
PHYSICAL REVIEW B 98, 035303 (2018)

Boosting entanglement between exciton-polaritons with on-off switching of Josephson coupling
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We show that the appropriate on-off switching of Josephson coupling between exciton-polaritons in coupled
semiconductor microcavities can reveal the full capacity for generating entanglement with a recently proposed
method which essentially enhances the nonlinearity of the system. The improvement achieved with this simple
modulation of the coupling is substantial over the case where it is kept constant. We also show that even better
results can be obtained with the additional on-off switching of the enhanced nonlinearity. The suggested procedure
is expected to find also application in other research areas, where nonlinear interacting bosons are encountered.
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I. INTRODUCTION

Exciton-polaritons in semiconductor microcavities are hy-
brid light-matter quantum quasiparticles obeying Bose statis-
tics, which emerge due to the strong coupling between cavity
photons and excitons (electron-hole bound states) of the em-
bedded semiconductor quantum well [1–4]. Because they can
be easily created, controlled, and detected, they have attracted
considerable attention as candidates for the implementation
of several critical quantum technologies. Applications include
the generation of nonclassical light [5–9], qubits and gates
for quantum computation [10,11], and solid state quantum
simulators (special purpose quantum computers addressing
complex problems) [12–17].

In this context, a step of utmost importance is the creation of
entanglement between exciton-polaritons in coupled cavities,
since these systems of nonlinear interacting quantum oscilla-
tors can be exploited for quantum information processing with
continuous variables [18]. The generation of entanglement
relies on the strength of the nonlinearity, which is weak for
semiconductor microcavities. Consequently, entanglement in
these systems appears only as a perturbation [19], and this
remains the case even at high densities, where the nonlinear
effects become important, since the mean field approximation
provides a fair classical description of the main system be-
havior [20,21]. In order to overcome this problem, a way to
essentially amplify the nonlinearity strength in semiconductor
microcavities using two coherent laser fields was recently
suggested [22], leading in theory to the creation of a fair
amount of entanglement between exciton-polaritons in coupled
cavities and networks in general. Throughout this process,
the Josephson coupling between two coupled cavities is held
constant.

In the present work, we provide analytical and numerical
evidence that the entanglement generated with the procedure
introduced in Ref. [22] can be substantially enhanced with the
appropriate on-off switching of Josephson coupling between
the cavities, exploiting thus the full capacity of the method.
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Note that on-off switching of Josephson coupling is already
used in Ref. [22] but in a different way, to consecutively
couple different pairs of microcavities in a network of four
microcavities. We also show that even better results can be
obtained with the additional on-off switching of the enhanced
nonlinearity. Since the model of two nonlinear interacting
bosons is encountered in a wide spectrum of physical settings,
we expect that the suggested methodology is not restricted only
to exciton-polariton systems in semiconductor microcavities
but can also find application in other contexts.

II. MODEL

We consider a pair of coupled cavities as in [22], which can
be implemented with the techniques of [23], described by the
Hamiltonian

H = α

2

(
â2

1 + â2
2 + â

†2
1 + â

†2
2

) − J (t)(â†
1â2 + â1â

†
2). (1)

The first part of the Hamiltonian originates from an in-
verse four-wave mixing process in each cavity. As described
in Ref. [22], the starting point is the Hamiltonian Hi =
α0(â†

i â
†
i âLâU + â

†
Lâ

†
U âi âi)/2, where α0 is the strength of this

nonlinear process, typically weak compared to the dissipation
rate � in optical systems. When the modes âL,âU are driven
by coherent laser fields, which can be described classically,
pairs of particles scatter from âL,âU to mode âi and we are left
with the first part of Hamiltonian (1), where α = α0〈aL〉〈aU 〉
is the nonlinearity enhanced by the classical field amplitudes,
which can reach the regime α � �. This is the advantage
over the usual method where the central mode âi is excited
and correlations are created between âL,âU [24–29], which
requires a nonlinearity α0 stronger than the dissipation rate.
The second part is the familiar Josephson coupling, whereJ (t)
is considered to be a function of time, restricted between zero
and a maximum allowed value 0 � J (t) � J , which can be
controlled by external electric [30] or optical [31] fields. In
order to facilitate the comparison with the method of Ref. [22],
we initially consider a constant enhanced nonlinearity bounded
above by the maximum coupling 0 < α < J . Later, we study
the case of time-dependent α(t) (achieved by tuning the

