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Helical network model for twisted bilayer graphene
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In the presence of a finite interlayer displacement field, bilayer graphene has an energy gap that is dependent on
stacking and largest for the stable AB and BA stacking arrangements. When the relative orientations between layers
are twisted through a small angle to form a moiré pattern, the local stacking arrangement changes slowly. We show
that for nonzero displacement fields the low-energy physics of twisted bilayers is captured by a phenomenological
helical network model that describes electrons localized on domain walls separating regions with approximate AB
and BA stacking. The network band structure is gapless and has of a series of two-dimensional bands with Dirac
band-touching points and a density of states that is periodic in energy with one zero and one divergence per period.
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I. INTRODUCTION

The electronic structure of bilayer graphene is sensitive
to strain, interlayer potential differences, and the stacking
arrangement between layers [1,2]. For the energetically fa-
vored Bernal stacking configurations, either AB or BA, Bloch
states have 2π Berry phases, quadratic band touchng, and
a gap that opens when a displacement field is applied by
external gates. The gapped state is characterized by nontrivial
valley-dependent Chern numbers and supports topological
confinement of electrons on domain walls that separate regions
with opposite signs of displacement field [3–6] or differ-
ent stacking arrangements [7–9]. The presence of confined
electronic states, which occur in helical pairs with opposite
propagation directions in opposite valleys, has [10–12] been
confirmed experimentally. Control of these domain walls and
of their intersections has attracted attention recently [13–18]
because of its potential relevance for valleytronics [19].

While engineering of a network of helical states with
tunable geometry is a challenging problem, the network of
helical domain wall states localized on the links of a triangular
lattice expected in misoriented graphene bilayers [20–41] has,
in fact, been observed very recently [42]. In the presence
of a twist, the local stacking arrangement changes slowly
in space in a periodic moiré pattern in which regions with
approximate AB and BA stacking are separated by domain
walls with helical states. The measured local density of states
at a domain wall is strongly energy dependent with a single
peak within the gap that demonstrates the importance of an
interference between helical states propagating along the net-
work. Because the moiré pattern is well developed only when
its period greatly exceeds graphene’s lattice constant, theories
of its electronic structure [43,44] often employ complicated
multiscale approaches to advantage.

In this paper, we derive a phenomenological helical network
model for the electronic structure of gated bilayer graphene
moirés valid in the energy range below the AB and BA
gaps where only topologically confined domain wall states
are present. The model is related to Chalker-Coddington-type
models [45–47] introduced in theories of the quantum Hall
effect. The spectrum of the network model consists of a set

of minibands connected by Dirac band-touching points, which
repeats and is gapless. A single period of the model’s band
structure is illustrated in Fig. 1.

II. DOMAIN WALL NETWORK

To describe the electronic structure of gated bilayer
graphene with a small twist angle θ � 1◦ [48] between layers,
we start from the continuum model Hamiltonian derived in
Ref. [20], which is valid independent of atomic scale com-
mensurability

H0 =
(

vσtp − u T (r)

T +(r) vσbp + u

)
. (1)

The Hamiltonian for a valley K acts in the sublattice space
ψ = {ψ t

A,ψ t
B,ψb

A,ψb
B}, where t and b refer to the top and

bottom layer and v is the single-layer Dirac velocity; σt(b) is the
vector of Pauli matrices rotated by the angle ±θ/2 in the top
and bottom layers, and 2u is the potential difference between
layers produced by the gates. The spectrum is valley and spin

FIG. 1. Helical model band structure over half of the rhombic
Brillouin zone (BZ) defined in Fig. 3(c). The bands in the other half
of the BZ can be obtained by the reflection. The model’s band energies
εn0

q are given by Eq. (11) and depend on a single controlling parameter
α which was set to α = 1.1 in this illustration. The bands touch at
Dirac points located at high-symmetry K , K ′, and � points.
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FIG. 2. Spatial distribution of the the gap parameters in Eq. (4): (a) the gap minimum δ−; (b) the angle θ (r) which specifies the direction in
momentum space at which minima are achieved; (c) the gap maximum δ+. The dashed lines highlight the network of domain walls that separate
regions in which the hybridization is dominated by TAB from regions in which it is dominated by TBA.

independent, while electronic states in two valleys K and K ′
transform to each other by the time-reversal transformation.
The sublattice-dependent interlayer hopping operator is given
by

