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Elisa Londero,1 Gergő Thiering,1,2 Lukas Razinkovas,3 Adam Gali,1,2,* and Audrius Alkauskas3,4,†
1Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences,

P.O. Box 49, Budapest H-1525, Hungary
2Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest H-1111, Hungary

3Center for Physical Sciences and Technology (FTMC), Vilnius LT-10257, Lithuania
4Department of Physics, Kaunas University of Technology, Kaunas LT-51368, Lithuania

(Received 29 January 2018; revised manuscript received 9 July 2018; published 27 July 2018)

Silicon-vacancy (SiV) center in diamond is a photoluminescence (PL) center with a characteristic zero-phonon
line energy at 1.681 eV that acts as a solid-state single-photon source and, potentially, as a quantum bit. The
majority of the luminescence intensity appears in the zero-phonon line; nevertheless, about 30% of the intensity
manifests in the phonon sideband. Since phonons play an essential role in the operation of this system, it is of
importance to understand the vibrational properties of the SiV center in detail. To this end, we carry out density
functional theory calculations of dilute SiV centers by embedding the defect in supercells of a size of a few
thousand atoms. We find that there exist two well-pronounced quasilocal vibrational modes (resonances) with A2u

and Eu symmetries, corresponding to the vibration of the Si atom along and perpendicular to the defect symmetry
axis, respectively. Isotopic shifts of these modes explain the isotopic shifts of prominent vibronic features in
the experimental SiV PL spectrum. Moreover, calculations show that the vibrational frequency of the A2u mode
increases by about 30% in the excited state with respect to the ground state, while the frequency of the Eu mode
increases by about 5%. These changes explain experimentally observed isotopic shifts of the zero-phonon-line
energy. We also emphasize possible dangers of extracting isotopic shifts of vibrational resonances from finite-size
supercell calculations, and instead propose a method to do this correctly.
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I. INTRODUCTION

The study of optically active paramagnetic defects in dia-
mond has a rich history [1]. In the past two decades, nitrogen-
vacancy (NV) centers attracted a lot of attention due to their
potential applications in emerging quantum technologies, e.g.,
as spin qubits, sensors, or single-photon emitters [2]. More
recently, the diamond silicon-vacancy (SiV) center has been
demonstrated as a single-photon source [3,4]. In pure diamond
samples the zero-phonon line (ZPL) of the SiV center is at
1.681 eV, thus, in the infrared region. The defect is a S = 1

2
center and it can be coherently manipulated optically at a
single-site level [5]. Earlier studies indicated that the SiV
center is negatively charged and that the Si atom resides in
the symmetric split-vacancy configuration that exhibits D3d

symmetry [6] (Fig. 1), with defect oriented along the 〈111〉
axis. Ab initio calculations found that the optical signal of the
defect can be described by the transition between eu and eg

defect states [7]. Both the ground 2Eg (electronic configuration
e4
ue

3
g) and the excited 2Eu (e3

ue
4
g) states are dynamic Jahn-Teller

(JT) systems [8,9] that preserve the high-D3d symmetry [10].
Like for other defects, lattice vibrations play an important

role in defining many properties of SiV centers. Most promi-
nently, this concerns optical properties: while luminescence of
SiV centers is mainly dominated by the ZPL transition with

*gali.adam@wigner.mta.hu
†audrius.alkauskas@ftmc.lt

∼70% of the total emission, the remaining ∼30% show up
in the phonon sideband with a few distinct phonon replicas
[11]. In a recent study one of those replicas, occurring at
64 meV from the ZPL energy and having a relative intensity
of ∼3% with respect to the ZPL, was shown to exhibit an
isotope shift that was proportional to the inverse square root
of the silicon mass for three different Si isotopes (28Si, 29Si,
30Si) [12]. In absolute units, downward shifts for 29Si and
30Si isotopes were 8.22 cm−1 (1.02 meV) and 17.81 cm−1

(2.21 meV). Earlier density functional theory (DFT) calcula-
tions [13] indeed found a quasilocal mode with similar energy
(56.5 meV), but with significantly smaller calculated shifts
of 5 and 10 cm−1, respectively, calling for a deeper analysis
of quasilocal SiV vibrations. Phonons also play an important
role in nonradiative processes in defects. It is known that
quantum efficiency of optical emission at SiV centers most
likely does not exceed 20%, indicating the existence of detri-
mental nonradiative decay channels [14]. Therefore, phonons
affect or govern both radiative and nonradiative processes at
SiV centers, but a deeper understanding of them is currently
missing. In this paper, we report ab initio density functional
theory (DFT) calculations of vibrational modes of effectively
isolated SiV in both ground and excited states. Calculations
are accompanied by the group theory analysis of the phonon
spectrum of the SiV center. Our findings explain a few recent
experimental observations. Also, they solve the contradiction
between calculated isotope shifts reported in Ref. [13] and
those measured in Ref. [12].
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FIG. 1. The geometry sketch of the SiV center. The localized
vibration modes A2u (motion of Si atom parallel to 〈111〉 axis, left
figure) and Eu (motion of Si atom perpendicular to 〈111〉 axis, right
figure) are shown. These quasilocal vibration modes have significant
localization on the six neighbor carbon atoms that move in the
opposite direction to that of Si atom in the corresponding vibrations.

