
levels 0 and±1) without taking degeneracy lifting into account.
The shape of the red magnetoconductance oscillations fits very
well to what is expected for snake states following equation (1)
and equation (2), as we will show below.

As discussed in the introduction, the oscillation results from
a commensurability relation of the p-n junction length and

the skipping length, where the conductance is high or low
depending on whether the snaking trajectories end up on the
source or the drain side. If the magnetic field is fixed, the
skipping length λS is directly proportional to the slope of
the p-n junction according to equation (1). In Fig. 6(a) the
calculated charge carrier density profile at B = 0 T is shown
for three exemplary gate-gate configurations (details of the
electrostatic simulations are given in the SM [33]). It is clear
that S0 characterizes well the density profile in the vicinity of
the p-n junction. S0 as a function of gate voltages is plotted in
Fig. 6(b): Here curves of constant S0, and therefore of constant
λS (if B remains fixed), follow a roughly hyperbolic line shape
in agreement with the shape of the red magnetoconductance

FIG. 6. Charge carrier density profile in the bipolar regime and
extracted slope. (a) Representative charge carrier density profiles
calculated from electrostatics at positions as indicated in (b) with
the triangles. At n = 0 the slope is nearly linear (inset). (b) Slope |S0|
extracted at n = 0 as a function of the gates. Gray curves represent
constant values of |S0|, and consequently of λS, as well [equation (1)].
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oscillations (Fig. 2). Although the orange and cyan oscillations
also seem to follow hyperbolic shapes on gate-gate maps, the
red ones only have a single set as expected of snake states.

Next we analyze the magnetic field dependence and spacing
expected of snake state induced oscillations. Based on S0

[Fig. 6(b)] one can calculate the conductance contribution as a
function of an arbitrary line cut and magnetic field (not shown
here), leading to a roughly parabolic magnetoconductance
oscillation which strongly resembles the measurements shown
in Figs. 3(a) and 3(b).

By using the model with a constant density gradient the
magnetic field spacing as a function of magnetic field is given
approximately by (see SM [33]):

�B ∼ 2
π2h̄2n

e2Wdn

1

B
, (4)

where a symmetric p-n junction with n ≡ |nL| = |nR| was
assumed. The magnetic field spacing in the experiment is
very well described by the 1/B dependence. By fitting the
magnetic field spacing of the snake state model as described
in equation (4) to the measurements shown in Fig. 3(f) we
extracted a slope of S = 1.82 × 10−3 nm−3 which is roughly
one order of magnitude larger than what was calculated in
Fig. 6(b) (S0 ∼ 1.2 × 10−4 nm−3). One explanation for the
discrepancy is that strictly speaking S0 is only valid at B = 0 T.
However, at finite magnetic field the charge carrier density
has to be calculated self-consistently leading to areas with
a constant charge carrier density (compressible region) and
areas where the charge carrier density changes rapidly (S > S0,
incompressible regions) [60]. Also, the model supposes that the
trajectories stay within the area with a constant density slope
(see SM [33]), which might be not valid at low fields due to
the increased cyclotron radius and skipping length.

The decrease of the oscillation amplitude with increasing
magnetic field [Fig. 3(c)] is compatible with the picture of
classical snake trajectories, where the conductance oscillation
results from the sum over all trajectories which form caustics
along the p-n junction [61,62]. Upon increasing the magnetic
field the charge carriers have to pass the p-n junction more
often (decreasing λS). This leads to a reduced oscillation
amplitude [23] because only trajectories with an incident
angle being perpendicular to the p-n junction (θ = 0) have
a transmission probability of t = 1, while for all remaining
trajectories t < 1 is valid [31,32,63].

Our most compelling argument for identifying the red
oscillations with snake states comes from the comparison of
the measured temperature dependence with that calculated
by the following simple model. At finite temperatures T the
Fermi surface is broadened by �E ∼ kBT (where kB is the
Boltzmann constant), thus leading to a spread of the Fermi
wave vector according to �kF ∼ kBT/(h̄vF). The oscillations
are expected to vanish if the smearing of trajectories becomes
comparable to half a period:

2(λS,max − λS,min) · N ∼ 〈λS〉, (5)

where λS,max, λS,min, and 〈λS〉 correspond to the maximal,
minimal, and average skipping length, respectively, and N to
the number of skipping periods. This leads to a characteristic

temperature

Tc ≈ 2vFh̄
3

WdnkBe2B2

√
n3π5, (6)

where the oscillations vanish. Here kB is the Boltzmann
constant. Details of the calculation can be found in the SM [33].
The vanishing of the red magnetoconductance oscillations with
increasing charge carrier doping, which is plotted in Fig. 4(c)
(red, dashed line), is in good agreement with what is expected
for snake states according to Eq. (6), unlike the other type of
oscillations.