2469-9950/2018/98(3)/035303(6) 035303-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.035303&domain=pdf&date_stamp=2018-07-16
https://doi.org/10.1103/PhysRevB.98.035303


DIONISIS STEFANATOS AND EMMANUEL PASPALAKIS PHYSICAL REVIEW B 98, 035303 (2018)

intensity of the pump), whose amplitude can attain values
α > J .

For a system of two oscillators coupled with a quadratic
Hamiltonian like (1) and starting from vacuum, the states
are Gaussian and completely characterized by the second
moments of the creation and annihilation operators of the two
resonators, for example â

†
1â1, â†

2â2, â†
1â2, â2

1 , etc., while the first
moments are zero due to the initial conditions. Instead of using
directly the second moment operators, we can use specific
linear combinations of them, a set of ten operators introduced
by Dirac to describe exactly two coupled quantum oscillators
[32], which are the generators of the symplectic group Sp(4)
[33–35]. Under the evolution described by Hamiltonian (1),
a closed set of differential equations can be obtained for
the expectation values of these operators. Specifically, they
are actually grouped into subsystems which are linear and
homogenous in these variables. When starting from vacuum,
only the subsystem formed by the following three operators:

Ŝ1 = 1

2
(â†

1â1 + â2â
†
2), (2a)

Ŝ2 = i

4

(
â
†2
1 + â

†2
2 − â2

1 − â2
2

)
, (2b)

Ŝ3 = 1

2
(â†

1â
†
2 + â1â2) (2c)

has nonzero initial conditions; the rest of the operators remain
zero throughout and can be ignored. Using Ehrenfest theorem
for operators without explicit time dependence d〈Â〉/dt =
ı[H,Â] (h̄ = 1), we find that the corresponding expectation
values Si = 〈Ŝi〉, i = 1,2,3 satisfy the following system of
equations:

Ṡ1 = −2αS2, (3a)

Ṡ2 = −2αS1 + 2J S3, (3b)

Ṡ3 = −2J S2, (3c)

with initial conditions S1(0) = 1/2, S2(0) = S3(0) = 0. Under
the above evolution, the following constant of the motion can
be easily verified:

S2
1 − S2

2 − S2
3 = 1/4. (4)

III. ENTANGLEMENT QUANTIFICATION

We will characterize the entanglement between the two
coupled oscillators using the covariance matrix V of the cor-
responding position and momentum operators q̂i ,p̂i ,i = 1,2.
If we define (x̂1,x̂2,x̂3,x̂4) = (q̂1,p̂1,q̂2,p̂2), then the elements
of the corresponding covariance matrix become Vij = 〈x̂i x̂j +
x̂j x̂i〉/2, where note that the first moments are zero due to the
vacuum initial conditions. These elements can be expressed
in terms of the second moments of creation and annihilation
operators and consequently the nonzero values Si as

V =
(

A C

CT B

)
=

⎛
⎜⎝

S1 S2 S3 0
S2 S1 0 −S3

S3 0 S1 S2

0 −S3 S2 S1

⎞
⎟⎠.

In order to quantify entanglement we will use the logarithmic
negativity [36–38], a quantity which for two-mode Gaussian
states actually measures the squeezing of appropriate field
quadratures [39,40]. For this particular case the logarithmic
negativity is given by N = max[0,− ln(2ν̃−)], where ν̃− is
the smallest symplectic eigenvalue of a modified covariance
matrix Ṽ corresponding to the partially transposed state. We
can evaluate ν̃− in terms of Si using the formula [41]

ν̃− =
√

�̃(V ) −
√

�̃2(V ) − 4detV

2
,

where �̃(V ) = detA + detB − 2detC = 2(S2
1 − S2

2 + S2
3 ) and

detV = (S2
1 − S2

2 − S2
3 )2, from which we obtain

ν̃− =
√

S2
1 − S2

2 − |S3| < 1/2.