The paper is organized as follows. In Sec. II we present the
details of DFT calculations, including the electronic structure
methods, calculations of vibrational modes, and analysis of
vibrations. In Sec. III we present the results of calculations
of vibrations in the ground state, as well as discuss isotopic
shifts of phonon modes. In Sec. IV the results for the excited
electronic state are presented. In Sec. V we discuss our
calculations in light of experiments and highlight remaining
unanswered questions. Finally, in Sec. VI we summarize our
work and draw conclusions. Throughout the paper, negatively
charged SiV− is labeled simply SiV.

II. METHODOLOGY

A. Electronic structure and vibrational spectra

Ab initio calculations employed in this work were similar to
the previous study [7]. In short, we determined the electronic
structure of the SiV center within the framework of DFT as
implemented in the VASP code [15]. We used the hybrid Heyd-
Scuseria-Ernzerhof functional [16] HSE06 (HSE for short)
with a standard fraction of screened Fock exchange a = 0.25.
Lattice constant a = 3.544 Å and the band gap Egap = 5.3 eV
are in excellent agreement with experimental values. The
use of a hybrid functional for the SiV center is especially
important to describe the excited state [7]. We used the
projector-augmented-wave approach with a plane-wave energy
cutoff of 400 eV [17,18]. The Brillouin zone was sampled at
the � point, and this choice was made in order to make sure that
the local symmetry is correctly described. We used a 216-atom
cubic supercell for actual defect calculations [19]. The 2Eu

excited state was calculated by the constrained-DFT method
(originally due to Slater [20], see Ref. [21] for a review of new
developments), whereby the electron is promoted from the eu

level to the eg defect level. The methodology was previously
applied to the NV center in diamond [22], where a very good
agreement with experiment was demonstrated.

The HSE functional provides an accurate description of both
the geometry and the electronic structure of the SiV center [7].
The calculated ZPL energy for the transition 2Eg → 2Eu of
1.72 eV compares very favorably with the experimental value
of 1.681 eV [7]. Thus, it is desirable to also calculate vibrations

at the hybrid functional level. However, this is prohibitively
costly even for the 216-atom supercell. To calculate vibrations
of HSE quality in very large supercells (essentially dilute limit)
we use the embedding procedure applied and tested on the NV
center in diamond in Ref. [23].

The procedure relies on the fact that the dynamical matrix
in diamond is rather short ranged [24]. Dynamical matrix for
a defect system was constructed as follows [23]. If two atoms
are further away than 4.2 Å, then the matrix element is set to
zero. Otherwise, if at least one of the atoms is closer to the
Si atom than 2.75 Å, then the dynamical matrix element is
taken from the 216-atom HSE calculation. For all other atom
pairs we used the value derived from bulk diamond calculations
also performed in the 216-atom supercell. In this way, we
constructed dynamical matrices for supercells containing up
to 5832 atoms. We label supercells N × N × N , where N

is the number of cubic diamond unit cells in any direction.
Pristine supercells contain 8N3 atoms and thus supercells with
N = 3, 4, 5, and 6, 7, 8, and 9 contain the nominal number
of atoms M = 216, 512, 1000, 1726, 2744, 4096, and 5832,
respectively. For bulk diamond, the resulting phonon spectrum
is very close to the experimental one. For example, the energy
of the longitudinal optical mode at the � point is 167 meV, in
excellent agreement with the experimental value of 166.7 meV
[25].

In all defect calculations of the dynamical matrix we
used 1

2 occupations for spin-unpaired e orbitals. Actual elec-

tronic configurations were e2
uxe

2
uye

3/2
gx e

3/2
gy for the ground and

e
3/2
ux e

3/2
uy e2

gxe
2
gy for the excited state. The electron density of

such states corresponds to an average density of Ex and Ey

states pertaining to 2Eg or 2Eu manifolds, respectively. This
results in a D3d symmetry, allowing us to determine vibrational
frequencies without complications associated with the Jahn-
Teller effect. This approach is justified by experimental results
that indicate D3d symmetry [8]. Vibronic coupling is not
addressed in this work.

