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Quadratic Jahn-Teller effect of fullerene anions
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The quadratic Jahn-Teller effect of C60
n− (n = 1–5) is investigated from the first principles. Employing the

density functional theory calculations with hybrid functional, the quadratic vibronic coupling constants of C60
−

were derived. The warping of the adiabatic potential energy surface of C60
− by the quadratic vibronic coupling

is estimated to be about 2 meV, which is much smaller than the Jahn-Teller stabilization energy (≈ 50 meV).
Because of the selection rule and the vibronic reduction, the quadratic coupling slightly modifies the vibronic
states of C60 anions. Particularly, in the case of C60

3−, parity and symmetry selection rule significantly reduces the
effect of quadratic coupling on vibronic states. The present results confirm that the low-energy vibronic dynamics
of C60

n− is of pseudorotational type.
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I. INTRODUCTION

The Jahn-Teller (JT) effect [1–3] plays a central role
in the low-energy structures of fullerene C60 anions and
the electronic properties of fullerene-based compounds. The
relative importance of the static and dynamical JT effect
has been intensively investigated in molecular spectroscopy
[4–14], in the superconducting and insulating alkali-doped
fullerides [15–33], in the ferromagnetic TDAE-C60 [34,35],
where TDAE stands for tetrakis(dimethylamino)ethylene, and
other organic fullerene compounds [36–38]. The dynamical
tn1u ⊗ hg JT model for C60

n− ions has been analyzed with
various approaches. Within a linear vibronic model, the vi-
bronic dynamics is of pseudorotational type [17,19], while,
by turning on the quadratic vibronic coupling, it becomes
of tunneling splitting type [39,40] due to the hindering of
pseudorotation.

To assess the nature of the JT effect in C60 anions,
knowledge of vibronic coupling constants is essential. After
many experimental [6,9,20] and theoretical [41–49] studies,
the linear orbital vibronic coupling parameters of C60

− were
finally established recently [10] (for details on this problem,
see Refs. [10,50]). In this work, the linear vibronic coupling
parameters were derived by simulating the high-resolution
photoelectron spectrum [51], and the obtained parameters were
found to agree well with density functional theory (DFT)
calculations using a hybrid functional. Subsequent calculations
within the GW approximation gave close values of stabilization
energy for C60

− [52]. On the other hand, knowledge of
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nonlinear vibronic coupling parameters of C60 anions is still
lacking. Because of intermediate linear vibronic coupling in
C60

− [10], the quadratic coupling is expected to be weak [26].
Indeed, the photoelectron spectra of C60

− [6,10] and infrared
(IR) spectra of Mott-insulating Cs3C60 [33] have been well
reproduced without quadratic JT coupling. On the other hand,
near-IR spectra [7–9] of C60 anions and electron paramagnetic
resonance measurements of C60

− in solution [14] have been
interpreted on the basis of the tunneling splitting character of
the low-lying vibronic spectrum.

The purpose of this work is to reveal the nature of the
JT dynamics of C60

n−, including both linear and quadratic
vibronic coupling. The quadratic vibronic coupling constants
of C60 anions were derived from the DFT calculations with the
B3LYP functional. With the obtained constants, the warping
of the adiabatic potential energy surface of C60

− was found
to amount to a few meV, which is much smaller than the
JT stabilization energy. It was also found that, because of
the selection rule and the vibronic reduction, the quadratic
coupling does not modify the vibronic spectrum of the
linear tn1u ⊗ 8hg JT model. The present results show that
the quadratic vibronic coupling in C60 anions is sufficiently
weak for the JT dynamics to remain of pseudorotational
type.