T (r) = w

3

3∑
i=1

e−ikir Ti, (2)

where w is a hybridization energy scale. The vectors k1 =
−kθey , k2,3 = kθ (±√

3ex + ey)/2 all have magnitude equal
to the twist-induced separation between the Dirac points of
the two layers, kθ = 2kD sin(θ/2) where kD = 4π/3a0 is the
magnitude of the Brillouin-zone corner vector of a single layer
and a0 is the corresponding Bravais period. The matrices Ti

are given by

T1 =
(

1 1

1 1

)
, T2 =

(
e−iζ 1

eiζ e−iζ

)
, T3 =

(
eiζ 1

e−iζ eiζ

)
,

with ζ = 2π/3. The diagonal matrix elements of the hop-
ping operator are identical, TAA = TBB ≡ Td, and correspond
to tunneling between atoms on the same sublattice, while
the off-diagonal matrix elements TAB and TBA correspond
to the tunneling between opposite sublattices. Their spatial
dependence is periodic with the period of the moiré pattern
L = a0/[2 sin(θ/2)].

The network model we derive has its widest range of ap-
plicability in the large gate voltage regime εL � u ∼ w where
εL = 2πh̄v/L is the energy scale of the network minibands,
as we explain below. When hybridization is neglected the
conduction band of the low-potential top layer and the valence
band of the high-potential bottom layer intersect on a circle
of radius pu = u/v. After projection of the full four-band
Hamiltonian (1) to these bands we find that

H =
(

v(p − pu) tP + tS

t∗P + t∗S −v(p − pu)

)
, (3)

where v(p − pu) is the isolated conduction band disper-
sion of the top layer and −v(p − pu) is the valence band
dispersion of the bottom layer. In Eq. (3) we have separated
the tunneling matrix element into two parts: an anisotropic part

with p-wave symmetry tP(φp,r) = [TBAe−iϕp − TABeiϕp ]/2,
where ϕp is the direction of a momentum p, and an isotropic
part tS(r) = −iTd(r) sin(θ/2) independent of ϕp that can be
neglected [49] for θ � 1. The resulting local spectrum εp± =
±

√
(vp − u)2 + 2

p has an anisotropic gap

2
p = δ2

− cos2[ϕp − �] + δ2
+ sin2[ϕp − �] (4)

which achieves minima |δ−| = ||TAB| − |TBA||/2 at
momentum orientations ϕI = � and ϕII = � + π , where
�(r) = (arg[TBA] − arg[TAB])/2. The gap is maximized
at δ+(r) = (|TBA| + |TAB|)/2 at the two perpendicular
orientations. The spatial distributions of these quantities are
illustrated in Fig. 2 where the domain walls clearly appear as
a change in sign of δ−.

It follows from the preceding analysis that the gap in the
local electronic spectrum (4) closes if |TAB| = |TBA|. This
condition is satisfied along the domain walls specified by
dashed lines in Fig. 2(a), where we illustrate the spatial
pattern of δ−(r). The domain walls separate regions where the
interlayer hybridization is dominated by the TAB from regions
in which it is dominated by TBA. The local valley Chern number
of Hamiltonian (3)

C =
∫

dp
4π

d
[

∂d
∂px

× ∂d
∂py

]
= δ−

|δ−| , (5)

where d = h/h and the vector h is defined by the Pauli
matrix expansion of Eq. (3), H = (σ · h). The local approxi-
mation for the electronic structure calculates local quantities
from the local continuum model band Hamiltonian, and the
corresponding momentum space integration is therefore over
the full momentum space, and not over the Brillouin zone of the
moiré pattern. The valley Chern number difference across the
domain wall is CAB − CBA = 2, guaranteeing that two helical
electronic channels are present in the gaps per valley and per
spin.

In the vicinity of each domain wall the low-energy states are
concentrated around the minima located at orientations ϕI(II),
which are perpendicular to the domain wall as illustrated in
Fig. 2(b). By expanding the Hamiltonian (3) in the vicinity
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of these minima, making a unitary transformation to place
the mass terms on the diagonal, we are able to write the
Hamiltonian as the sum of two identical anisotropic Dirac
cones with the spatially dependent mass δ−(r⊥):

HD =
(

δ−(r⊥) vp̂⊥ − iv‖p̂‖
vp̂⊥ + iv‖p̂‖| −δ−(r⊥)

)
. (6)

Here we have promoted the momenta to be operators, letting
p → pu + p̂⊥ and δ+φp → v‖ p̂‖. The velocity for momenta
p̂⊥ perpendicular to the domain wall is the single-layer
graphene Dirac velocity v. The velocity for momenta p̂‖ along
the domain wall and Dirac mass δ−(r⊥) are approximated by
their values at the domain wall center as follows:

v‖ = δ+
pu

≈ 2wv

3u
, δ− ≈

√
3w sin

(
2πr⊥√

3L

)
. (7)

