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Theory of spin-coherent electrical transport through a defect spin state in a
metal/insulator/ferromagnet tunnel junction undergoing ferromagnetic resonance

N. J. Harmon* and M. E. Flatté†

Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA

(Received 3 January 2018; revised manuscript received 4 June 2018; published 9 July 2018;
corrected 18 July 2018)

We describe the coherent dynamics of electrical transport through a localized spin-dependent state, such as is
associated with a defect spin, at the interface of a ferromagnet and a nonmagnetic material during ferromagnetic
resonance. As the ferromagnet magnetic moment precesses, charge carriers are dynamically spin filtered by the
localized state, leading to a dynamic spin accumulation on the defect. Local effective magnetic fields modify
the precession of a spin on the defect, which also modifies the time-integrated total charge current through the
defect. We thus identify a form of current-detected spin resonance that reveals the local magnetic environment
of a carrier spin located at a defect, and thus potentially the defect’s identity.
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The emerging field of quantum spintronics seeks to en-
gineer and manipulate single coherent spin systems for the
sake of quantum-enhanced sensing/imaging technologies and
quantum computing [1]. Defect spins in an insulating region
between a ferromagnetic metal and a nonmagnetic conductor
produce an array of coherent spin-dependent phenomena,
including defect-associated spin pumping [2–4], thermal spin
transport [5], and small-field magnetoresistance under electri-
cal bias [6–8]. Individual spin-coherent defects have even been
electrically detected in precisely designed junctions [9,10].
Charge and spin dynamics have also been studied in systems
consisting of a quantum dot connected to ferromagnetic leads
[11–13]. However, the potential of a coherently precessing
source of spins, readily available from a ferromagnetic contact
undergoing precession (such as from a spin-torque oscillator),
has not yet been explored; such a coherent source may be
able to reach a single-defect-spin regime of spin pumping or
dynamic spin polarization.

Here we predict observable coherent dynamics in the charge
and spin transport through a single defect in the junction
between a ferromagnetic material and a second, nonmagnetic
(NM) conducting material when the magnetism of the ferro-
magnet (FM) precesses in time, such as during ferromagnetic
resonance (FMR). During electrical transport the defect can
become dynamically spin polarized and its spin manipulated,
even with negligible coupling between the defect and FM from
a magnetic dipolar field or exchange interaction. This provides
a single-defect-spin example of dynamic spin polarization.
Analysis of the current through the device reveals the local
spin character of a defect and its environment without the need
of a microwave cavity. These effects, in the single-defect limit,
would be detectable with a spin-polarized scanning tunneling
microscope tip undergoing FMR, and should persist even for
sequential hopping transport between the tip and the defect, as
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well as between the defect and the second conducting contact.
A slower transport rate between the defect and the FM provides
better resolution of the defect’s local environment, as long
as the defect spin state’s coherence time is comparable to or
exceeds the electrical transport rate through the junction.

Here we focus on a defect electronic structure correspond-
ing to a single orbital state and two (oppositely oriented)
spin states, either unoccupied or singly occupied by a spin-
1/2 electron. The junction is shown schematically in Fig. 1.
Transport occurs as an electron spin, of arbitrary direction,
hops from the left contact to the previously empty defect
site and singly occupies the level. The electron’s subsequent
motion will then be limited depending on the orientation of
its spin relative to the majority spin polarization at the Fermi
level in the FM; if parallel then the transport is rapid, while if
antiparallel the transport is slower. Similar behavior will occur
for hole spin transport, with opposite bias voltage and when
the hole hops to a defect site that is empty (of holes, and thus
doubly occupied by electrons), or for defects with different
electronic state ordering, as long as the transport through the
defect states depends on spin. For example, a ground-state
spin-1 defect, such as a silicon carbide divacancy [14], will
exhibit essentially the same features as our spin-1/2 system
but with opposite dynamic spin polarization. We focus on the
case shown in Fig. 1.