II. QUADRATIC JAHN-TELLER MODEL FOR C60 ANIONS

A. Bielectronic and vibronic interactions

The neutral fullerene C60 (Ih symmetry) has triply degen-
erate t1u lowest unoccupied molecular orbitals (LUMOs). The
LUMO levels are well separated from the other molecular or-
bital levels, therefore the t1u shell model describes adequately
the low-energy electronic structure of C60

n− anions (n = 1–5).
The model Hamiltonian for the C60

n− ion consists of the
bielectronic term Ĥbi and the vibronic term. The former causes
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the term splitting of the tn1u configurations. The latter describes
the vibronic coupling between the t1u orbitals and the nuclear
vibrations of ag or hg type [1]. Using the equilibrium structure
of neutral C60 as a reference, the vibronic term is represented
as the sum of the following contributions [3,17–19,39]:

Ĥvib =
∑
μ�γ

1

2

(
p̂2

�(μ)γ + K�
μ q̂2

�(μ)γ

)
, (1)

Ĥ
(1)
JT =

∑
λλ′σ

∑
μγ

V
hg

μ ĉ
†
λσ ĉλ′σ q̂hg (μ)γ

√
5

2
〈t1uλ

′|hgγ t1uλ〉, (2)

Ĥ
(2)
JT =

∑
λλ′σ

∑
μi�i

∑
νγ

V �1�2
νμ1μ2

ĉ
†
λσ ĉλ′σ

×{q̂�1(μ1) ⊗ q̂�2(μ2)}νhgγ

√
5

2
〈t1uλ

′|hgγ t1uλ〉. (3)

Here, λ = x,y,z and γ = θ,ε,ξ,η,ζ are the components of the
t1u and hg irreducible representations of the Ih group, respec-
tively, q̂ and p̂ are the mass-weighted normal coordinates and
momenta of the reference system, respectively, μ denotes the
vibrational modes of the same symmetry, {q̂�1 ⊗ q̂�2}νhgγ are
symmetrized products (for an explicit form, see Ref. [53]),
〈t1uλ

′|hgγ t1uλ〉 are the Clebsch-Gordan coefficients, and K� ,
V � , and V �1�2 are the force constant and the linear and
quadratic vibronic coupling parameters, respectively. The
coefficient

√
5/2 is introduced in vibronic terms following

Refs. [3,17–19,54,55], which results in
√

2/5 times smaller
vibronic coupling parameters than those in Ref. [39]. As
the basis of the hg representation, atomic d functions are
used [3,17–19,54,55]: θ , ε, ξ , η, and ζ components of the
hg representation transform as (2z2 − x2 − y2)/

√
6, (x2 −

y2)/
√

2,
√

2yz,
√

2zx, and
√

2xy components of the d orbitals,
respectively, under symmetric operations of the Ih group (the
Cartesian coordinate axes correspond to the C2 axes of C60 as
in Refs. [16,56,57]). Equation (3) contains two parameters [39]
since the symmetric square of hg contains two hg (ν = 1,2)
[57]. The symmetrized polynomial {q̂hg(μ1) ⊗ q̂hg (μ2)}1hgγ and
{q̂hg(μ1) ⊗ q̂hg(μ2)}2hgγ become zero for the deformation along
the D3d and D5d minima, respectively, as in Ref. [39]. The
vibronic Hamiltonian for the unimportant totally symmetric
modes is not written here for simplicity.

It is convenient to write down the vibronic Hamiltonian in
the basis of electronic terms, particularly when there is term
splitting [3,19]. The orbital part for C60

n− can be written as
follows:

Ĥ
(1)
JT =

∑
μγ

V
hg

μ q̂hg(μ)γ Ĉ(n)
γ , (4)

Ĥ
(2)
JT =

∑
μi�i

∑
νγ

V �1�2
νμ1μ2

{q̂�1(μ1) ⊗ q̂�2(μ2)}νhgγ Ĉ(n)
γ , (5)

where Ĉ(n)
γ are the matrices of the Clebsch-Gordan coefficients,

which are given in Refs. [3,19] and also in the supplemental
material [53]. For the derivation of the matrices in Eqs. (4) and
(5) in the basis of tn1u terms, see Ref. [58].

