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Field-enhanced mobility in the multiple-trapping regime
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Charge transport in disordered inorganic semiconductors is governed by the multiple trapping (MT) of carriers
from delocalized states in the conduction band into localized traps in the band tail. Although it is well known
that carrier mobility in these materials strongly depends on electric field, a consistent description of this effect
in the MT regime is still missing. We analyze experimental data obtained in a series of disordered inorganic
semiconductors and show that the combined effects of temperature and of the electric field on the carrier mobility
can be described by a single parameter, the field-dependent effective temperature. This conclusion is supported
by the theoretical analysis of the MT transport, which takes into account the field-assisted release of carriers from
the traps into the conduction band.
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I. INTRODUCTION

Disordered inorganic semiconductors, such as hydro-
genated amorphous silicon (a-Si:H), amorphous selenium
(a-Se), amorphous silicon-germanium alloys (a-Si1−xGex :H),
and polycrystalline led oxide (poly-PbO) are widely used
in electrophotography, solar cells, field effect transistors for
flat-panel displays, optical memories, light-emitting diodes,
and other devices [1]. Charge transport is decisive for all
these applications. The study of charge transport in amor-
phous semiconductors has been, for decades, in the focus of
intensive experimental and theoretical research. It has been
well established that charge transport in inorganic amorphous
semiconductors occurs in the form of the so-called multiple-
trapping (MT) process [1–5]. In the MT process, a charge
carrier moves only via delocalized states with energies above
the mobility edge. This motion is interrupted by trapping into
the localized states with subsequent activation of carriers back
into the conducting states above the mobility edge. Transport
in the framework of the MT model is shown schematically in
Fig. 1.

In spite of intensive experimental and theoretical efforts,
there is no consistent and transparent theory that can describe
the dependence of the carrier mobility μ on the applied electric
field F in the MT model. This is in drastic contrast to the cases
of band and hopping transport, which are complementary to the
MT process. In the case of pure band transport, when capture
of carriers on traps does not play any essential role, the effect
of the electric field on the carrier mobility can be described
[6,7] by introducing a so-called effective temperature, Teff,
which depends on the magnitude of the electric field F , kTeff ∼
eF l/h̄ω, where e is the carrier charge, k is the Boltzmann
constant, h̄ω is the phonon energy, and l is the mean-free path.
This regime is valid in amorphous semiconductors only at very

high temperatures, when the thermal energy kT is larger than
the energy scale ε0 and most carriers are in delocalized states
above the mobility edge.

In the opposite case of the very low temperatures, when the
inequality kT � ε0 is valid, activation of carriers from traps
into extended states is not possible and charge transport occurs
via tunneling (hopping) of carriers between the localized states.
The effect of the electric field F on the carrier mobility μ

in the hopping regime received a transparent interpretation
already in the 1970s, when Shklovskii [8] recognized that for
hopping conduction a strong electric field plays a role similar
to that of temperature. In a tunneling transition over some
distance x in the field direction, a carrier gains energy δ = eFx

even at T = 0. The tunneling probability ν(x) ∝ exp(−2x/a)
(where a is the localization length) can be then presented
[8] as ν(δ) ∝ exp(−δ/kTeff) with Teff � eFa/2, i.e., as if it
were “activated” at temperature Teff. A very similar result was
obtained later by Grünewald and Movaghar in their study of
the hopping energy relaxation of electrons through band tails
at very low temperatures and high electric fields [9]. The same
idea was also used by Shklovskii et al. [10], who suggested
that, at T = 0, one can calculate the field dependence of the
conductivity in amorphous semiconductors by replacing the
laboratory temperature T in formulas for the low-field finite-
temperature theory by an effective temperature Teff � eFa/2.

For the case T �= 0, Marianer and Shklovskii [11] suggested
on the basis of numerical calculations that the combined effects
of the electric field F and temperature T on the hopping
conduction can be expressed in the form of the effective
temperature

Teff =
[
T 2 +

(
γ

eFa

k

)2
]1/2

, (1)
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FIG. 1. Sketch of the multiple-trapping process.

with γ ≈ 0.67. The validity of the approach based on the
effective temperature in this or a slightly modified form has
been confirmed in numerous studies [12–14] performed by
numerical simulations. Values of γ in the range 0.5 � γ �
0.7 were reported, depending on the considered transport
phenomena [11–14].