A heuristic picture helps us visualize the resonance condi-
tion for transport through the defect state during precession of
the FM’s spin polarization. The spin polarization of the FM’s
Fermi-level carriers, PR(t) (green arrow), precesses around
an axis ωFM (black arrow), depicted parallel to ẑ in Fig. 1.
The cone angle is the angle between PR(t) and ωFM. The
equilibrium polarization of the FM when not undergoing FMR
is PR||ẑ. The probability for a carrier at the defect to enter the
FM depends on the relative orientation of the carrier’s spin,
s(t) (blue arrow), and PR(t). For the simplest picture consider
the FM to be 100% spin polarized, for which only a carrier
with some spin component parallel to PR(t) may tunnel into
the FM. For the case of a small FM, the FM remains as a single
domain when undergoing FMR.
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FIG. 1. (a) Diagram of the energy landscape of a ferromag-
net/nonmagnetic (FM/NM) metal junction. The darker box specifies
the NM metal and the middle planes represent the two energy levels
of the defect which are separated by an on-site Coulomb energy U .
The bias pushes electrons through the junction from the NM metal
(left) to the FM (right). The vertical direction is energy, whereas the
lateral directions are spatial coordinates. (b) Schematic of the spatial
orientation of various spins: the FM polarization PR(t) (green arrow)
precesses around an axis ωFM (black arrow). The spin of the defect
s(t) (blue arrow) precesses in the sum of an externally applied and
a local magnetic field, at a frequency ωd = ω0 + ω�. In this panel
ωd = 0. The dynamical spin polarization of the defect follows the
FM polarization. (c) For ωd �= 0 the defect spin precesses around the
static (ωFM = 0) steady-state spin orientation (indicated by the orange
line).

The spin on the defect site, associated with the carrier,
can also precess due to the influence of an applied magnetic
field as well as a local effective field arising from hyperfine
interactions, exchange interactions with neighboring sites, or
other effects. The directions of precession vectors will be
described using a polar angle θ relative to ωFM ‖ ẑ and an
azimuthal angle φ relative to the x̂ axis, with a subscript
corresponding to the specific precession vector. The local
field is considered to be independent of the applied magnetic
field and causes the defect spin to precess according to the
precession vector ω�. The applied magnetic field precesses
the defect spin according to the precession vector ω0, and
the total precession will be ωd = ω0 + ω�. To distinguish this
precession frequency from apparent precession due to spin
filtering, the precession frequency ωd will be referred to as
the defect spin’s Larmor frequency.

Dynamic spin polarization emerges on the defect site and
is largest when ωd = 0, shown in Fig. 1(b). Under bias the
defect occupation is continually replenished until the carrier
spin on the defect is oriented antiparallel to PR and no
further transport occurs until the carrier spin decoheres or the
FM polarization changes. This spin-filtering process results in
the defect spin tracking approximately antiparallel to PR(t),
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FIG. 2. (a) Charge current [Eq. (5)] when the defect spin’s
precession frequency ωd is zero. The current (black line) decreases to
zero as the carrier spin at the defect (orange line) becomes polarized
opposite that of the FM. Once the defect is completely antiparallel,
no further charge can occupy or leave the defect. (b), (c) Charge
current from two choices of ωd , (b) nonresonant and (c) resonant,
with ωd oriented along the x axis in Fig. 1. The orange curves depict
the projection of the carrier spin s(t) onto the rotating polarization
PR(t), which determines the current (black lines). Parameters are
φd = 0, cone angle between PR(t) and ωFM of 0.05 radians (∼10%),
γL = 10ωFM and γR = 0.01ωFM, PR = 1, and PL = 0. For clarity,
each amplitude is enhanced by a factor of 10.

therefore blocking the current through the junction. Figure 2
illustrates the details of the spin-coherent effects on charge
current during FMR, beginning with an unoccupied defect
spin state. Figure 2(a) demonstrates (orange line) that s(t) ·
PR(t) → −1 after transient dynamics.