Each Dirac point carries one half of the valley Chern number
CD = δ−/2|δ−|, and is responsible for a single helical state.
The Dirac mass δ−(r) changes sign across the domain wall
and Eq. (6) therefore has a Jackiw-Rebbi [50] solution that
describes helical electronic states with dispersion εp‖ = v‖p‖,
and wave function up to the normalization factor is given by

ψp‖ (r⊥) =
(

1

i

)
exp

[
i
p‖r‖
h̄

− wL

πh̄v
sin2

(
πr⊥√

3L

)]
. (8)

The center of the AB/BA region, where wave functions of
helical states from different domain walls overlap, are dis-
tanced at length r0

⊥ = L/2
√

3 from them. The domain wall
network is well developed if the overlap of wave functions
|ψp‖ (r

0
⊥)|2|/|ψp‖(0)|2 = exp[−w/εL] � 1 is weak. Here εL =

2πh̄v/L is the character energy scale of the moiré pattern.
These helical states are the only electronic degrees of free-

dom present when |ε| � u,w. Three sets of parallel domain
walls with orientations differing by 120◦ surround AB and BA
regions and intersect at a set of points with local AA stacking.
The considerations we have discussed to this point establish
the physical picture we use to motivate our phenomenological
helical network model for domain wall states.

III. PHENOMENOLOGICAL NETWORK MODEL

Our phenomenological helical network model consists of
the links and nodes illustrated in Figs. 3(a) and 3(b), which
connect to form the domain wall pattern. We assume bal-
listic propagation along links and scattering only at nodes.
The dispersion law along links, εq = v‖q, is consistent with
the Jackiw-Rebbi confined mode solution. For εL � w � u,
the two Dirac cones on opposite sides of the ring at ϕI

and ϕII are well separated in momentum space, allowing
scattering between them to be neglected. This simplification
allows us to consider a network with a single helical channel
per link.

The full domain wall network can be constructed by placing
the set of three elementary nodes on a triangular lattice

(a)

1

2

3
1

1’
2

2’

3

3’

(b) First BZ

K
Γ

M
K’

K’

K

M
Γ

(c)

FIG. 3. (a) Elementary cell of the network. The wave-function
amplitudes, links 1, 2, and 3, are denoted by ψij = {ψ1

ij ,ψ
2
ij ,ψ

3
ij }.

(b) Node with three incoming and three outgoing channels character-
ized by the scattering matrix Ŝ. (c) First Brillouin zone of the network
in hexagonal and rhombohedral representations.

with elementary lattice vectors l1,2 = L(±√
3ex + ey)/2. The

wave-function amplitudes on links 1, 2, and 3 of the cell
centered at Rij = il1 + j l2 are illustrated in Fig. 3(a) and
denoted by ψij = {ψ1

ij ,ψ
2
ij ,ψ

3
ij }. Each node has three input

and three output channels and therefore has a 3×3 unitary
scattering matrix Ŝ whose detailed form depends in a complex
way [51] on the spatial profile of the domain walls intersec-
tion. We follow a simpler phenomenological approach. By
observing that the straightforward scattering amplitude mag-
nitudes |S11| = |S22| = |S33| and the 240◦ deflection scattering
amplitudes |S12| = |S13| = |S21| = |S23| = |S31| = |S32| must
be equal due to symmetry, it follows that the unitary matrix
T can be parametrized by an angle α ranging between 0
and αM = arccos[1/3], and six phases φS,φ

R
1 ,φL

1 ,φR
2 ,φL

2 ,φ3

ranging between 0 and 2π : S = eiφTSL
φ S̄SR

φ , where φS is the

average phase shift; SL
φ = diag[ei(φR

2 +φR
1 +φ3),e−iφL

2 ,e−iφL
1 ] and

SR
φ = diag[ei(φL

2 +φL
1 −φ3),e−iφR

2 ,e−iφR
1 ] are phase shifts before

and after scattering, which are not independent, and S̄ is the
unitary matrix:

S̄ =

⎛
⎜⎜⎜⎝

cos(α)eiχ sin(α)√
2

sin(α)√
2

sin(α)√
2

− 1+cos(α)e−iχ

2
1−cos(α)e−iχ

2

sin(α)√
2

1−cos(α)e−iχ

2 − 1+cos(α)e−iχ

2

⎞
⎟⎟⎟⎠. (9)

Here χ = arccos[{3 cos2(α) − 1}/2 cos(α)]. The electron flow
conservation requires Pf + 2Pd = 1, where Pf = cos2(α) and
Pd = sin2(α)/2 are probabilities of an electron to be scattered
to forward and two symmetric deflected channels. They are
parametrized only by the angle α and are independent of
scattering phases.