Finally, we analyze the bias dependence of snake states.
Details of the model can be found in the SM [33]. The
bias dependence is calculated by taking into account the
energy dependence of the snake period through its momentum
dependence. In the case of a fully asymmetric bias the model
reproduces the tilted pattern which is shown in Fig. 5(d) at low
magnetic field. On the other hand, for the case of completely
symmetric bias, the same model leads to the checkerboard
pattern which is shown in Fig. 5(d) at high magnetic field.
The checkerboard pattern is in agreement with previous studies
[24,25], where a similar behavior was observed. The oscillation
period decreases with increasing magnetic field in the simu-
lation [Fig. 5(d)] comparable to the experiment [Fig. 5(a)].
In order to reproduce the transition from tilted (asymmetric
biasing) to checkerboard pattern (symmetric biasing) we varied
the bias asymmetry going from low to high magnetic field. We
speculate that it might be related to the capacitances in the
system [64], but the precise reason remains unknown so far.
We discuss this in more detail in the SM [33].

B. Magnetoconductance oscillations marked in orange

From all the observed magnetoconductance oscillations the
orange ones occur at the highest filling factors starting at
roughly |ν| ∼ 6 and persisting up to |ν| = 20 or even higher,
as shown in Fig. 2. This corresponds to an occupation of at
least two edge states (|ν| = 0 and |ν| = 4) without taking a
possible degeneracy lifting into account. Snake states can be
excluded here, as the double set of oscillations indicates two
simultaneous effects, with their origin displaced in real space
with respect to the p-n junction. Therefore, we attribute these
oscillations to Aharonov-Bohm oscillations between quantum
Hall edge states propagating in parallel with each other and the
p-n junction. Their temperature, B-field and bias dependence
also support this idea. Below we discuss expectations and
compare them with our experimental observations.

In an Aharonov-Bohm interferometer, the magnetic field
spacing �B between neighboring conductance peaks is given
by:

�B = h

e

1

A
. (7)

Here �0 = h/e is the magnetic flux quantum and A is the
enclosed area given by the product of the width of the flake W

and the distance of the edge states d.
This suggests a constant �B for a fixed spacing d. However,

in the experiments �B is not exactly constant because the
real-space positions of the edge states, which define A, vary as
a function of magnetic field and the p-n junction’s density
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profile [24]. By considering a linear charge carrier density
profile �B decreases linearly with increasing B. This is in
agreement with what was measured in Figs. 3(g) and 3(h),
indicated with the black dashed line, therefore suggesting an
Aharonov-Bohm type of interference. Even though multiple
areas might be enclosed between the various edge states, only
one Aharonov-Bohm loop will dominate as explained previ-
ously and sketched in Fig. 1(b). The magnetic field spacing of
the orange magnetoconductance oscillations [Fig. 3(g)] was
converted into a distance ranging from d ∼ 30 nm at B ∼
2 T to d ∼ 55 nm at B ∼ 5.5 T. The decreasing oscillation
amplitude (�Gosc) with increasing magnetic field [Fig. 3(d)]
directly indicates the vanishing coupling between edge states
as they move further apart from each other at higher magnetic
fields.

We have used the zero-field electrostatic density profile
shown in Fig. 6(a) to identify the spacing d between two
edge states for any set of (VBG,Vlbg) within the gate-gate map.
The magnetoconductance oscillation can then be calculated
according to equation (3), leading to a roughly hyperbolic
shape as a function of the two gates at fixed magnetic field
(see the Supplemental Material). The two sets of the orange
oscillations can be reproduced with a double Aharonov-Bohm
interferometer as sketched in Fig. 1(b), where the conductance
oscillations arising from the interferometer on the left (e.g.,
quantum Hall channel with ν = 0 and ν = ±4) and right (e.g.,
ν = 0 and ν = ∓4) side are added up incoherently. The two
sets of orange magnetoconductance oscillations are slightly
shifted in doping with respect to each other because each of the
two gates tunes one side of the p-n junction more effectively.
Furthermore, measuring a line cut as a function of magnetic
field reveals a roughly parabolic trend (see SM [33]). These
findings are in good agreement with the measurements which
are shown in Fig. 2 and Figs. 3(a) and 3(b), respectively.