B. Adiabatic potential energy surface

The structure of the adiabatic potential energy surface
(APES) provides fundamental information about the nature
of vibronic dynamics. According to Liehr’s minimax rule
[59], the JT distortion that lifts the degeneracy of the initial
electronic state corresponds to the one maintaining the highest
subgroup of the system. In the case of the Ih system with a
T1u electronic state (n = 1,5), the corresponding JT defor-
mation is accordingly either of D5d or of D3d type. Further
symmetry lowering may arise due to the higher-order vibronic
coupling or pseudo-Jahn-Teller coupling [60]. The effect of
the warping of the APES can be modeled using the invariants
of the Ih group, which indeed shows the symmetry of the
JT deformed structure either of D5d or of D3d [3]. This was
unambiguously proved by explicitly analyzing the quadratic
JT Hamiltonian [39]. The first (ν = 1) and the second (ν = 2)
quadratic vibronic couplings in Eq. (3) favor the D5d and D3d

deformations, respectively. If the energy difference between
them is large, the system tends to be localized at the potential’s
minima.

So far, the analysis of the APES has been done only taking
into account the JT active hg mode [3,39,61,62]. However,
in the case of the Ih system, the JT inactive modes can be
included in Eq. (3). This is also understood based on subduction
of irrep. Under Ih ↓ D5d , only the hg representation contains
the totally symmetric representation, whereas under Ih ↓ D3d

or Ih ↓ D2h, a totally symmetric representation also appears
from the gg representation [57]. Below, the effect of the gg

mode on the APES is analyzed within the t1u ⊗ (gg ⊕ hg) JT
model. For simplicity, the index g for parity is omitted in the
coupling parameters. Since the gg mode does not contribute
to the D5d deformation, the energy and the JT deformation
at the D5d minima are the same as those for the t1u ⊗ hg JT
model [39]:

UD5d
= − (V h)2

2Kh − 8√
5
V hh

1

, (6)

qhg
= V h

Kh − 4√
5
V hh

1

, qgg
= 0. (7)

On the other hand, the energy at the D3d minima is modified
by the gg contribution as

UD3d
= − (V h)2

2
(
Kh − 4

3V hh
2

) − 8(V gh

1 )2

9Kg+15V gg

, (8)

qhg
= V h

Kh − 4
3V hh

2 − 4
(
V

gh

1

)2

9Kg+15V gg

,

qgg
= 6V hV

gh

1

(3Kg + 5V gg)
(
3Kh − 4V hh

2

) − 4
(
V

gh

1

)2 . (9)

The coupling to the gg mode lowers the D3d minima. In the case
of theD2h minima, two components ofhg and one ofgg become
totally symmetric. The analytical expression of the energy
at the D2h minima becomes cumbersome, thus approximate
forms of U and q, including up to the second-order terms in
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quadratic vibronic couplings, are given here:

UD2h
= − (V h)2

2Kh

[
1 +

√
5V hh

1 + 9V hh
2

8Kh

+ 3
(
V

gh

1

)2

8KgKh
+

(
V hh

1

)2 + 3
(
V hh

2

)2

2(Kh)2

]
, (10)

qhgθ = V h

Kh

[
1 +

√
5V hh

1 + 9V hh
2

8Kh
+ 3

(
V

gh

1

)2

KgKh

+
(
V hh

1

)2 + 3
(
V hh

2

)2

2(Kg)2

]
,

qhgε =
√

3V h

8Kh

[
3V hh

1 − √
5V hh

2

Kh
+

√
5V

gh

1 V
gh

2

KgKh

]
,

qgga = 1

2

√
3

2

V h

Kh

[
V

gh

1

Kg
+

(√
5V hh

1 + 9V hh
2

)
V

gh

1

8KgKh

+
(
3
√

5V hh
1 − 5V hh

2

)
V

gh

2

8KgKh

]
. (11)

The energy difference between the D5d and D3d minima is

�U = UD3d
− UD5d

= (V h)2

2Kh

[
6V hh

1 − 2
√

5V hh
2

3
√

5Kh
− 2

(
V

gh

1

)2

9KgKh

+ 8
(
V hh

1

)2

5(Kh)2
+ 5

(
V hh

2

)2

9(Kh)2

]
. (12)

The terms up to the second order of quadratic couplings are
taken into account. Considering the usual situation in which
|V �1�2 | < |K�|, the effect of the gg mode on the APES would
be minor.