However, neither pure band transport nor hopping transport
but rather MT transport is inherent in amorphous semicon-
ductors at temperatures relevant to experimental studies and
to applications, when the thermal energy kT is neither much
larger nor much smaller than ε0 ∼ 0.1 eV. A theoretical
description of the field-dependent mobility in the MT regime is
still missing. The only attempt to adjust the description based
on the field-dependent effective temperatures to materials
with MT transport was performed by Chen et al. [15], who
showed that Eq. (1) with γ = 0.5 and a = 8 Å provides “very
acceptable agreement” with experimental data obtained in
a-Si:H by the time-of-flight technique in a broad range of
electric fields and temperatures. No theoretical justification
for the validity of this approach for the MT process has been
provided by Chen et al. [15], who simply inserted Teff given by
Eq. (1) instead of T into the standard simulation algorithm of
the MT transport and automatically obtained all dependencies
of transport coefficients on Teff known previously for the
dependencies on T .

The aim of our paper is to analyze the validity of the
approach based on the effective temperature for the description
of the field-dependent MT mobility μ(T ) in experimental
studies on other materials, and also theoretically. For that
purpose, we analyze experimental data on the dependencies
of the carrier mobility on the electric field and temperature in
other than a-Si:H amorphous semiconductors, such as a-Se and
poly-PbO. It appears that the concept based on Teff is applicable
to these materials with MT charge transport. Furthermore, we
analyze theoretical results derived for the field-induced release
of carriers from traps into the conduction band and show that
these results allow the description via Teff.

The paper is organized as follows. In Sec. II, we analyze
experimental data on the dependencies of the mobility on
temperature and on electric field for holes and electrons in
a-Se and for electrons in poly-PbO, where the validity of the
MT approach has been proven. The approach based on Teff is
validated. In Sec. III we analyze theoretical results for thermal
release of carriers from traps into conducting states, which
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FIG. 2. Experimentally measured dependence of the charge car-
rier mobility on temperature T and electric field F versus the effective
temperature Teff given by Eq. (1). Fits of Eq. (2) are also shown.

plays the decisive role for the MT transport. Again the approach
based on Teff is shown to be valid. Concluding remarks are
gathered in Sec. IV.

II. EXPERIMENTAL DATA ALLOW THE
DESCRIPTION VIA Teff

Experimental studies [16–20] of the field-dependent carrier
mobility in materials with MT transport, such as a-Si:H, a-Se,
and a-Si1−xGex :H, 0 < x < 0.3, have shown that the effect of
an electric field on the carrier mobility is determined by the
ratio eFa/kT , where the length parameter a is of order 10 Å.
The role of such a length for the materials with MT transport
was not clarified. The parameter a was merely introduced to
fit experimental data for the dependence μ(F ) [16–18,20].

While it has been shown by Chen et al. [15] that the effective
temperature Teff in the form of Eq. (1) is capable of describing
experimental data obtained by the time-of-flight measurements
in a-Si:H, this approach has not yet been checked for other
amorphous materials, in which charge transport is determined
by the MT mechanism. Here, we check the ability of Teff to
describe the T and F dependencies of the carrier mobility in
a-Se and in poly-PbO.

In Fig. 2, we plot the data for the mobilities of electrons
(e−) and of holes (h+) measured in a-Se [16], and the data
for the electron mobility measured in poly-PbO [5]. The data
are plotted on a logarithmic scale versus the inverse effective
temperature 1/kTeff given by Eq. (1). The numerical coefficient
γ is fixed to γ = 0.6 for all data sets. The localization length
a was varied to minimize the mean square deviations of the
mobility data to a straight line in those semilogarithmic plots. It
is apparent that the experimental results are nicely reproduced
as an Arrhenius-type behavior with the temperature T replaced
by Teff .

Assuming the temperature-dependent and field-dependent
mobility μ(T ,F ) in the form

μ(T ,F ) = μ0 exp (−εa/kTeff ), (2)

we can then extract the conduction band mobility μ0, the
activation energy εa , and the localization length a from the
data. The results are summarized in Table I.
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TABLE I. Fitted values for the conduction band mobility μ0, the
activation energy εa , and the localization length a of the experimental
data shown in Fig. 2.