In interference experiments which depend on phase co-
herent transport, a vanishing of the oscillation pattern with
temperature can have different origins such as loss of phase
coherence due to enhanced inelastic scattering events. As soon
as l� < L, where l� is the phase coherence length and L is the
total path length, the interference pattern is almost completely
lost. As mentioned before, the phase coherence length is below
1–2 μm in similar devices at temperatures around ∼10 K (see
Ref. [59]). However, the interference can as well be lost at
finite temperatures even if l� > L if the two interfering paths
have different lengths (�L 
= 0), again due to the smearing of
the Fermi wave vector. In this case, the interference pattern is
expected to vanish at temperatures around

T = hvF

kB�L
. (8)

Since for the Aharonov-Bohm interference along a
graphene p-n junction �L is ideally zero [see Figs. 1(b) and
1(c)] or very small, this effect is negligible. Consequently,
the loss of the interference signal with increasing temperature
depends on the decrease of l�, which depends only weakly on
the charge carrier doping [59], in agreement with Fig. 4(c).

Finally, we calculate the bias dependence of Aharonov-
Bohm oscillations. The details of the model are discussed in the
SM [33]. The bias dependence is introduced via the momentum

difference which leads to:

G(V ) ∼ cos

[
2π

W · (d + αV ) · B

�0
+ k�L

]
. (9)

Here α is a phenomenological parameter in order to account
for a bias dependent gating effect [11]. For simplicity the
edge state spacing d is modified proportional to the applied
bias. The factor k�L in Eq. (9) accounts for a possible
path difference between the edge states, where k is replaced
by k = kF + eV/(h̄vFβ). The parameter β (0 � β � 1) was
introduced to account for the renormalized edge state velocity
compared to the Fermi velocity [65].

We have found that the second term alone (k�L at α = 0)
cannot lead to substantial bias dependence if the parameters
are chosen realistically (�L ∼ 20 nm and β = 1). To account
for the tilt of the measurement a considerable renormalization
of the edge state velocity is needed leading to an unphysically
large reduction of vF by a factor of one hundred. Therefore
most of the tilt must come from nonzero α and the bias induced
gating effect.

The applied bias voltage shifts the electrochemical potential
on one side (or both sides) and therefore leads to a change of the
density profile. The changing density profile results in shifting
of the edge states, and in order to keep the flux through the inter-
ferometer fixed, the magnetic field has to be changed. Assum-
ing that the applied bias affects the edge state spacing according
to �d = α · VSD, then α can be extracted from the bias spacing
in Fig. 5(b). This leads to values of α ∼ 0.32 nm/mVSD. The
resulting bias dependence is plotted in Fig. 5(e). Based on a
simple model, it is possible to numerically estimate the value
of alpha, to compare with the observation. We keep the width
dn of the p-n junction constant and take the bias voltage into
account directly changing the left and right band offset and thus
nL/R . From this simple model we obtain values in the order of
α ∼ 0.39 nm/mVSD to 0.48 nm/mVSD for the orange magne-
toconductance oscillations, which agrees fairly well with the
experimental observations. Details are given in the SM [33].

C. Magnetoconductance oscillations marked in cyan

The cyan magnetoconductance oscillations were observed
at the lowest filling factors as low as |ν| ∼ 2 or even less, above
B ∼ 4 T as shown in Fig. 2. We attribute these oscillations
to Aharonov-Bohm oscillations formed by edge channels of
the fully degeneracy lifted lowest Landau level, as shown in
Fig. 1(e). Since full degeneracy lifting of the lowest Landau
level (valley and spin) is observed for B > 5 T (see SM [33]),
the edge states are spin and valley polarized. While the spin
degree of freedom is conserved along the edges of graphene
and along the p-n junction [25], the valley degree of freedom
is only conserved along the p-n junction. Mixing between
the edge states of the lowest Landau levels having equal
spin is consequently prohibited along the p-n junction, but
possible at the graphene edges. Comparable to the orange mag-
netoconductance oscillations, the magnetic field spacing of
the cyan oscillations decreases monotonically, corresponding
to an edge state spacing of d ∼ 9 nm at B = 4.5 T and to
d ∼ 15 nm at B = 8 T. The oscillation amplitude of the cyan
magnetoconductance oscillation shown in Fig. 3(c) was rather
constant with magnetic field including some irregularities.
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We note that the cyan magnetoconductance oscillations are
predominantly visible at a charge carrier doping of |nBG| ∼
|nlbg| (Fig. 2) for reasons which are unknown yet. Similar to
the orange magnetoconductance oscillations, the temperature
dependence of the cyan ones depends only slightly on the
charge carrier density and is most likely related to the loss
of phase coherence.