In the case of n = 2–4, the quadratic coupling becomes a
few times stronger than that in n = 1,5. Due to the presence
of the multiplet splitting, the structure of the APES becomes
more complicated [61]. The symmetry of the potential minima
for n = 2,4 is D5d , D3d , or D2h within the t

2/4
1u ⊗ hg JT model.

Therefore, the JT inactive gg modes would play a similar role
as for n = 1,5. On the other hand, the potential minimum of
the t3

1u ⊗ hg JT model is either D2h or C2h, and in the latter,
t1g and t2g as well as gg vibrations can modify the APES. For
n = 2–4, we will not analyze the APES further.

C. Vibronic states

The quadratic vibronic coupling modifies the vibronic
states. As discussed in the previous section, the effect of the
non-JT modes is expected to be weak, thus only the JT active
hg modes are taken into account here. The nature of the linear
vibronic states of the dynamical JT Hamiltonian,

Ĥ (0) = Ĥbi + Ĥvib + Ĥ
(1)
JT , (13)

has been intensively studied. Because of the SO(3) symmetry
of the linear T1u ⊗ hg JT Hamiltonian [55,63], the Hamil-
tonian, one of the vibronic angular momenta, Ĵz, and the

square of the angular momentum, Ĵ
2 = Ĵ 2

x + Ĵ 2
y + Ĵ 2

z , are of
commuting observables. In addition, in the case of C60

3−, the
seniority of the electronic terms [64] is inherited in the vibronic
state and expressed by parity [26,58]:

P̂ = (ÎT1u
− ÎHu

)
8∏

μ=1

∏
γ=θ,ε,ξ,η,ζ

(−1)n̂hg (μ)γ . (14)

Here, Î� is the projection operator into the � electronic
term (� = T1u,Hu), and n̂hg(μ)γ is the hg(μ)γ vibrational
quantum number operator. Therefore, the linear vibronic states
of C60

n− (n = 1,2,4,5) are characterized by the magnitude
of the angular momentum J (=0,1,2, . . . ), its z component
MJ (=−J,−J + 1, . . . ,J ), and the principal quantum number
α, which distinguishes the energy levels. In the case of C60

3−,
parity P (=±1) is added to the set of quantum numbers.

The total angular momenta do not commute with the
quadratic vibronic Hamiltonian, Ĥ (2)

JT . Thus, the degeneracy of
linear vibronic states is partly lifted, and split vibronic states
are characterized by the irrep of the Ih group. In the case of
C60

3−, the parity (14) does not commute with Ĥ
(2)
JT :

P̂ Ĥ
(2)
JT P̂ = −Ĥ

(2)
JT . (15)

The vibronic states of the full Hamiltonian,

Ĥ = Ĥ (0) + Ĥ
(2)
JT , (16)

are expressed by the superposition of the linear vibronic states.
To describe the vibronic states of Ĥ , it is convenient to use
the irreducible linear vibronic states, |�(0)

αJ�γ (P )〉, where � is
an irrep included in J ↓ Ih, and γ is a component of �. The
vibronic states are written

|�α�γ 〉 =
∑

βJ (P )

∣∣�(0)
βJ�γ (P )

〉
CβJ�γ (P );α. (17)

Coefficients CβJ�γ (P );α are determined from the diagonaliza-
tion of the Ĥ matrix on the basis of |�(0)

αJ�γ (P )〉. There are two

selection rules for the matrix elements of Ĥ
(2)
JT . First, since Ĥ

(2)
JT

is totally symmetric, the off-diagonal blocks between different
irreps are zero. Second, in the case of C60

3−, due to Eq. (15),
only the off-diagonal blocks between the |�(0)

αJ�γP 〉’s charac-
terized by the opposite parities are nonzero. Accordingly, we
have 〈

�
(0)
βJ�γ (P )

∣∣Ĥ (2)
JT

∣∣�(0)
β ′J ′�′γ ′(P ′)

〉
= δ��′δγ γ (δP,−P ′ )

〈
�

(0)
βJ�γ (P )

∣∣Ĥ (2)
JT

∣∣�(0)
β ′J ′�γ (−P )

〉
. (18)

Here, the expressions in parentheses are only considered for
C60

3−. Thus, the vibronic levels of n = 1,2,4,5 (n = 3) change
linearly (quadratically) with the strength of the quadratic
vibronic coupling.