Figure 1(c) shows the changing dynamics for a nonvanish-
ing Larmor precession of the carrier spin on the defect, and
for ωd perpendicular to ωFM. For ωFM = 0 the defect spin
precession causes the dynamic spin polarization generated
from spin filtering in transport into the FM to rotate in the
zy plane and be oriented along the orange line, which is
determined by the relative precession frequency and spin-
filtering rate to be

s(t) = −2γL

[
γ 2

R PR + γRωd × PR + (ωd · PR)ωd

]
[
γR(1 − P 2

Rχ (ωd )) + 2γL

](
γ 2

R + ω2
d

) , (1)

with

χ (ωd ) = γ 2
R + (ωd · P̂R)2

γ 2
R + ω2

d

, (2)

where γL is the hopping rate from the left conductor to the
defect and γR the hopping rate from the defect to the FM.
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FIG. 3. (a) Power spectra for the resonant (black) and nonresonant
(red) currents in Fig. 2, each normalized with respect to the resonant
peak. The off-resonant spectrum shows a transient peak at ωd =
1.1ωFM in addition to a persistent peak at ωd = ωFM with width
governed by a damping rate � = 0.005ωFM. Integration times are 5
(dotted), 10 (dashed), and 20 (solid) ×103 ω−1

FM. (Inset) dependence on
the integration time of the off-resonant ratio of the power at the Larmor
frequency to that at the FMR frequency (Pωd

/PωFM ). (b) PωFM versus
ωd for several angles (θd ) between ωd and ωFM. PωFM is independent
of φd . Parameters are identical to those in Fig. 2.

For ωFM �= 0 the dynamical defect spin polarization s(t)
precesses at the frequency ωFM around the orange line, as
indicated in Fig. 1(c). Figure 2 displays the current for this
configuration off resonance [Fig. 2(b)] and on resonance
[Fig. 2(c)]. When off resonance, some beating occurs in the
transient stage until the defect spin s(t) is synchronized with
PR(t) [15]. On resonance, corresponding to ωFM = |ω0 +
ω�| = ωd , the amplitudes of the defect spin’s precession and
the current oscillations increase.

The off-resonant power spectrum (red) of the current os-
cillations, Fig. 3(a), shows peaks at both the FMR frequency
(ωFM) and the defect spin’s precession frequency (ωd ); the peak
at ωd is a transient, as shown with integration times of 5, 10,
20 ×103 ω−1

FM, and in the inset. When on resonance (black),
ωFM = |ω0 + ω�| = ωd , s(t) and PR(t) are synchronized and
s(t) increases, producing larger amplitude current oscillations.
Figure 3(b) shows the dependence of the current power spec-
trum at the FMR frequency, PωFM , on ωd for several different
orientations θd .

We now describe how the charge current through the
junction during FMR is calculated, including the spin-coherent
dynamics of the defect. The current operators involving the two
contacts, from the NM contact to the defect (“left” current),
and from the defect to the FM (“right” current), are explicitly

constructed and combined with a coherent density matrix
treatment of the carrier spin dynamics. The following ansatz
describes the “right” current operator,

îR(t) = e

2
γR[P̂R(t)ρ(t) + ρ†(t)P̂

†
R(t)], (3)

where PR(t) is the polarization operator of the FM and ρ(t)
the density matrix of the defect’s carrier spin. The second
term of Eq. (3) ensures hermiticity. P̂R(t) = 1

2 [I + PR(t) · σ ]
describes an imperfect spin filter [P̂R(t) is not idempotent
unless PR = 1] [16]. PR , determined by Tr(P̂σ ), precesses
around ωFM and is determined by

˙̂PR(t) = −1

2

i

h̄
[h̄ωFM · σ ,P̂R(t)]. (4)

An analytic solution for P̂R(t) is available using an algebraic
solver. The explicit form of the matrix P̂R(t) is found in
Appendix A. To account for the finite linewidth of the FMR,
the power spectrum is convolved with a Lorentzian function
of width �. A description of the convolution is found in
Appendix B.

îR represents the movement of charge combined with spin
information encoded in the matrix elements. Charge (spin)
current is iR = TrîR (i s,R = TrîRσ ). The “right” charge current
once the defect site is filled is

i = Tr(îR) = 1
2 (1 + s(t) · PR(t))eγR, with s = Tr(ρσ ),

(5)

which illustrates the dependence of the current on the relative
alignment of the defect spin and FM polarization. For γL � γR

the defect state is predominately filled. For a spin-polarized
contact that is an STM tip, the tip can be moved away from the
impurity until γL � γR . The amplitude of current oscillations,
for small cone angles and γL � γR , scales as P 2