Finally, the bias dependence is modelled similarly to the
orange oscillation. The measurements can be well reproduced
by using α ∼ 0.25 nm/mVSD to account for the bias dependent
gating effect as demonstrated in Fig. 5(f), which shows good
agreement with our measurements [panel (c)]. Our simple
estimate using the model detailed in the SM [33] gives values
in the order of α ∼ 0.16 nm/mVSD to 0.25 nm/mVSD for the
cyan magnetoconductance oscillations, again agreeing fairly
well with the experimental findings.

IV. QUANTUM TRANSPORT SIMULATIONS

To complement our measurements, we additionally per-
formed quantum transport calculations based on so-called
scaled graphene [66] using the realistic device geometry.
These calculations were able to reproduce the red and orange
magnetoconductance oscillations. In the calculations electron-
electron interactions are not taken into account. In Fig. 7(a)
the conductance is shown as a function of the local bottom
gate and the global back gate at B = 3 T within the bipolar
regime. Comparable to the measurements presented in Fig. 2,
two sets of magnetoconductance oscillations can be seen which
are shifted in doping, which we identify with the orange ones. A
few ridges also appear which we assign to the red oscillations.
In Fig. 7(b) the evolution of the red and orange oscillations are
shown as a function of gate and magnetic field. The calculations
show that the orange magnetoconductance oscillations seen
in the experiments can be reproduced without the splitting of

FIG. 7. Quantum transport calculations for a graphene p-n junc-
tion in magnetic field. (a) Transmission function (T ) of charge carriers
through the p-n junction with the same gate geometry as measured
one, as a function of a local bottom gate and a global back gate.
Red and orange magnetoconductance oscillations are indicated with
the dashed curves/arrows. Filling factors of the global back gate and
the local bottom gate are indicated with the green/purple arrows.
Low doping values (shaded in gray) were omitted to reduce the
computational load. (b) Line cut as indicated in (a) with the black
line as a function of magnetic field.

FIG. 8. Additional magnetoconductance oscillations at high mag-
netic field. Numerical derivative of the conductance as a function
of the global back and local bottom gates at B = 8 T where two
additional sets of fine oscillations can be observed (indicated with the
green, dashed line), superimposed on each set of cyan oscillations.
Left and right side filling factors are indicated by green and purple
arrows, respectively.

the lowest Landau level in contradiction with the claims of
Ref. [25]. In that work all oscillations were linked to the split
lowest Landau levels, however our analysis shows that only the
blue oscillations, appearing at the lowest filling factors, can be
attributed to degeneracy lifted Landau levels.

V. ADDITIONAL MAGNETOCONDUCTANCE
OSCILLATIONS AT HIGH MAGNETIC FIELD

Two additional sets of magnetoconductance oscillations
that have been observed already in Fig. 5(c) are shown in
detail in Fig. 8, marked in green. Detailed gate, magnetic-field,
temperature, and bias dependence is shown in the SM [33].
The gate spacing is much shorter than for other oscillations
(see SM [33]). From magnetic field dependent measurements,
spacing of �B = 6 mT at B = 5.8 T to �B = 4 mT at B =
8 T have been extracted. However, the magnetic field spacing
of the second set of green magnetoconductance oscillations
yields different values, ranging from �B = 25 mT at B =
6 T to �B ∼ 10 mT at B = 8 T. The bias and temperature
dependent measurements show vanishing oscillations around
VSD ∼ ±1 mV and T ∼ 2 K to 3 K.

The origin of these oscillations is unknown. Aharonov-
Bohm oscillations would correspond to an edge state spacing
as high as ∼700 nm, which is clearly unphysically large.
The combination of edge states and a charge carrier island
coexisting in the device could lead to Coulomb blockade
oscillations. However, gate and magnetic-field spacings give
inconsistent island sizes. Details and more discussions are
given in the SM [33]. To resolve the origin of these oscillations
further studies are needed.