III. DFT CALCULATIONS OF QUADRATIC VIBRONIC
COUPLING PARAMETERS

To derive the quadratic vibronic coupling parameters, the
DFT method with a hybrid B3LYP exchange correlation
functional [65] and a triple-zeta basis set [6-311G(d)] was em-
ployed. All DFT calculations were done using the GAUSSIAN 16
program [66]. The linear orbital vibronic coupling parameters
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of C60
− calculated by the hybrid B3LYP functional are close to

the experimental data [10]. The electron affinity derived with
the Delta-SCF approach to C60

− and C60 is 2.497 eV, which is
in line with the recent experimental value 2.683 eV [13,51].

The quadratic vibronic coupling constants were derived
within three approaches:

(i) Fitting of the APES of deformed C60
− to the model JT

Hamiltonian.
(ii) Fitting of the t1u LUMO level of deformed neutral C60

to the model JT Hamiltonian.
(iii) Comparing the Hessian for the relaxed C60

− structure
and for the model JT Hamiltonian.

In the first approach, the APES of deformed C60
− along

various modes are fitted to the quadratic JT Hamiltonian. The
deformations are both along the single ag/hg mode and also
linear combinations of two modes (ag and hg or two different
hg). This approach uses the symmetry-broken electronic wave
functions, which allows us to take into account the electron
correlation; however, artificial error might be introduced. The
linear vibronic coupling parameters of C60

− were derived by
a similar method using the gradient of the APES at the high-
symmetric structure in Ref. [10]. The second method is similar
to the first one but with the use of the t1u LUMO of neutral C60.
The advantage of the method is that the obtained parameters
are free from the artificial error due to the symmetry breaking
of the wave function, whereas the effect of the relaxation of
the molecular orbitals by electron doping is neglected. As
seen in the previous studies on the linear vibronic coupling
parameters, the coupling parameters from method (i) [10] and
method (ii) [47,49] do not differ much in prediction. In the
last approach, the quadratic coupling parameters are derived
from the Hessian at the JT deformed structure, since the
Hessian at the equilibrium high-symmetric structures contains
not only K� but also V �1�2 (Appendix B). By comparing the
expression of the second derivatives within the model and the
DFT-derived Hessian at the corresponding potential minima,
the parameters can be determined. In this work, the Hessians
at the D2h and D3d minima were used (the latter is only for
V gg). The third approach can provide coupling parameters
with a much smaller amount of calculations compared with
methods (i) and (ii), nonetheless the relaxed structures might
be local minima. In addition to the expectation value of the
quadratic vibronic operator, the pseudo JT effect may make an
important contribution to the quadratic coupling parameters
[67]. In the present approach, the latter is also included in
the obtained quadratic coupling parameters because the first-
principles APES should contain it.

The derived Hessian and the vibronic coupling constants are
tabulated in the supplemental material [53] (Tables S6–S8).
The order of the quadratic vibronic coupling parameters is
at most 10−7 a.u., which is about 10–100 times smaller than
K� . Therefore, as seen from Eqs. (6), (8), and (10), the
warping of the APES is small in comparison with the linear
JT stabilization energy. The influence of the gg modes on
the APES (12) is very small, nonetheless there are small
contributions to the deformation [53]. Although the DFT
calculations were carefully performed with a fine grid and
tight conditions for the convergence of self-consistent-field
calculations (highest accuracy within the code [66]), the values
of the quadratic coupling parameters depend on approaches

TABLE I. The JT stabilization energies of C60
− with respect to the

symmetrized distortions (meV). The origin of the energy corresponds
to that of the undeformed structure. (i)–(iii) indicate the methods
described in Sec. III.

(i) (ii) (iii)

D5d −47.06 −49.38 −48.00
D3d −48.88 −48.44 −48.49
D2h −48.56 −48.58 −48.40

(i)–(iii). Given the smallness of the obtained parameters, more
accurate calculations would be necessary for the derivation of
the reliable quadratic vibronic coupling parameters.