To find the electronic spectrum of the network we follow
the transfer matrix approach. The outgoing ψout and incoming
ψin electronic waves with energy ε at any node are connected
by ψout = e−iφE Ŝψin, where ψout = (ψ1

i+1,j ,ψ
2
i,j−1,ψ

3
i,j ) and

ψin = (ψ1
i,j−1,ψ

2
i,j ,ψ

3
i+1,j ). Here φE = εL/h̄v‖ is the dynami-

cal phase accumulated by electrons while propagating between
links. Bloch’s theorem connects wave function amplitudes in
different cells by ψij = eiqRij ψ̄ , where ψ̄ ≡ {ψ̄1,ψ̄2,ψ̄3} and
q is the moiré momentum. The connection between input and
output waves can be rewritten as [λ − Uq]ψ̄ = 0, and has a
nontrivial solution only if λ = ei(φE−φT) is equal to one of the
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eigenvalues of the matrix

Uq =

⎛
⎜⎜⎝

cos αei(χ+φR
1 +φR

2 +φL
1 +φL

2 −ql1−ql2) sin α√
2

ei(φR
1 +φ3−ql1) sin α√

2
ei(φR

2 +φ3)

sin α√
2

ei(φL
1 −φ3) − 1+cos αe−iχ

2 ei(ql2−φR
2 −φL

2 ) 1−cos αe−iχ

2 ei(ql1+ql2−φR
1 −φL

2 )

sin α√
2

ei(φL
2 −φ3−ql2) 1−cos αe−iχ

2 e−i(φR
2 +φL

1 ) − 1+cos αe−iχ

2 ei(ql1−φR
1 −φL

1 )

⎞
⎟⎟⎠. (10)

It should be noted that the network spectrum can be approached
within the discrete evolution method [46], and the matrix Uq
plays the role of the discrete evolution operator. Its three eigen-
values λn

q are labeled by n = −1,0,1 and correspond to three

bands that periodically repeat with energy ε
‖
L = 2πh̄v‖/L and

are given by

εnm
q = ε

‖
L

(
arg

[
λn

q

]
2π

+ φT

2π
+ m

)
. (11)

The phase φT just results in a rigid shift of all bands in energy,
while m is an integer and ensures their periodicity. The energy
periodicity of the electronic structure is a feature of network
models that distinguishes them from standard tight-binding
models.

Since the matrix Uq is also unitary U+
q = U−1

q and
det[Uq] = 1, its eigenvalue problem can be written in a
compact way:

λ3
q − tr[Uq]λ2

q + tr[U+
q ]λq − 1 = 0. (12)

The electronic spectrum therefore depends only on the trace
of the matrix Uq that is given by

tr[Uq] = cos(α)eiχei(�1+�2−ql1−ql2)

− 1
2 [1 + cos(α)e−iχ ][ei(ql1−�1) + ei(ql2−�2)]. (13)

Here we have introduced phases �1 = φL
1 + φR

1 , �2 = φL
2 +

φR
2 . These phases �1 and �2 can be eliminated by the shift

of the momentum space origin, and therefore do not influence
the density of states of the network and electronic transport
through it. The latter remarkably depend only on α, which
in turn characterizes the distribution of scattering probability
between forward and deflected channels.

It has been numerically shown [14] that, contrary to classical
intuition, because nearby paths have a larger wave-function
overlap with the incoming electron, deflection is the more
likely outcome. For the presentation of results we chose
α = 1.1 corresponding to probabilities Pf ≈ 0.2 and Pd ≈
0.4. We also use the set of phases φT = �1 = �2 = (π −
2 arcsin[3 sin α/2

√
2])/3 that ensures the discrete rotational

symmetry of the network in respect to 120◦ around any node.
The first Brillouin zone of the network has a hexagonal

shape and is illustrated in Fig. 3(c) where we also illustrate
an equivalent rhombic primitive cell. The spectrum has the
mirror symmetry across the KK ′ line since tr[UqM−qx ,qy

] =
tr[UqM+qx ,qy

], where qM = 2πex/
√

3L is the position of the M

point in the Brillouin zone. A single period εn0
q of the repeating

band structure is plotted in the half of the rhombic Brillouin
zone in Fig. 1, where we see that it is gapless because of Dirac
band-touching points situated in �, K , and K ′ high-symmetry
points. They are separated by momentum kD = 4π/3L and

energy εD = ε
‖
L/3. The density of states of the network

is presented in Fig. 4 and is periodic with period εD. It
is three times smaller than the period of the network band
structure ε

‖
L, which reflects the symmetry between three links

in an elementary cell of the model. The single period contains
one zero at the Dirac point, and one saddle-point logarithmic
divergence. The latter reflects the van Hove singularity due to
the presence of saddle points in the network band structure,
which are clearly visible in Fig. 1.