B. Characterization of phonons

All the vibrational modes have been characterized accord-
ing to the irreducible representation of the D3d point group:
A1g , A1u, A2g , A2u, Eg , and Eu [26]. This has been done by
calculating scalar products of the type (�rk · Ô�rk ), where
�r is a shorthand notation for the eigenmode k, and Ô is
a symmetry operation. The eigenmode k is described by a
vector with components �rk;αi , where α labels atoms, and
i = {x, y, z}. For a uniquely determination of the irreducible
representation, it is sufficient to consider symmetry operations
C3 (rotation), σd (reflection in the plane that contains the
symmetry axis), and i (inversion).

Vibrations were also characterized by their localization. A
bulk phonon is entirely delocalized and many atoms participate
in that particular vibration. Point defects usually change the
vibrational structure of a solid. Sometimes, the defect gives
rise to a localized vibrational mode with a frequency outside
the vibrational spectrum of the host material. However, defects
can also induce quasilocal modes. Their frequencies (energies)
overlap with the bulk phonon spectrum, and thus they are
not strictly localized, but often they give rise to observable
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spectroscopic signatures. To quantify the localization, vibra-
tional modes corresponding to each irreducible representation
(we say below simply “symmetry”) are characterized by the
inverse participation ratio (IPR):

IPRk = 1∑
α p2

k;α

, (1)

where

pk;α =
∑

i

�r2
k;αi . (2)

The sum in the first equation runs over all atoms α, and the sum
in the second equation runs over i = {x, y, z}. IPR essentially
describes onto how many atoms the given mode is localized
[23,27]. For example, when only one atom vibrates in a given
mode, IPR = 1. When all M of the supercell vibrate with equal
amplitudes, IPR = M . If every second atom of the supercell
vibrates with an equal amplitude, IPR = M/2; etc.

We also define a localization ratio βk [23]:

βk = M/IPRk = M
∑

α

p2
k;α . (3)

βk quantifies the fraction of atoms (more precisely, the inverse
of this fraction) in the supercell that vibrate for a given
vibrational mode k. βk = 1 for modes when all atoms in the
supercell vibrate with the same amplitude, while βk � 1 for
quasilocalized and local modes.

III. RESULTS: GROUND STATE

We first focus on the vibrations in the electronic ground state
2Eg . In the current section we study the 28Si isotope, and leave
the study of isotopic shifts to Sec. III C. At the outset, we note
that calculations show no truly local vibrational modes with
frequencies outside the bulk phonon band. This is expected,
as chemical interactions are typically weaker in the vacancy
environment and, furthermore, the Si atom is heavier than
surrounding carbon atoms.

A. IPR analysis of the vibration modes

Let us first start with g (even, or gerade) modes that are
symmetric with respect to inversion. Since the Si atom is at the
center of inversion, it does not participate in these even-parity
vibrations. Figure 2 shows calculated IPRs for fully symmetric
A1g modes as a function of energy for different supercell sizes.
A1g vibrations represent “breathing” motion with respect to
the Si atom. We see that for a given supercell the IPRs of
all vibrational modes are very comparable. In fact, they are all
similar to IPRs of bulk modes calculated for the same supercell
size. Small oscillations are due to variations of IPR values
for phonons at different parts of the Brillouin zone. Energies
of modes start with the smallest available mode in a given
supercell and end with ∼167 meV.

Figure 2 shows that there are no clearly pronounced quasilo-
cal modes of A1g symmetry. Those should have IPRs that are
noticeably smaller than IPRs of other modes. IPRs exhibit
some variation, but in general we conclude that A1g-symmetry
vibrations are just slightly perturbed bulk modes of diamond.
The same conclusion holds for modes of A2g symmetry
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FIG. 2. Inverse participation ratios [Eq. (1)] of A1g symmetry
modes for different supercell sizes as a function of energy. Systems
with N = 3, 4, 5, 6, 7, 8, 9 (size of a cubic supercell, a number next
to each graph) correspond to bulk supercells containing M = 8N3

atoms. There are no quasilocal modes of A1g symmetry.

[24]. In D3d symmetry, A2g modes represent rotation motion
around the defect axis [26]. Interestingly, the IPR analysis
of Eg modes also shows no indication of the presence of
quasilocal Eg modes [24]. This is an important conclusion
since the dynamic Jahn-Teller effect seen in SiV centers [8,9]
preserves the inversion symmetry in the ground (as well as the
excited state), and, consequently, couples to Eg modes. These
modes represent rotation motion around the two axes that are
perpendicular to the defect axis. The absence of quasilocal
modes of Eg symmetry also shows the complex nature of the
Jahn-Teller effect. In order to properly understand it, one needs
to include the coupling to a continuum set of Eg modes [28] that
are essentially bulklike. The investigation of the Jahn-Teller
effect is beyond the scope of our study.