IV. QUADRATIC JAHN-TELLER EFFECT IN C60
n− ANIONS

A. Adiabatic potential energy surface

With the obtained three sets of vibronic parameters, the
warping of the APES of C60

− is analyzed. The space for the
analysis of the APES’s of the T1u ⊗ 8hg JT model can be sig-
nificantly reduced by employing the symmetrized distortions
(Appendix A). The obtained energies are shown in Table I.
In the case of parameters (i) and (iii), the D3d minima are
more stable than those of D5d and vice versa for (ii). Thus, we
cannot conclude about the symmetry of the JT deformation at
the global minima as well as the stabilization energy. However,
the energy difference between these extrema is less than 2 meV,
which is much smaller than the JT stabilization energy of
∼50 meV for C60

−.
The JT distortion of C60

− has been intensively investigated
computationally in the past. Our result shows that the D5d

minima are more stable by 0.31 meV than the D3d minima.
The result disagrees with some of the previous calculations.
Within semiempirical modified intermediate neglect of dif-
ferential overlap (MINDO) [68] and the generalized gradient
approximation (GGA) [11], the D3d minima were concluded
to be the lowest. Within the unrestricted Hartree-Fock (HF)
calculations, the D3d and D2h minima have the same energies,
and both are lower than the D5d minima by 0.2 meV [69].
Previous B3LYP calculations also predict the D3d as the global
minima, albeit not very reliably because the reported energy
gap between the D3d and D5d minima is as much as 40 meV
[47]. Our calculations show that the D5d minima reported
in Ref. [47] are not the lowest ones. Recent calculations
within the local density approximation (LDA) predicted that
the D2h minima are more stable than the D3d and D5d minima
by 0.5 and 1.5 meV, respectively [70] (the D3d minima are
unstable and the global C2h symmetric minima are lower by
0.6 meV and exist close to D3d ). However, the order of the
D5d , D3d , and D2h minima disagrees with that expected for
the T1u ⊗ hg Jahn-Teller model [39].

Finding the global minima of C60
− with first-principles

calculations is not an easy task because of the presence of many
local minima in the APES. However, taking into account also
the previous calculations, D3d minima seem to correspond to
the global ones. Compared to the DFT/HF calculations, our
estimate of the warping of 2 meV could be regarded as the
upper limit.
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FIG. 1. Vibronic levels without and with quadratic vibronic cou-
pling (meV). For each anion, the linear (left) and quadratic (right)
vibronic levels are shown. Among linear vibronic levels, black (light
gray) lines show the vibronic levels, which are (not) taken into account
to calculate the quadratic vibronic levels. The quadratic coupling
parameters obtained with method (i) are used. The vibronic levels
are shown with respect to the ground linear vibronic level for each
anion.

B. Vibronic states

The vibronic states of C60 anions were calculated using the
DFT-derived coupling parameters. Using the linear vibronic
states presented in Ref. [58], the matrix elements of M̂�1�2

νμ1μ2
=

∂Ĥ
(2)
JT /∂V �1�2

νμ1μ2
were calculated. The calculated elements are

listed in Tables S10–S12 in the supplemental material [53],
and hence one can calculate the low-lying vibronic states with
other sets of quadratic coupling parameters. Figure 1 shows the
linear vibronic levels from Ref. [58] and the obtained vibronic
levels with the parameter set (i). The latter is chosen because
it gives the largest change in vibronic levels among the three
sets of parameters and also it gives the D3d global minima (for
other cases, see [53]).

The vibronic levels of C60
− are shifted at most by 1–2 meV.

The shift is enhanced in C60
2− as expected. However, in both

cases, the shift of levels is much smaller than the energy gap
between the ground and low-lying vibronic levels. In addition
to the weak quadratic vibronic coupling, the vibronic reduction
of the matrix elements of M̂�1�2

νμ1μ2
further quenches the effect

of the quadratic coupling. In the case of C60
3−, the quadratic

vibronic coupling changes the vibronic energy quadratically
[Eq. (18)], resulting in a very small shift.