The last inequality can be proved using (4), and the logarithmic
negativity is given by the expression

N = − ln(2ν̃−) = − ln
[
2
(√

S2
1 − S2

2 − |S3|
)]

. (5)

IV. CONSTANT JOSEPHSON COUPLING

The authors of Ref. [22] consider the situation where a
constant coupling J (t) = JT , with α < JT � J , is applied for
the whole time interval 0 � t � T . The appropriate value of
the coupling depends on T , as it is denoted by the subscript in
JT . By taking the time derivative of (3b) and using (3a) and
(3c) we obtain the following differential equation for S2:

S̈2 + 4
(
J 2

T − α2
)
S2 = 0. (6)

Solving for the initial conditions S2(0) = 0, Ṡ2(0) = −α we
find

S2(t) = − sin(2ωαt)

2ω
, S3(t) = uT [1 − cos(2ωαt)]

2(u2
T − 1)

,

where the normalized angular frequency is ω =
√

u2
T − 1 and

uT = JT /α. The choice

2ωαT = π ⇒ uT = JT

α
=

√
1 +

( π

2αT

)2
(7)

leads to S2(T ) = 0, S3(T ) = uT /(u2
T − 1). From the con-

stant of the motion (4) we can also obtain S1(T ) =√
S2

2 (T ) + S2
3 (T ) + 1/4, where note that S1(T ) > 0 from (2a).

Putting these values in (5), we finally find the logarithmic
negativity as a function of the final time T ,

N0 = 2 ln

{
2αT

π

[√
1 +

( π

2αT

)2
+ 1

]}
, (8)

where the subscript denotes the absence of dissipation. Observe
that in the limit of large T the logarithmic negativity increases
logarithmically with time. A constant pulse of duration αT = 2
is shown in Fig. 1(a), with amplitude uT = JT /α = 1.2716, as
calculated from (7). The corresponding trajectory on the S2S3

plane is displayed in Fig. 1(b) (inner blue line). In Fig. 2(a) we
plot the logarithmic negativity (8) as a function of the duration
T (lower blue line).
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FIG. 1. (a) Constant Josephson coupling (blue line) and modified
coupling (11) (red line) for a common duration αT = 2. The am-
plitude of the constant pulse is found from (7) to be uT = JT /α =
1.2716, while for the second (nonzero) pulse in the modified coupling
it is u = J/α = 1.4. (b) Corresponding trajectories on the S2S3 plane,
where the inner blue trajectory correspond to the constant coupling
and the outer red trajectory to the modified coupling.

V. ON-OFF SWITCHING OF JOSEPHSON COUPLING

We show that by the appropriate on-off switching of the
Josephson coupling and using the maximum available value
J , a substantial improvement of the entanglement generated
within the same duration T can be obtained. We first describe
the motivation behind this modified coupling and then derive
the corresponding performance. Using the constant of the
motion (4), the expression (5) for the logarithmic negativity
becomes

N = ln
[
2
(√

S2
3 + 1/4 + |S3|

)]
, (9)

which is an increasing function of |S3|. System (3) can be
reduced to a two-dimensional system for S2,S3 only and,
if we use polar coordinates on the S2S3 plane, defined as
ρ =

√
S2

2 + S2
3 , tan(π − φ) = − tan φ = S3/S2 (angle φ is

measured from the negative S2 axis), we obtain the equations

ρ̇ = 2α cos φ
√

ρ2 + 1/4, (10a)

φ̇ = 2J − 2α
sin φ

ρ

√
ρ2 + 1/4, (10b)

with initial conditions ρ(0) = 0, φ(0) = 0. Note that the initial
value of φ is determined not only from the initial values
Si(0) but also from Eqs. (3b) and (3c) which, for t = 0+
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FIG. 2. Logarithmic negativity as a function of duration αT . (a)
In the absence of dissipation � = 0. The lower blue curve corresponds
to the constant coupling with amplitude uT = JT /α given in (7),
while the upper black curve corresponds to the modified coupling (11)
with a delta final pulse (infinite u = J/α). The intermediate red lines
correspond to finite values of u = J/α = 1.2,1.4,2 (from bottom to
top). (b) Same as in (a) but in the presence of dissipation � = 0.2α.