μ0 (cm2/Vs) εa (eV) a (nm)

e− poly-PbO [5] 2.24 0.48 0.56
e− a-Se [16] 2.08 0.33 0.78
h+ a-Se [16] 2.22 0.27 0.76

All values are reasonable for the materials under study. The
activation energy εa = 0.48 eV for e− in poly-PbO matches the
values reported by Semeniuk et al. [5] and the activation energy
εa � 0.3 eV for e− and h+ in a-Se matches the values reported
by Juska and Arlauskas [16]. The idea to scale experimental
data on the dependencies of the mobility on the electric field F

and temperature T in the form of the Arrhenius law using Teff

is based on the Arrhenius temperature dependence evidenced
experimentally [1–4] in the classical inorganic amorphous
materials for the T dependence of the mobility in the Ohmic
regime at small F .

The energy spectrum of localized states in the band tails of
inorganic amorphous semiconductors is widely considered to
exhibit a purely exponential shape [1–5]:

g(ε) = Nc

ε0
exp

(
− ε

ε0

)
, (3)

where ε is the energy of the trap counted positively downwards
from the mobility edge εc in Fig. 1, ε0 is the energy scale, and
Nc is the concentration of states at the mobility edge. The value
of ε0 depends on the material and it is usually estimated below
0.1 eV [1–5].

Under nonequilibrium conditions, charge carriers in the
exponential DOS relax towards the Fermi level in the course
of transport [1–5]. In such a case, the temperature dependence
of the carrier mobility in the Ohmic regime at small electric
fields can be described by the Arrhenius law [1–5,16,18] with
some effective activation energy εa that depends not only on the
energy scale of the DOS ε0, but also on the experimental con-
ditions determining the time domain, in which charge transport
is measured. The longer is the time scale of the measurements,
the larger is the obtained characteristic activation energy εa ,
because the deeper in energy the carriers can relax at longer
times. The data used for fittings in Fig. 2 were obtained in
this regime of the so-called dispersive transport [5,16]. In this
transport regime, the activation energies in Table I should not be
considered as fixed parameters for the corresponding materials.
Not the absolute values of εa is the message of our paper but
rather the ability to fit experimental data on the dependences
of the mobility on F and T by a single parameter Teff . No
restrictions for the capability of the description via Teff with
respect to the concentration of carriers n are to be expected
in the MT regime with dispersive transport. In the equilibrium
conditions, the MT charge transport in the exponential DOS is
determined by the activation of carriers from the Fermi level εf

towards the mobility edge εc [1–3,21,22]. The position of the
Fermi level εf is determined by the energy scale of the DOS ε0

and by the concentration of carriers n. Therefore, the activation
energy εa in Eq. (2) should depend on the carrier concentration

n if experimental data were obtained in equilibrium conditions.
No restrictions for the capability of the description via Teff with
respect to the concentration of carriers n are to be expected in
the equilibrium MT regime.

The deviations of the data in Fig. 2 from the Arrhenius
dependence at large 1/Teff , i.e., at small Teff , are probably
caused by the transition from the MT transport to the hopping
transport at small T and F . Hopping transport at small T and F

undergoes a non-Arrhenius dependence of the mobility on Teff

[13]. The results of the current manuscript are valid for the MT
regime. They are not applicable at very small T and F , when
transport is determined by tunneling of charge carriers between
the localized tail states instead of their activation towards the
mobility edge. From Fig. 2 one can estimate the range of
applicability for transport of holes in a-Se as Teff � 220 K and
for transport of electrons in a-Se as Teff � 200 K. At very high
values of Teff , the MT regime merges with the band transport,
to which the results of this report are also not applicable.
In a-Se, the carrier mobility loses its activated temperature
dependence at F � 108 V/m [16]. Inserting this value into
Eq. (1) and using the lowest temperature value T = 166 K
studied experimentally for the field-dependent mobility in a-Se
[16], one obtains the restriction Teff � 560 K. The range of the
applicability of the concept of the effective temperature in the
MT regime to the carrier mobility in a-Se can be thus estimated
as 220 K � Teff � 560 K.