As shown above, in all C60
n− anions the vibronic states

are not modified much by the quadratic coupling. Thus,
except for the molecular spectroscopic studies with very
high resolution, the linear vibronic states are sufficient to
quantitatively understand the properties of C60 anions. This
also means that the JT dynamics of free C60 anions is closer

to the pseudorotational type than to the tunneling dynamics
type. Although the dynamical JT effect is influenced by the
environments, in cubic trivalent fullerides the JT dynamics
remains of pseudorotational type because of the strong linear
JT stabilization and the negligible effect of quadratic vibronic
coupling. The higher-order vibronic coupling may play an
important role in the study of high-resolution spectroscopy and
may also be enhanced in a low-symmetric environment. In the
former, the quadratic coupling governs the splitting pattern of
the highly degenerate excited vibronic levels (Fig. 1). In the
latter, the JT dynamics can be modified in a low-symmetric
environment such as solution [9,14], matrix [4,5,11], and sur-
face [24,62]. A quantitative understanding of these situations
is beyond the scope of this work.

V. CONCLUSION

We studied the quadratic JT effect of C60
n− anions (n =

1–5) based on DFT calculations. The main results are the
following:

(i) Analysis of the APES of the T1u ⊗ (gg ⊕ hg) JT model.
(ii) Derivation of the selection rules for the matrix elements

of the quadratic vibronic contribution on the basis of the linear
vibronic states.

(iii) Calculation of the matrix elements of Ĥ
(2)
JT on the basis

of linear vibronic states.
(iv) DFT derivation of the quadratic orbital vibronic cou-

pling constants of C60 anions.
(v) Evaluation of the effect of the quadratic coupling on the

low-lying vibronic levels.
Although the DFT-derived quadratic vibronic coupling

parameters are not sufficiently accurate, it was revealed that
the quadratic coupling has a much weaker effect than the
linear vibronic couplings do in C60

n− anions. Because of
the symmetry and vibronic reduction as well as the weak
quadratic vibronic couplings, the linear vibronic states of C60

anions are not modified much. In particular, the effect of the
quadratic coupling is significantly reduced in C60

3−, resulting
in robust pseudorotational vibronic dynamics in alkali-doped
fullerides. In addition, the effect of the JT inactive gg modes on
the APES was analyzed. The contribution from the gg mode
to the APES is negligible in C60 anions, while it could be
more important in icosahedral metal clusters where quadratic
coupling is expected to be stronger [71,72].
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APPENDIX A: SYMMETRIZED DISPLACEMENT

The JT deformations, which maintain the symmetry of a
subgroup G of Ih, are given here (G = D5d ,D3d ,D2h). The
expression of the symmetrized hg displacements has been
presented in Refs. [39,61,73]. The following symmetrized
displacements contain those by gg modes as well as the hg

displacements. The pattern of the deformations can be obtained
by using the relation between the spherical harmonics and
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polynomials: Substituting the direction of the C5, C3, and C2

axes in the Cartesian coordinate (t1u representation) into the
spherical harmonics of second rank, the five components of the
spherical harmonics correspond to the patterns of symmetrized
hg deformation. The symmetrized gg deformation is obtained
by combining the similar procedure and the relation between
the fourth-rank spherical harmonics and Gg ⊕ Hg . Below, we
choose the deformation that keeps the symmetry axes in the
zx plane, and the ag contributions are not explicitly written
because they do not lower the symmetry.

Under Ih ↓ D5d , the gg and hg representations are reduced
as [57]

gg ↓ D5d = e1g ⊕ e2g,

hg ↓ D5d = ag ⊕ e1g ⊕ e2g. (A1)

Thus, the D5d distortion can be expressed by using one
coordinate for each hg(μ) mode:

�RD5d
= 1√

M

8∑
μ=1

qhg (μ)

[
φ2

2
√

5
ehg(μ)θ

+ φ−1

2

√
3

5
ehg(μ)ε +

√
3

5
ehg(μ)η

]
. (A2)

Here, M is the mass of a carbon atom. On the other hand, under
Ih ↓ D3d , both the gg and hg representations contain the totally
symmetric representation [57]:

gg ↓ D3d = a1g ⊕ a2g ⊕ eg,

hg ↓ D3d = a1g ⊕ 2eg. (A3)