Analysis above shows that there are no quasilocal modes of
g symmetry and we find only slightly perturbed bulk modes.
Now, we turn to the u (uneven, or ungerade) modes that break
the inversion symmetry. Si atom can contribute to the vibration
of these modes. However, IPRs of A1u modes exhibit behavior
similar to A1g and other g vibrations: there are no quasilocal
modes [24].

The situation is radically different for the A2u modes. In
the D3d point group, the A2u irreducible representation is
special as the z coordinate transforms according to it (z being
the symmetry axis). The IPR analysis is shown in Fig. 3(a).
We see a clearly pronounced quasilocal mode with energy
∼(39–49) meV where IPRs are significantly smaller than the
average IPR for a particular supercell (cf. the situation with
A1g modes shown in Fig. 2). A dip happens irrespective of
the size of the supercell. The actual frequencies of vibrational
modes that have significantly smaller IPRs differ in different
supercells, but this is expected due to finite-size effects. We
also see in Fig. 3(a) that there are no quasilocal modes of A2u

symmetry at other energies. Analysis of the vibrational pattern
for the quasilocal mode shows that in these vibrations it is
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FIG. 3. (a) Inverse participation ratios [Eq. (1)] for A2u symmetry modes for different supercell sizes as a function of energy. (b) Same for
Eu modes. Supercells the same as in Fig. 2.

predominantly the Si atom that moves along the symmetry
axis, as indicated in Fig. 1.

Calculated IPRs for Eu modes are shown in Fig. 3(b). The
eu irreducible representation is also special as the {x, y} coor-
dinates transform according to it. The IPR analysis indicates
that there is a quasilocal mode with energies at ∼(52–72) meV.
Compared to the A2u mode, the Eu resonance is broader, as the
decrease of IPRs for the quasilocal mode with respect to de-
localized modes is not as significant. The quasilocal vibration
mostly corresponds to the Si atom vibrating perpendicular to
the defect axis, as shown in Fig. 1.

The results of this section show that the SiV induces
quasilocal vibrations of A2u and Eu symmetries. In the next
section we analyze these vibrations in more detail.

B. Localization ratios of A2u and Eu modes

For an alternative analysis of quasilocalized modes we use
the localization ratio β [Eq. (3)]. Results for A2u modes are
shown in Fig. 4(a). Different graphs represent calculations
from different supercells, and here they fall on top of each
other. For most of the vibrations, β fluctuates around a constant
value, but one clearly sees the emergence of a quasilocal mode
with β � 1. Analysis in terms of β is only qualitative (β is
not a physical quantity that can be measured). However, in
Fig. 4(a) we tentatively draw an envelope function to make

the reading and understanding of our calculations results clear.
This allows us to determine the energy of the A2u quasilocal
vibration, about ∼43 meV. We will provide a more quantitative
definition of this energy below.

Analysis of the localization ratio of the Eu modes is shown
in Fig. 4(b). The emergence of the Eu resonance is clearly seen.
The energy of the Eu vibration is ∼60 meV, and it can be seen
that the Eu resonance is broader than the A2u resonance.

C. Isotope shifts of the quasilocal A2u and Eu modes

Reference [12] reported isotope shifts of the sharp feature in
the phonon sideband �28/�29 = 1.016 and �28/�30 = 1.036,
that closely correspond to the “ideal” shifts of

√
29/28 =

1.018 and
√

30/28 = 1.036 (i.e., � ∼ 1/
√

mSi). At low tem-
peratures, the phonon sideband in the luminescence spectrum
reveals the vibronic structure of the electronic ground state,
and thus it is justified to compare experimental results with
calculations of the vibrational modes in the ground state.
However, in this case we must be very cautious in comparing
calculated frequencies of quasilocal vibrational modes with
energies of features in the phonon sideband. This is because
of a possible complex nature of this phonon sideband. We
leave a discussion about comparison of the phonon sideband
in luminescence for Sec. V, and here only analyze the isotopic
shifts of vibrations themselves.

20 40 60 80 100 120 140 160
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(a) A2u
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FIG. 4. (a) Localization ratios [Eq. (3)] for A2u symmetry modes for different supercell sizes as a function of energy. Localization ratios
are calculated from the data in Fig. 3, and results from different supercells are superimposed on top of one another. The dashed line and shaded
region serve as guides to the eye. (b) Same for Eu modes. Note that the y axis has logarithmic scale.
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FIG. 5. Localization ratios [Eq. (3)] for the A2u symmetry
quasilocal modes around energy 43 meV for three Si isotopes.
Calculations performed for the 5 × 5 × 5 supercell.