III. THEORETICAL STUDIES FOR THE
FIELD-ENHANCED DETRAPPING ALLOW THE

DESCRIPTION VIA Teff

The carrier mobility in the MT transport regime is propor-
tional to the probability for electrons to be released from the
traps into conducting states [1–3]. The external electric field
enhances the release rate νesc and affects the carrier mobility.
Let us consider the field dependence of the release rate νesc(F ).

Without electric field, the escape rate from a trap into the
conduction band is equal to

νesc(ε) = ν0 exp

(
− ε

kT

)
, (4)

where ε is the energy of the trap counted positively downwards
from the mobility edge and ν0 is a preexponential factor
determined by the interaction mechanism responsible for the
transition. If a transition is caused by the interaction with
phonons, ν0 is usually assumed to be of the order of the phonon
frequency. Focusing on the effect of F on the exponential
factors, we will not consider the effect of the electric field
on the value of ν0.

Aiming to study the release of carriers from traps in amor-
phous semiconductors such as a-Si:H, a-Se, and poly-PbO,
we will consider electrically neutral traps in the absence of
carriers, and charged if carriers are present on the traps. It is
widely accepted that localized states forming the band tails
in amorphous materials appear not due to the introduction
of electrically active donors or acceptors, but rather due to
fluctuations of the distances between the atoms and of the
angles between the covalent bonds [1–4]. States in the band
tails can, for instance, appear on the elongated covalent bonds,
in which the energy difference between the bonding and
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FIG. 3. Schematic picture for the field-enhanced escape.

antibonding orbitals are smaller than on average. Therefore,
traps are neutral in the absence of carriers. The release of
carriers from traps in our study is in contrast to the ionization
of traps studied, for instance, by Frenkel [23], who considered
traps to be neutral when occupied by electrons and to be ionized
(positively charged) when electrons are released from the traps.

The effect of the electric field on νesc(ε) has been first studied
theoretically by Keldysh [24], who showed that the field can
diminish the activation barrier for the electron escape from a
trap, as illustrated schematically in Fig. 3, where the process
of a thermally assisted tunneling due to the electron-phonon
coupling is depicted. This is a thermal equivalent of the
well-known Franz-Keldysh effect. In this scheme, the escape
event consists of two processes: activation with the energy
deficit �ε, as compared to the trap depth ε, and tunneling over
the distance �x = �ε/(eF ) under the triangle energy barrier.
Ascribing a universal value ν0 to the preexponential factor and
introducing the variable z ≡ (�ε)/kT , one can represent the
result of Keldysh in the form [25]

νesc(ε) = ν0 exp

(
− ε

kT

)[
1

+
∫ ε/kT

0
exp

(
z − 4

√
2m(zkT )3/2

3eh̄F

)
dz

]
, (5)

where m is the effective mass. One can use the saddle-point
method to evaluate the integral in the exponent, which yields
the expression [24,25]

νesc(ε) ∝ FT −3/2 exp

(
− ε

kT
+ 1

24m

(eh̄F )2

(kT )3

)
. (6)

Apparently, the saddle point exists, and Eq. (6) is valid,
only in the case ε > (eh̄F/kT )2/8m. In the opposite case,
it is favorable for carriers to leave the traps via isoenergetic
tunneling without thermal activation. The same equations were
obtained later by Vincent et al. [25]. These results were slightly
modified by Karpus and Perel [26], who also predicted a
parabolic field dependence in the exponent of the escape
probability at low fields and found that only tunneling is
responsible for carrier escape from the traps at high fields.
Hijazi and Kabir [27] recently addressed Eq. (6) and claimed

that “considering the wide variation of the vibrational energy,
the enhancement factor for the carrier release can be written
as exp[(a′F + b′F 2)/kT ], where a′ is the effective tunneling
distance in the direction of the electric field” and b′ is related
to “a fitting parameter for amorphous materials.” However, it
has not been explained [27] how this result could be derived.