Therefore, the D3d deformation is expressed by one gg and one
hg coordinate [57]:

�RD3d
= 1√

M

8∑
μ=1

qhg(μ)

[
−φ−1

2
ehg(μ)θ

+ φ2

2
√

3
ehg(μ)ε + 1√

3
ehg(μ)η

]

+ 1√
M

6∑
μ=1

qgg (μ)

[
1√
6

egg(μ)a −
√

5

6
egg(μ)y

]
. (A4)

Finally, under Ih ↓ D2h,

gg ↓ D2h = ag ⊕ b1g ⊕ b2g ⊕ b3g,

hg ↓ D2h = 2ag ⊕ b1g ⊕ b2g ⊕ b3g. (A5)

Therefore, the gg and hg deformations are expressed by one
(qgga) and two (qhgθ ,qhgε) coordinates, respectively:

�RD2h
= 1√

M

8∑
μ=1

[qhg(μ)θ ehg(μ)θ + qhg (μ)εehg(μ)ε]

+ 1√
M

6∑
μ=1

qgg (μ)aegg(μ)a. (A6)

In the above equations, �RG is the 180-dimensional vector
consisting of all Cartesian coordinates of carbon atoms in C60,
e�(μ)γ is the polarization vector, q�(μ) is the magnitude of the
displacement, and φ = (1 + √

5)/2.

APPENDIX B: DERIVATIVES OF THE APES

The second derivatives of the APES with respect to ag , gg ,
and hg coordinates are given. Below, the APES around the min-
ima with symmetry G is written as UG (G = D5d ,D3d ,D2h).
The notation of the coordinates is the same as in Eqs. (A2),
(A4), and (A6). At the D5d structure,

∂2UD5d

∂qag (μ1)∂qag(μ2)
= K

ag

μ1μ2 ,
∂2UD5d

∂qag (μ1)∂qhg(μ2)
= 1

2
V

aghg

μ1μ2 ,

∂2UD5d

∂qhg(μ1)∂qhg(μ2)
= K

hg

μ1μ2 + 2√
5
V

hghg

1μ1μ2
. (B1)

At the D3d structure,

∂2UD3d

∂qag(μ1)∂qag (μ2)
= K

ag

μ1μ2 ,
∂2UD3d

∂qag (μ1)∂qhg(μ2)
= −V

aghg

μ1μ2 ,

∂2UD3d

∂qgg(μ1)∂qgg(μ2)
= K

gg

μ1μ2 + 5

3
V

gggg

μ1μ2 ,

∂2UD3d

∂qgg(μ1)∂qhg(μ2)
= −2

3
V

gghg

1μ1μ2
,

∂2UD3d

∂qhg(μ1)∂qhg(μ2)
= K

hg

μ1μ2 − 4

3
V

hghg

2μ1μ2
. (B2)

At the D2h structure,

∂2UD2h

∂qag (μ1)∂qag(μ2)
= K

ag

μ1μ2 ,
∂2UD2h

∂qag (μ1)∂qhg(μ2)
= −V

aghg

μ1μ2 ,

∂2UD2h

∂qgg (μ1)a∂qgg(μ2)a
= K

gg

μ1μ2 ,

∂2UD2h

∂qgg(μ1)a∂qhg(μ2)θ
= −1

2

√
3

2
V

gghg

1μ1μ2
,

∂2UD2h

∂qgg(μ1)a∂qhg(μ2)ε
= −1

2

√
5

2
V

gghg

2μ1μ2
,

∂2UD2h

∂qhg(μ1)θ ∂qhg(μ2)θ
= K

hg

μ1μ2 −
√

5

8
V

hghg

1μ1μ2
− 9

8
V

hghg

2μ1μ2
,

∂2UD2h

∂qhg(μ1)θ ∂qhg(μ2)ε
= −3

8

√
3V

hghg

1μ1μ2
+

√
15

8
V

hghg

2μ1μ2
,

∂2UD2h

∂qhg(μ1)ε∂qhg(μ2)ε
= K

hg

μ1μ2 +
√

5

8
V

hghg

1μ1μ2
+ 9

8
V

hghg

2μ1μ2
. (B3)
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