In Fig. 5 we present the calculated localization ratios of the
A2u vibrational resonance in the energy range 20–70 meV for
the 5 × 5 × 5 supercell (nominally containing 1000 atoms) for
Si isotopes with mSi = 28, 29, and 30 a.m.u. The calculation
with the Si mass of 28 a.m.u. is the same, as presented in
Fig. 4(a) for the corresponding supercell size. The quasilocal
mode has a certain width, meaning that it is made of an infinite
number of vibrations with energies around a peak energy of the
quasilocal mode. As we deal with finite supercells, this means
that for a specific supercell a quasilocal mode splits into a
finite number of vibrations. We consider that the vibration for
a chosen energy window contributes to the quasilocal mode
if its localization ratio is significantly larger than the average
localization ratio of all vibrations in the supercell. The criteria
“chosen energy window” and “significantly larger” are mo-
tivated by the results shown in Fig. 4(a), and we choose the
window 20–70 meV and β > 3.

For the particular supercell 5 × 5 × 5 we can identify five
specific vibrations that contribute to the quasilocal mode for
all three Si isotopes. The vibration with the largest localization
has energies 46.40, 46.11, and 45.88 meV for 28Si, 29Si, and
30Si, respectively. If we were to take these values without any
further consideration, we would get isotope shifts ω28/ω29 =
1.006 and ω28/ω30 = 1.011, much smaller than the experiment
values of 1.018 and 1.036 [12]. However, taking calculated
frequencies face value would be valid for a truly localized mode
outside the bulk phonon spectrum but is certainly incomplete
for a quasilocal mode.

As can be clearly seen in Fig. 5, as we increase the mass
of the isotope, two things happen. First, there are shifts of
energies pertaining to the individual modes, as just discussed.
Localization (quantified in terms of β) of higher-frequency
modes tend to decrease, while localization of lower-frequency
modes tend to increase. If we associate β with the weight of the
contribution of each specific vibration to the quasilocal mode,
we see that there is a redistribution of weight from the modes
with larger energies to the modes with smaller energies. To
take this effect into account, we can determine the energy of

42
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45 bare value
M-average
N-average

2 3 4 5 6 7 8 0
supercell size N

58
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61

fr
eq

ue
nc

y 
(m

eV
)

A2u

Eu

43.4

60.1

FIG. 6. Frequencies of A2u and Eu vibrational resonances
[Eq. (4)] as a function of supercell size N . “Bare value” (black circles)
is the frequency for a given supercell. “M average” (red squares) and
“N average” (blue triangles) are weighted averages, as described in
the main text. Horizontal dashed line corresponds to the extracted
energy of the resonances.

the quasilocal mode � as the weighted average of all the modes
that contribute to this resonance:

� =
∑

k βkωk∑
k βk

. (4)

While there is freedom in choosing the weight, localization
ratio βk is our first choice. If we now weigh the contribution
of various modes, we get average energies 44.81, 43.90,
and 42.88 meV for the Si isotopes 28, 29, and 30 a.m.u.
This now corresponds to isotope shifts �28/�29 = 1.021 and
�28/�30 = 1.045. One finding is clear: actual isotope shifts
for quasilocal vibrations are different than the estimates based
on the analysis of individual vibrational modes.

We performed a similar analysis for all the considered super-
cells. The results for theA2u mode are shown in Fig. 6, top panel
(“bare value,” black circles), which shows the dependence
of the frequency of the A2u mode on the supercell size. We
find that there is still a cell-to-cell variation of the resulting
frequency even for the largest supercells, where even-odd
oscillations of decreasing amplitude can be identified. These
oscillations stem from the change in the effective sampling
of the Brillouin zone as the size of the supercell increases.
Since this effective sampling is denser for larger supercells,
it is compelling to associate the frequency of the vibrational
resonance with a weighted average, whereby the weight is
proportional to the size of the supercell M . The dependence
of the average frequency calculated in this way as a function
of supercells included in the averaging is shown in Fig. 6,
top panel (“M average,” red squares). As expected, the results
converge to the final result much quicker. Convergence is even
faster if the contributions of the supercells are weighted by N