The gapless nature of the electronic spectrum of the
network originates from its triangular symmetry. The mo-
menta and energies of Dirac points are independent on
α. Really, the discriminant D = 27 + 4tr[Uq]3 + tr[U+

q ]3 −
18|tr[Uq]|2 − |tr[Uq]|4 = 0 of the cubic eigenvalue problem
(12) vanishes in �, K , and K ′ high-symmetry points for any
α. Moreover the Dirac velocity in the vicinity of these points
vD = v‖/2 is also α independent. The latter determines the
positions and strength of van Hove singularities of the network
density of states.

IV. DISCUSSIONS

The helical network model proposed here describes the
electronic structure of twisted bilayer graphene in the regime of
small twist angles and large strong displacement field. Recently
it has been argued that there is a separate regime in graphene
bilayers that can also be described as a honeycomb lattice
network model [52]. In that case the network is not helical and

FIG. 4. The energy dependence of the density of states ν(ε) per
valley, spin and per Dirac point in the ring. It has three dips and
three maxima separated from each other by εD = ε

||
L/3. The primer

correspond to Dirac points, while the latter to saddle points of the
moiré pattern band structure presented in Fig. 1. The corresponding
scale for the density of states is νL = √

3π/ε
||
LL2.
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does not require a displacement field, and is dependent instead
on a special large twist angle close to commensuration.

Previous numerical calculations have addressed the elec-
tronic properties of twisted bilayer graphene in the same regime
studied here [43], and have discovered a set of sharp features
in the density of states which are nearly periodic in energy.
For the case of twist angle θ = 0.2◦ and potential difference
between layers 2u ≈ 180 meV, the numerical features are sep-
arated by εD ≈ 21 meV. Because the circumstance studied
numerically are not fully in the regime in which our network
model applies, our expressions for v‖ do not apply. If we make
the approximation v‖ ≈ v, we find εD ≈ εL/3 ≈ 20 meV,
in good agreement with the numeral calculations. Although
further numerical work is necessary to fully test our theory,
this comparison does seem to suggest that it provides an
explanation for the unexpected set of density-of-states peaks
in Ref. [43].

In a recent experiment [42] a small twist angle θ = 0.245◦
has been applied between layers to produce moiré patterns with
period L ≈ 58 nm. The resulting energy scale of the pattern
εL = 2πh̄v/L ≈ 72 meV is comparable with the gap induced
by the applied displacement field, εg ≈ 60 meV. Again our
model, which predicts a periodic set of density-of-states peaks,
is not fully applicable. At this relatively small displacement
field, only one density-of-states feature has been observed
within the gap [42]. For the largest gaps εg ≈ 250 meV
achievable in bilayer graphene [53,54], our model applies
over a wide range of energies. Using the hybridization energy
w = 400 meV [1] we estimate that the velocity of helical states
v‖ = 1.6×106 m/s is larger than the velocity of electrons in
graphene v = 106 m/s. The period of the network is equal
to ε

‖
L ≈ 115 meV and the period of the density of states

εD ≈ 38 meV. Because the density of states period is much

smaller than the gap, we expect a set of features due to van
Hove singularities of network spectrum to be well resolved
in experiments. Alternatively, the condition ε

‖
L � εg can be

achieved at smaller twist angles θ .
The electronic band structure of twisted graphene bilayer in

the absence of a displacement field is very sensitive to a twist
angle θ , with vanishing Dirac velocities and flat moiré bands
emerging at a set of magic angles [20]. We predict that magic
angle behavior is absent at strong displacement fields. Instead,
the only low-energy degrees of freedom are helical states
propagating along domain walls separating regions of different
stacking. When the domain wall network is well developed the
low-energy part of its band structure is universal and weakly
depends on θ , apart from the twist-angle dependence of the
energy scale εL.

To conclude, we have introduced a phenomenological
network model that captures the electronic structure of twisted
bilayer graphene with a large displacement field in the energy
range below the AB and BA gaps where only topologically
confined domain wall states are present. Motivated by the
recent observation of the domain wall network in scanning
tunneling microscopy experiments [42] we have focused on its
band structure and density of states. Very recently, signatures
of the network formation have been found in magnetotransport
experiments [55], which can be addressed theoretically using
the model developed in this work.
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