give S2(0+) < 0, S3(0+) = 0, thus φ(0) = 0. If we had chosen
the usual definition for φ (tan φ = S3/S2), then the initial
value would be π instead of 0. In order to maximize the
logarithmic negativity (9) at the final time t = T , we simply
need to maximize S3(T ) = ρ(T ) sin φ(T ). We set φ(T ) = π/2
and require the maximization of the final value ρ(T ). But
from (10a) observe that ρ̇ is maximized when φ = 0 (cos φ =
1). This crucial observation provides the motivation for the
suggested modified coupling. If the upper bound J of the
Josephson coupling was infinite, then the optimal strategy
would be the following: turn off the coupling J (t) = 0 for
the time interval [0 T ) in order to build the maximum ρ(T ),
and at the final time t = T apply a delta pulse to rotate this
maximum value instantaneously to S3(T ).

When J is finite the duration t2 of the final pulse is nonzero,
the duration of the initial zero pulse becomes t1 = T − t2, and
the applied modified coupling consists of the pulse sequence

J (t) =
{

0, 0 � t � t1,

J, t1 < t � T = t1 + t2.
(11)

In Fig. 1(a) we display this modified coupling with duration
αT = 2 and maximum amplitude u = J/α = 1.4 (red curve),
while in Fig. 1(b) we plot the corresponding trajectory (outer
red curve). The first part of the trajectory, along φ = 0,
corresponds to a singular arc in optimal control terminology
[42]. Observe that with an amplitude slightly higher than that
of the constant coupling with the same duration (uT = JT /α =
1.2716), a much larger final value S3(T ), and thus of the
negativity, is achieved.

Having motivated the superiority of modified coupling (11)
over the simple constant coupling, we next move to calculate
the switching time t1 and the final logarithmic negativity,
when the total duration T is given. In the interval 0 � t � t1,
where J (t) = 0, Eq. (6) becomes S̈2 − 4α2S2 = 0 and we
easily obtain S2(t1) = − sinh(2αt1)/2, while from (3c) we have
S3(t1) = S3(0) = 0. During the subsequent interval t1 < t �
t1 + t2 it is J (t) = J and S2 satisfies (6) with JT replaced by
J . Solving for the initial conditions at t = t1 and using also
(3c) we find at the final time t = t1 + t2 = T ,

S2(T ) = −1

2
sinh(2αt1) cos(2ωαt2)

− 1

2ω
cosh(2αt1) sin(2ωαt2) (12)

and

S3(T ) = u

2ω
sinh(2αt1) sin(2ωαt2)

+ u

2ω2
cosh(2αt1)[1 − cos(2ωαt2)], (13)

where now ω = √
u2 − 1 and u = J/α. The choice

tan(2ωαt2) = −ω tanh(2αt1) gives S2(T ) = 0 while at the
same time maximizes S3(T ). We can use this relation to
eliminate t2 and obtain the following transcendental equation
for the duration t1 of the zero pulse

T = t1 + t2 = t1 + π − tan−1[ω tanh(2αt1)]

2ωα
, (14)

where T is the total duration. The duration t2 of the second
pulse can be easily determined after we find t1. The left-hand
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side of (14) is an increasing function of t1, thus this equation
has at most one solution. Setting t1 = 0 we find the minimum
necessary duration T > π/(2ωα) such that (14) has a (unique)
solution for a specific J . Using this relation the other way
around we obtain that for a specific duration T the transcen-
dental equation has a (unique) solution for every J greater than
a T -dependent threshold

u = J

α
> uT =

√
1 +

( π

2αT

)2
. (15)

If we calculate S3(T ) by eliminating t2 in (13) and then
plug this value in (9), we obtain the logarithmic negativity at
the final time t = T as a function of t1 (which is an implicit
function of T ),

N0,u = ln

[
u cosh(2αt1) +

√
1 + u2 sinh2(2αt1)

u − 1

]
. (16)