(“N average,” blue triangles). It is assuring, however, that the
two averages converge to nearly the same value. In this way
we obtain converged frequencies of the A2u resonance 43.38,
42.62, and 41.91 meV for the three Si isotopes. Given the
nature of convergence (even-odd oscillations), we extract the
error bar of 0.10 meV pertaining to the procedure of averaging.
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This corresponds to the maximum difference between average
frequencies from the last three supercells. This error is smaller
than the inherent error of DFT calculations. Calculated fre-
quencies for the three isotopes correspond to isotopic shifts of
�28/�29 = 1.018 and �28/�30 = 1.035, almost exactly the
“ideal” isotopic shifts and thus very close to experimental
values. Since we associate β with the weights of different
specific vibrations, we can also define the width w of the
quasilocal mode as

w2 =
∑

k βk (ωk − �)2∑
k βk

. (5)

A2u resonance is very narrow, and its calculated average width
w is only 1.9 meV. The width defined above is a qualitative
estimate useful to compare different vibrations, but the actual
value should of course be taken with some caution.

By reiterating the procedure for the quasilocal Eu mode
(Fig. 6, bottom panel) we obtain energies of vibrational
resonances 60.00, 58.82, and 57.76 meV for the three Si
isotopes. This gives �28/�29 = 1.021 and �28/�30 = 1.039.
Like for the A2u quasilocal mode, isotopic shifts are close to the
“ideal” shifts. The calculated width of the Eu quasilocal mode
is w = 6.1 meV, thus, larger than for the A2u mode. Nearly
“ideal” isotopic shifts for both A2u and Eu modes allow to
think of them as representing the motion of an isolated Si atom
inside a hard diamond cage. A2u mode corresponds to vibration
along the z axis, while Eu modes correspond to vibrations in the
xy plane (cf. Fig. 1). Energies and widths of these quasilocal
modes are summarized in Table I.

The analysis of this section explains why earlier first-
principles calculations of isotope shifts related to quasilocal
modes [13] were smaller than the experimental values [12].
We showed that in order to calculate those shifts one needs to
include all the vibrations that contribute to a specific resonance,
e.g., via the use of Eq. (4). The results for both A2u and Eu

resonances are summarized in Table I.

TABLE I. Main results of this work compared with experiment.
Theory: calculated frequencies �, widths w (both for the 28Si isotope),
and isotopic shifts of quasilocal A2u and Eu modes in the ground and
excited states. Experiment: energy �, width, and isotopic shifts of
vibrational sidebands in the photoluminescence (PL) spectrum. All
experimental data from Ref. [12] except where indicated. ND = “not
detectable.”

Theory: Vibrational resonances

State Symmetry �28 (meV) w (meV) �28/�29 �28/�30

2Eg A2u 43.4 1.9 1.018 1.035
Ground Eu 60.1 6.1 1.021 1.039
2Eu A2u 56.1 3.9 1.016 1.033
Excited Eu 63.2 6.5 1.017 1.036

Experiment: PL phonon sidebands
State Symmetry �28 (meV) w (meV) �28/�29 �28/�30
2Eg A2u (Ref. [9]) 63.8 ∼5 1.016 1.036

42 >25 ND ND

IV. RESULTS: EXCITED STATE

We have performed similar analysis for the vibrational
modes in the electronic excited state 2Eu. Regarding all
g modes and A1u vibrations, the results are similar to the
ground state: there are no quasilocal vibrations. However,
analogously to the ground state, we find a very pronounced
A2u resonance. Calculated localization ratios β are shown in
Fig. 7(a). Importantly, the energy of the resonance is 56.1 meV,
about 30% larger than in the ground state. Compared to the
ground state, the A2u resonance is broader in the excited state
with w = 3.9 meV (Table I), reflecting the increase of the bulk
density of vibrational states for this energy [25]. We also find
a pronounced Eu resonance, as shown in Fig. 7(b). The energy
of the resonance is 63.2 meV, thus, increased by about 5%
with respect to the ground state, and its width, w = 6.5 meV,
is only slightly larger than for that of the ground-state Eu

resonance. We find that excited-state resonances also exhibit
nearly “ideal” isotopic shifts (Table I).

The increase of vibrational frequencies in the excited state
vs the ground state can be understood from the electronic
structure of the SiV center. The optical excitation corresponds
to removing the electron from a more delocalized eu orbital
to a more localized eg orbital [7]. This increases the electron
density around the Si atom, and also thus the vibrational
frequencies.