R .
The “left” current (NM contact to defect) can be derived in a

similar fashion after constraining the defect to be at most singly
occupied. For a left conductor with a static magnetization,

îL(t) = eγL[1 − Trρ(t)]P̂L, (6)

where P̂L = 1
2 (I + PL · σ ) is the polarization operator of the

left conductor. This formalism can be generalized to include
dynamic magnetization of the left conductor, although here
we present results only for a NM, i.e., PL = 0. Charge
conservation demands that the left current be the same as the
right current for a time-independent PR(t) or when the current

is averaged over a precession period of PR(t), so TrîL = TrîR .
Construction of the defect density matrix ρ(t) consistently

connects the currents and determines their sensitivity to spin
and applied magnetic fields. The stochastic Liouville equation
is suited well for this type of problem [17,18], so

ρ̇(t) = − i

h̄
[H ,ρ(t)] − γR{P̂R(t),ρ(t)} + 2γL[1 − Trρ(t)].

(7)

The first term of Eq. (7) produces the coherent evolution of the
spin and the second term (curly braces are anticommutators)
the spin-selective nature of tunneling into the FM. The last term
describes hopping onto the defect site from the left contact.
H = (h̄/2)ωd · σ is the spin Hamiltonian at the defect site.
In typical insulators the localization length of the defect’s
wave function is wide enough to encompass a large number of
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FIG. 4. (a) Plots showing the integrated current at ωFM when the
applied field ω0 is swept. Resonances occur when ωd = |ω0 + ω�| =
ωFM. Here ω� = (−0.3,0.1,0.2)ωFM. (b) Two resonance features
appear when two defects are probed. Each colored curve corresponds
to an independent sweep of the magnetic field in the x-y plane
at an angle φ0. For the two defects, ω�,1 = (−0.3,0.1,0.2)ωFM and
ω�,2 = (0.4,0.1, − 0.1)ωFM. Curves in (a) and (b) are normalized to
the highest peak and labeled by the applied field azimuthal angle φ0.
Parameters are identical to those used in Fig. 3.

randomly oriented nuclei, so a local hyperfine field ω� can be
accurately approximated as a classical vector. The spin-density
matrix is obtained from a numerical solution to Eq. (7), and
the current from either Eq. (3) or Eq. (6).

Although the resonances always occur when ωFM = ωd ,
independent of precession axis direction, it is possible to
determine ω� by measuring ω0 at resonance, for several
different directions of ω0, as ω0 at resonance will vary with
direction from ωFM − ω� to ωFM + ω�. In Fig. 4(a) the current’s
power spectrum at the FMR frequency, PωFM , is shown as
a function of ω0 for three different directions of ω0 for an
example hyperfine local field ω� = (−0.3,0.1,0.2)ωFM. This
theory applies also to two independent defects through which
parallel currents run. Figure 4(b) displays sweeps of ω0 at
θ0 = π/2 and three different φ0, similar to the single-defect
scenario. Now resonances occur at two different applied fields
for each sweep. Further description of the resonant detection
is located in Appendix C. These resonant features are not
contingent on θ0 = π/2 but remain for θ0 < π/2.

ωFM is fixed in Figs. 3(b) and 4 as ω0 varies. For a
ferromagnetic thin film with the easy axis of the contact in
the film plane, the component of the applied magnetic field
along the hard axis, if sufficiently small, does not influence
ωFM but does change ω0 and ωd . We assume the magnetic
field component along the hard axis is varied in order to vary
ωd , leaving ωFM fixed.

The relevant timescale for differential precession of the
carrier spin and the FM is the timescale for hopping from the
defect to the FM. For typical scanning tunneling microscopy
measurements with currents of 0.1–30 nA [19], the timescale
for hopping from a defect to a ferromagnetic tip would be 0.05–
1.6 ns. For spins on the defect coherent on this timescale, which

is known to be the case for many examples of localized spins
[20], the features described here will emerge. By comparing
this hopping time to the precession time of the carrier spin on
the defect in a local magnetic field, the sensitivity to local fields
can be estimated to be of the order of ∼10 mT, characteristic
of hyperfine fields for many types of defects. Local fields
in the range of 1–100 mT correspond to FMR frequencies
ωFM = 0.1–10 GHz, which is not an uncommon range for a
wide range of materials [21], Smaller currents will improve
sensitivity to ω�.