The first subscript denotes the absence of dissipation, as before,
while the second one is the dependence on u. In the large time
limit at1 � 1 we find N0,u → ue2αt1/(u − 1). But at the same
limit tanh(2αt1) → 1, so T → t1 + t∞2 , where

t∞2 = π − tan−1 ω

2ωα
(17)

is a finite value. The large time limit of the logarithmic
negativity becomes thus

N0,u → ln

(
ue−2αt∞2

u − 1

)
+ 2αT , (18)

which is a linear function of time, corresponding to an expo-
nential squeezing. Note that the constant term (independent of
T ) in (18) is an increasing function of u. In the limit u � 1
(J � α) it is t∞2 → 0 and this negative term tends to zero. We
thus obtain the ultimate bound on the entanglement which can
be produced with the physical setting considered here

N0,∞ = 2αT . (19)

In Fig. 2(a) we display this bound as a function of the duration
(upper black line passing through the origin), while recall
that the lower blue curve corresponds to the final negativity
obtained with a constant coupling of the same duration. The
intermediate red lines display the final logarithmic negativity
(16) obtained with the modified coupling (11) for finite values
of u = J/α = 1.2,1.4,2 (from bottom to top). Observe that
each of these lines starts at a different duration T , as determined
from (15) for each u such that the corresponding transcendental
equation has a solution, while they approach the ultimate bound
as u increases.

VI. EFFECT OF DISSIPATION

We consider the simple dissipation model of Ref. [22],
where each second order correlation dissipates at a rate �.
The system equations are modified as

Ṡ1 = −�S1 − 2αS2 + �/2, (20a)

Ṡ2 = −2αS1 − �S2 + 2J S3, (20b)

Ṡ3 = −2J S2 − �S3, (20c)

where note the differentiation of S1 = 〈â†
1â1 + â2â

†
2〉/2 =

〈â†
1â1 + â

†
2â2 + 1〉/2. If we define S̃i = e�tSi we obtain the

system

˙̃S1 = −2αS̃2 + �e�t/2,

˙̃S2 = −2αS̃1 + 2J S̃3,

˙̃S3 = −2J S̃2.

For constant J (t) = J we can obtain a differential equation
for S̃2 analogous to Eq. (6)

¨̃S2 + 4(J 2 − α2)S̃2 = −α�e�t . (21)

This equation can be easily solved analytically; once we have
obtained S2(t) = e−�t S̃2(t) we can easily integrate (20a) and
(20b) and find

S1(t) = e−�t

{
S1(0) +

∫ t

0
e�t ′ [�/2 − 2αS2(t ′)]dt ′

}
,

S3(t) = e−�t

[
S3(0) − 2J

∫ t

0
e�t ′S2(t ′)dt ′

]
.

Using the above formulas, we have been able to obtain
analytical results for the final values Si(T ), extensively verified
with numerical simulations of system (20), for both the previ-
ously presented strategies, the constant coupling J (t) = JT ,
and the modified coupling (11). The corresponding expressions
are cumbersome and are not displayed here, but we have used
them to create plots of the logarithmic negativity as a function
of duration T , displayed in Fig. 2(b). Observe that, in the
presence of dissipation, the logarithmic negativity attained
with the modified coupling is saturated for large durations.
We have calculated analytically this saturation limit as

Nγ,u → − ln

(
1 − 1 + γ /u

1 + γ
e−�t∞2 + 1

γ 2 + u2 − 1

×
{[

γ 2

u
+ (u − 1)

(
1 + γ

u

)]
e−�t∞2 − (u − 1)

})
,

(22)

where γ = �/(2α), u = J/α, and t∞2 is given in (17). The
ultimate bound in the presence of dissipation (limiting value
of the upper black curve), for large times αT � 1 and u � 1
(J � α), is

Nγ,∞ → ln

(
1 + 1

γ

)
. (23)

The logarithmic negativity obtained with the constant coupling
strategy (lower blue curve) attains a maximum value, while for
large times it also converges to a constant value

Nγ → − ln

(√
γ 4 + γ 2 + 1 − 1

γ 2

)
. (24)
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VII. ON-OFF SWITCHING OF THE ENHANCED
NONLINEARITY

Even larger values of entanglement can be achieved with
the on-off switching of the enhanced nonlinearity

α(t) =
{
α, 0 � t � t1,

0, t1 < t � T = t1 + t2,
(25)

with amplitude α > J , while the previous pulse sequence (11)
is used for J (t). Under this modulation and in the absence
of dissipation, S2 grows exponentially with rate 2α in the
interval 0 � t � t1, and is rotated towards S3 with rate 2J

in the subsequent interval. This evolution is reflected in the
following expressions:

S2(T ) = − 1
2 sinh(2αt1) cos(2J t2),

S3(T ) = 1
2 sinh(2αt1) sin(2J t2).