We end the analysis of the vibrations by taking a critical look
at our computational setup, in which the Jahn-Teller effect was
not taken into account because of the use of partially occupied
eg electronic states (see Sec. II). As discussed earlier, the
Jahn-Teller effect seen in SiV centers preserves the inversion
symmetry and therefore must couple only to Eg vibrational
modes. Furthermore, the effect is dynamic [8,9], meaning that
the point group of the entire system of coupled electrons and
ions remains D3d . The electron density in the ground (excited)
state is given by the average of electron densities of the two
2Eg (2Eu) states, which is very well approximated by the
density of the e2

uxe
2
uye

3/2
gx e

3/2
gy (e3/2

ux e
3/2
uy e2

gxe
2
gy) configuration. It

follows that because of its dynamic nature, the presence of the
Jahn-Teller effect should have minimal effect on the results of
the present section, in particular regarding A2u and Eu modes.

V. DISCUSSION

In this section we discuss how our calculations compare to
experimental measurements. In a recent PL study [12], which
was already discussed above, two prominent phonon side
peaks were observed: a narrow feature (width w ≈ 5 meV) at
63.8 meV from the ZPL and a broad one (width w > 25 meV)
at ∼42 meV from the ZPL. As also discussed, a clear isotope
shift with respect to the ZPL line of the 63.8-meV peak was
observed. At variance, the 42-meV peak did not show any
noticeable change upon isotope substitution. As the authors of
the paper admitted [12], the lack of change could have been
related to difficulties in extracting small differences in energies
of broad peaks. It was also suggested [9,12] that the 63.8-meV
feature was due to a A2u vibration of the Si atom along the
defect symmetry axis.

In addition to shifts of vibronic features, significant iso-
topic shift of the ZPL energy was found in experiment [12]:
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FIG. 7. (a) Localization ratios [Eq. (3)] for A2u (a) and E2u (b) symmetry modes on the excited state for different supercell sizes as a function
of energy. The dashed line and shaded region serve as guides to the eye. The y axis has logarithmic scale.

�E28,29 = E28 − E29 = 0.36 meV and �E28,30 = 0.68 meV.
Typically, such shifts are explained by a difference in
vibrational frequencies in the ground and the excited states
[12,29]. Zero-point vibrations contribute to the T = 0 value of
the ZPL. As the vibrational frequencies change upon isotope
substitutions, so does the ZPL. Experiments found that ZPL
shifts to lower energies as the mass of the Si atom increases,
and this implies that the vibrational frequencies are on average
higher in the excited state than in the ground state [12].
Similarly large isotopic shifts were recently found for the GeV
centers in diamond that are very similar to SiV centers [29].

Let us discuss all these experimental findings. Low-
temperature luminescence line shape reveals the vibronic
structure in the ground state, so we will first discuss the
vibrational modes in the ground state. On par with experiment,
our calculations also indicate the existence of two resonances,
one at 43.4 meV and another one at 60.1 meV. One would
be tempted to claim a good agreement with experimental
values of ∼42 and 63.8 meV. However, there is a very large
discrepancy concerning the width of these resonances. While
calculations indicate that both the lower-energy A2u resonance
and the higher-energy Eu resonances are narrow (widths w

of 1.9 and 6.1 meV, respectively), experiment indicates that
the lower-energy resonance is very broad (w > 25 meV), and
only the higher-energy one is narrow (w ≈ 5 meV). Also, in
calculations frequencies of both modes undergo nearly ideal
isotope shifts ∼1/

√
mSi, while in experiment only the narrow

higher-energy peak shows this shift.
The following questions arise: (1) Why both peaks are

narrow in calculations, but only one in experiment? (2) Is
the experimentally observed narrow 63.8-meV peak an A2u

or an Eu vibration? Density functional theory calculations
work very well regarding the vibrational structure of other
defects in diamond, including the NV center [23,30], and we
should expect them to work well for the SiV center as well. We
therefore tentatively suggest that the experimentally observed
63.8-meV feature is in fact the Eu vibration, and not the A2u

vibration, as proposed in Ref. [12]. If this is indeed the case,
then we conclude that experiment agrees well with calculations
regarding (i) the frequency (63.8 meV vs 60.1 meV), (ii) the
width (∼5 meV vs 6.1 meV), and (iii) the isotopic shift of
the resonance. We also hypothesize that the A2u resonance is
narrow in experiment, but it does not appear in the PL spectrum;

the experimental broad feature at 42 meV is in fact not related
to quasilocal modes.

However, the appearance of either Eu or A2u mode in the
experimental PL spectrum is currently not clear. Since optical
transition is between 2Eu and 2Eg states, according to the
group-theoretical analysis, in the Franck-Condon approxima-
tion one should expect to see only A1g phonons. As discussed
above, density functional calculations indicate the presence
of the dynamical Jahn-Teller effect both in the excited and
the ground states [7]. These two states couple to Eg phonons,
resulting in the Eu ⊗ Eg and Eg ⊗ Eg JT systems. Optical
transition between these two JT systems should involve only
even-symmetry (g) phonons, leaving the appearance of the Eu

mode in the experiment unexplained. This calls for alternative
coupling mechanisms.