Spin-coherent evolution of a carrier spin at a defect produces
resonant features in the charge conductivity of a ferromag-
net/insulator/nonmagnet junction. From this, small numbers
of defects, or a single defect, can be identified by matches
between the ferromagnetic resonance frequency of a contact
and the local precession of the spin(s) of the defect(s). The
approaches described here would also permit the preparation of
specific desired defect spin states through appropriate choices
for the ferromagnet precession frequency, leading to controlled
studies of the coupled dynamics of two coherent spins. We
have purposely chosen small currents in our model to mimic
tunneling between the defect and a spin-polarized scanning
tunneling microscope. An interesting extension would be to
investigate larger currents where spin-torque effects between
the defect spin and FM become important.

This work was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials
Sciences and Engineering under Award No. DE-SC0016447.

APPENDIX A: FERROMAGNET POLARIZATION
DYNAMICS

The matrix describing the evolution of the ferromagnet
polarization is P̂R(t), which can be determined by solving
Eq. (4) which we rewrite here:

˙̂PR(t) = −1

2

i

h̄
[h̄ωFM · σ ,P̂R(t)]. (A1)

In general, ωFM has spherical angle coordinates (α,β) and PR

is initially pointed in the direction (α0,β0). The full solution is
too large to express here but can be determined with a computer
solver such as MATHEMATICA.

The form reduces considerably for certain values of the
angles. For α = β = β0 = 0 (which we assume throughout),
the cone angle between PR(t) and ωFM is α0, and

P̂R(t,α → 0,β → 0,β0 → 0) = 1

2

(
1 + PRv

2 PRu

PRu∗ 1 − PRv
2

)
,

(A2)

where v = 2 cos(α0) and u = sin α0(cos ωFMt − i sin ωFMt).
The polarization vector is found through the standard relation
Pi = Trσi P̂R(t):

PR = PR

⎛
⎝sin α0 cos(ωFMt)

sin α0 sin(ωFMt)
cos α0

⎞
⎠.

APPENDIX B: POWER SPECTRUM CONVOLUTION

Equation (A1) gives a single ferromagnetic resonance
(FMR) frequency whereas the FMR spectrum has a linewidth
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in actuality. The linewidth of the resonant peak in the power
spectrum [Fig. 3(a)] is governed by the FMR linewidth, �. To
account for the finite FMR linewidth, we convolve the pure
power spectrum with a Lorentzian line shape. If p∗ is the raw
power spectrum, then

p(ω) =
∫ ∞

−∞
p∗(y)

�2

�2 + (y − ω)2
dy (B1)

is the power spectrum displayed in Fig. 3(a). � = 0.005ωFM is
taken as the FMR linewidth. The power at the frequency ωFM

is PωFM = p(ωFM).

APPENDIX C: DETERMINING LOCAL FIELD USING THE
RESONANCE CONDITION

As ω0 is swept, resonances may occur in the rangeωFM − ω�

to ωFM + ω�. These bounds are found by solving for ω0

using the resonance condition ω2
FM = ωd · ωd = ω2

0 + ω2
� +

2ω0 · ω�.

The three “measurements” of Fig. 4(a) yield three different
resonance conditions which can be used to ascertain the
magnitude of each local field component via the resonance
condition

ω2
FM = (ω0 + (ω�,x,ω�,y,ω�,z)) · (ω0 + (ω�,x,ω�,y,ω�,z)).

(C1)

The sign of ω�,z is ambiguous, but a fourth measurement with
the applied field slightly canted out of the x-y plane can resolve
the sign. To do so may force ωFM to change linearly with
ω0, in which case the resonance conditions would change.
However, we do not expect the magnitude of ωFM to vary
strongly with ω0 if the angle of inclination is small, so, for
simplicity, we assume ωFM to be constant in this case as
well.

For two or more defects the process is identical to that of
a single defect once each peak is assigned to a specific defect.
The defect assignment is possible since the peak for a particular
defect can be tracked as the azimuthal angle is changed for each
measurement.
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