The choice t2 = π/(4J ) gives S2(T ) = 0 and the maximum
S3(T ) = 1

2 sinh(2αt1). Using this value in (9) we find

N ′
0 = 2αt1 = 2α(T − t2) = 2α

(
T − π

4J

)
. (26)

The logarithmic negativity as a function of duration T is a
straight line with slope 2α, which for larger J starts closer to
the origin. Since now α > J , the generated entanglement is
larger than in the previous case (18).

In the presence of dissipation � and working analogously
we find the following expression for the logarithmic negativity
as a function of T :

N ′
γ = − ln

{
1 − e− π�

4J

1 + γ

[
1 − e−(2α+�)(T − π

4J )]},

where recall that γ = �/(2α). In the large time limit αT � 1
we find as before the saturation value

N ′
γ → − ln

(
1 − e− π�

4J

1 + γ

)
. (27)

Observe that it is an increasing function of α and J . In the limit
J � � we recover the bound (23), while in the limit α � �

we obtain

N ′
γ → − ln

(
1 − e− π�

4J

)
. (28)

In Fig. 3 we plot the saturation limit (27) as a function
of α, for J � α � 2J and with J/� = 10 (black dashed
line). We also plot the saturation limit (22) of the previous
case with on-off switching of the Josephson coupling only,
for 0 < α < J and the same J/� (red solid line). Observe
that the current saturation values are larger than the maximum
value of the previous case. The appearance of a maximum in
the previous case with on-off switching of the coupling and
constant nonlinearity (red solid line) can be easily explained.
For α → 0 the exponential growth of S2 is limited, while as
α/J → 1 from below the rotation from S2 to S3 with angular
velocity 2

√
J 2 − α2 becomes very slow. In both cases the

logarithmic negativity tends to zero, as depicted in Fig. 3. For
some intermediate value of α, the two competing processes are
tuned appropriately and the maximum arises.

We close this section by pointing out that the above analysis
can be generalized to the cases where α(t) = α′ < J for

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

α/J

N
γ

FIG. 3. Saturation limit of logarithmic negativity as a function of
the enhanced nonlinearity amplitude α. Red solid line corresponds
to on-off switching the Josephson coupling only, Eq. (22), and is
restricted to 0 < α < J . Black dashed curve corresponds to the case
where both the coupling and the nonlinearity are modulated, Eq. (27),
and is depicted for J � α � 2J . For both cases it is J/� = 10. The
vertical black line marks the point α/J = 1.

t1 < t � T and J (t) = J ′ < α for 0 � t � t1. The previously
studied case with time-varying J (t) and constant nonlinearity
corresponds to α′ = α and J ′ = 0. Even the case J = J ′,
where the Josephson coupling remains constant throughout and
only the nonlinearity varies with time, can be treated similarly.
Our choice to set the lower bounds of the controls to zero
captures the essential features of the proposed method and at
the same time greatly simplifies the calculations, compare for
example the saturation limit (27), corresponding to α′ = J ′ =
0, with the limit (22), corresponding to α′ = α and J ′ = 0.

VIII. CONCLUSION

We have shown that, with the appropriate modulation of
Josephson coupling between two exciton-polariton cavities,
the entanglement generated by a recently proposed method
which effectively amplifies the system nonlinearity can be
substantially enhanced. Even larger values of entanglement
can be achieved with the additional on-off switching of the
enhanced nonlinearity. This work can find immediate applica-
tion in quantum information processing with polaritons, but
also in other areas where nonlinear interacting bosons are
encountered. The presented results can be further improved in
the presence of dissipation by using optimal control methods
[42,43].
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