VI. CONCLUSION

In conclusion, we have observed three types of magneto-
conductance oscillations in transport along a graphene p-n
junction. We have demonstrated from the detailed analysis of
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the various oscillations that both snake states and Aharonov-
Bohm oscillations appear within our measurements and even
coexist in some parameter region. The question arises: How can
a snake state, mostly imagined as a classical ballistic trajectory,
exist in the regime where quantum effects also seem to be
present, as demonstrated by Aharonov-Bohm interferences?
Here we provide a comprehensive picture of both effects.

(1) By investigating the gate-gate maps we have seen
that first, at the lowest densities and largest magnetic fields,
Aharonov-Bohm oscillations originating from symmetry bro-
ken states appear. In this case no coupling between the edge
states is present along the p-n junction, only at the flake edges.
At low doping the slope of the potential profile, and hence
the electric field, is small, which results in spatially separated
edge channels which can only mix at the flake edge. This
Aharonov-Bohm effect has been recently studied in Ref. [25]
and modeled as two edge channels with different momentum
along the p-n junction. The Aharonov-Bohm flux can be
calculated from the momentum difference of edge channels,
as it is directly related to their guiding center [67].

(2) As the bulk doping and hence the electric field is further
increased, the edge states propagating along the p-n junctions
are no longer eigenstates and start to mix. This effect has
been studied previously for constant electric field, where it
has been shown that for Ec > vF · B, mixing of the states
occur, and electrons can cross the p-n junction [68–70]. In
the very recent calculations of Cohnitz et al. in Ref. [65],
it has been shown that in this regime interface mode, with
velocity corresponding to classical snake states appear. The
real space motion of the center of the wave package, that
gives rise to the snake movement along the p-n junction, can
thus be understood as an emergent spatial oscillations inherent
in the modulus of the true energy eigenstate, which due to
the mixing is a superposition of edge states on the left and
right of the p-n junction. In the simplest picture, one has a
superposition of one mode on the left and one on the right
that are coupled through the electric field. This results into
a periodic motion in real space mimicking snake orbits with
the effect of periodic oscillations in the conductance which
corresponds to the classical commensurability criterion. A
simple model demonstrating this is given in the SM [33].
The oscillation frequency depends on the potential strength
and cyclotron frequency. The situation in our sample is more
complex, since there are several channels and the electric field
is position dependent: It is largest at the center of the p-n
junction and decreases further away from it. In addition, the
magnetic field further complicates electrostatics due to the
formation of Landau levels in the density of states. This makes
quantitative analysis very challenging. Similar pictures based
on numerical analysis have been presented in Refs. [20,23,71].
Further details on this model will be given in the SM [33].

(3) Finally as the density is increased further other os-
cillations appear, marked by orange. We attribute them to
Aharonov-Bohm oscillations between the lowest Landau lev-
els, i.e., the innermost edge states at the center of the p-n
junction (ν = 0 and ±4). For these edge states one can find
two interfering paths for which only one nearest-neighbor
edge scattering along the graphene edge is needed to define
an interference loop. Though higher order edge states may
contribute as well, their magnitude is much smaller, since to

connect these states in an Aharonov-Bohm path that reaches
from one side of the p-n junction to the other will require more
than one scattering event giving rise to a very small visibility.
Let us emphasize the different origins of the snake-state and
Aharonov-Bohm oscillations: The former are caused by edge-
state mixing in the bulk due the presence of a strong electric
field, while the latter rely on scattering along the graphene
edge caused by edge disorder. We also stress that the orange
magnetoconductance oscillations can be reproduced nearly
perfectly using quantum transport simulations, without includ-
ing electron-electron interactions or a Zeeman term. Therefore
we can exclude partial or full degeneracy lifting of the lowest
Landau level in order to explain the orange oscillations.

Our study is a large step toward understanding the complex
behavior of graphene p-n junctions observed on the boundary
of the quasiclassical and the quantum regimes. Some of
these oscillations have been observed before separately, but
their origins might have been misidentified. We present a
unified picture of magneto-oscillations, allowing for the correct
interpretation of the underlying phenomena. Our findings
also show that Aharonov-Bohm-like interferences and qua-
siclassical snake states can coexist. Moreover, the doubling
of the blue oscillations and the green oscillations were not
seen before. Future studies might focus on the origin of
the transition between tilted and checkerboard patterns in
the bias dependence of snake states or on the origin of the
“green” oscillations. In further steps interferometers based on
bilayer graphene can be constructed, where a higher control
of edge channels is possible due to an electric field-induced
gap [72]. Recent works have shown the potential to engineer
more complex device architectures [72,73], where also exotic
fractional quantum Hall states could be addressed.
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