Interestingly, frequencies of A2u and Eu phonons in the
excited state are rather close to each other (Table I). Since these
resonances have finite widths, there is some overlap in energies.
Small perturbations, such as, e.g., quadratic interactions [31]
or strain, could mix these vibrations. In this case one could
expect signatures of both A2u and Eu vibrations in the emission
spectrum. However, it remains unclear how such interaction
could lead to the situation where only Eu vibration appears,
while A2u vibration does not (or vice versa). One more option is
provided by the Herzberg-Teller effect, whereby the transition
dipole moment is modulated by the vibration [31]. When the
vibration is of A2u symmetry, this reduces the instantaneous
symmetry of our system fromD3d toC3v . However, degeneracy
of electronic states is not removed. At variance, Eu vibration
reduces the instantaneous symmetry to C1, removing the
degeneracy and possibly leading to an appreciable modulation
of the transition dipole moment. While the appearance of
asymmetric modes in optically allowed transitions is very
unusual [31], one cannot reject this possibility. The study of
optical transitions and the luminescence line shape of SiV
centers is beyond the aim of this paper and requires further
work. Understanding the mechanism of the vibronic coupling
at SiV centers will be also pivotal in explaining experimentally
measured polarization of the phonon sideband [9].

Now, let us discuss the experimentally observed isotope
shift of the ZPL [12]. Our results show that the vibrational
frequencies of quasilocal modes are indeed higher in the
excited state than in the ground state. As discussed above, this
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leads to a decrease of the ZPL energy upon substitution with
heavier Si atoms, in qualitative agreement with experiments. If
we first assume that all of the shift is due to quasilocal modes,
we could estimate the change of the ZPL when 28Si is replaced
by 29Si as

�E28,29 ≈ 1

2
h̄
(
�e

A2u
+ 2�e

Eu
− �

g

A2u
− 2�

g

Eu

)

×
(

1 −
√

m28

m29

)
. (6)

The estimate yields a value of 0.17 meV, almost twice smaller
than the experimental value of 0.36 meV. Similarly, the
calculated value for �E28,30 of 0.32 meV is smaller than the
experimental one of 0.68 meV. One could alternatively calcu-
late the shift by including the contribution of all vibrations. For
this purpose, we can determine the contribution of zero-point
vibrations to the energies of excited and ground states as

EZPV = 1

2

∑
i

h̄ωe
i − 1

2

∑
i

h̄ω
g

i . (7)

The sum converges very fast as a function of the supercell
size, and we obtain values 17.06 meV for 28Si, 16.80 meV for
29Si, and 16.56 meV for 30Si. This gives �E28,29 = 0.26 meV
and �E28,30 = 0.50 meV. These results are much closer to
the experimental values. It is likely that in order to explain
the remaining discrepancy, one would need to consider the
above-mentioned Jahn-Teller effect, in which the zero-point
vibrational contributions differ from the one given in Eq. (7).

VI. SUMMARY AND CONCLUSIONS

In summary, we have studied vibrational spectrum of the
negatively charged silicon-vacancy center in diamond by first-
principles density functional theory calculations. The elec-
tronic structure, geometry, and force constants were calculated
with the hybrid density functional of Heyd, Scuseria, and
Ernzerhof. The vibrational spectrum of the defect was modeled
in large supercells containing up to 5832 atoms (nominal size)
using the embedding procedure whereby the dynamical matrix

of a large supercell was constructed from the dynamical matrix
of a defect in a 216-atom supercell and the dynamical matrix
of bulk diamond. We find that even-symmetry vibrations
(A1g , A2g , and Eg), as well A1u vibrations are essentially
perturbed bulk modes. However, we find very pronounced
quasilocal modes of A2u and Eu symmetries that correspond
to the vibration of the Si atom along and perpendicular to
the defect symmetry axis, respectively. We have presented
the methodology to calculate isotope shifts of these modes,
and find excellent agreement with experiment. We have also
found that the vibrational frequencies in the electronic excited
state are larger than in the ground state, also in full agreement
with experimental findings. Finally, we suggest that the exper-
imental observed feature in the photoluminescence spectrum
at 63.8 meV is a quasilocal Eu mode. While the appearance of
this feature in the experimental spectrum remains unexplained
and calls for further investigations, we provided some possible
physical mechanisms. By systematically addressing the vibra-
tional properties of the SiV center, our work will be helpful in
understanding physical properties of single-photon emitters in
diamond, in particular the GeV center [29] and the SnV center
[32], as well as vibrational resonances in general.
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