Aiming to analyze the field dependence of the mobility
μ(F ) using Eq. (5), let us express μ in terms of the escape
rate νesc. In the case of the exponential density of states given
by Eq. (3), most electrons in the steady state at kT < ε0 have
energies in the vicinity of the Fermi level εf . The fraction of
the conducting electrons in the states above the mobility edge
is proportional to the ratio between the escape rate νesc(εf )
from a trap at the Fermi level and a rate for a capture of an
electron to such a trap. The drift mobility is proportional to the
fraction of carriers in the conducting states:

μ(T ,F ) ∝ νesc(εf ,T ,F )

ν0
. (7)

Let us check whether it is possible to present the results
of Eqs. (5) and (7) in the form of Eq. (2) using Teff given by
Eq. (1), that was shown in Sec. II to be capable of describing
experimental results. The rate of the carrier detrapping given
by Eq. (5) depends on the carrier effective mass m. The carrier
effective masses in amorphous semiconductors are not known
with high accuracy yet. Usually, the values range from m0 to
0.25m0, where m0 is the free electron mass, and are used for
chalcogenide glasses [28]. The values m = 0.34m0 for a-Si:H,
m = 0.22m0 for a-Ge:H, and m = 0.46m0 for a-As2S3 have
been reported in the literature [29]. To be definite, we use the
value m = 0.3m0 in the calculations. This assumption is not
crucial for the results. The effective mass m enters Eq. (5)
in the combination

√
m/F . The results for another choice of

m can be obtained from our calculations for m = 0.3m0 by a
corresponding rescaling the F axis.

In Figs. 4 and 5, we show the results for the carrier
mobility μ(T ,F ) obtained via Eqs. (5) and (7) for εf = 0.5 eV
and for εf = 0.3 eV, respectively. In Figs. 4(a) and 5(a), the
data are plotted as functions of the electric field for a set of
temperatures between T = 200 K and T = 300 K with step
size 20 K, while in Figs. 4(b) and 5(b), the data are plotted
as functions of temperature for a set of electric fields be-
tween F = 0.05 MV/cm and F = 0.4 MV/cm with step size
0.05 MV/cm.

In analogy with fitting the experimental results in Fig. 2,
we fit in Fig. 6 the theoretical data given in Figs. 4 and 5 to
become straight lines when ln μ(T ,F ) is plotted versus 1/Teff ,
where Teff is given by Eq. (1). The only fitting parameter
necessary to achieve this goal, i.e., the data to align, is the
product γ a present in Eq. (1). For the results calculated via
Eq. (5) with εf = 0.5 eV and shown in Fig. 4, the data in
Fig. 6 were fitted with the value γ a = 0.28 nm, while for the
results calculated via Eq. (5) with εf = 0.3 eV and shown
in Fig. 5, the data in Fig. 6 were fitted with the value γ a =
0.40 nm.

From the data in Fig. 6, one can estimate the values of the
activation energies εa via the slopes of the straight lines fitted
by Eq. (2). Apparently, the data calculated via Eqs. (5) and (7)
for εf = 0.5 eV provide the activation energy εa = 0.506 eV,
while the data calculated via Eqs. (5) and (7) for εf = 0.3 eV
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T = 200 K

F = 0.05 MV/cm

T = 300 K

F = 0.4 MV/cm

(a)

(b)

FIG. 4. Results of Eqs. (5) and (7) for εf = 0.5 eV.

point at the activation energy εa = 0.306 eV. The values
obtained for εa are in perfect agreement with the values of
εf = 0.5 eV and εf = 0.3 eV used in our calculations. This
result is not trivial. It shows the ability of the approach based
on the effective temperature Teff to account for the effect of the
electric field F on the release rate.

Fittings of the theoretical data by Eq. (2) shown in Fig. 6
were achieved using the values γ a = 0.28 nm and γ a =
0.40 nm for εf = 0.5 eV and εf = 0.3 eV in Eq. (1), re-
spectively. Taking the value γ = 0.6 used in Sec. II to fit
experimental data by the effective temperature Teff given by
Eq. (1) results in the estimates a = 0.47 nm and a = 0.67 nm
for εf = 0.5 eV and εf = 0.3 eV, respectively.

The length scale a that appears in Eq. (1) must be a
combination of the model parameters—namely, of the effective
mass m, Fermi energy εf , and the Planck constant h̄. There
is only one combination of these parameters that has the
dimensionality of length. It is the localization length of an
electron trapped at the energy level εf [30]

a = h̄√
2mεf

. (8)

Inserting in Eq. (8) the value m = 0.3m0 used in our calcu-
lations, one obtains a = 0.48 nm and a = 0.62 nm for εf =
0.5 eV and εf = 0.3 eV, respectively. These values are similar
to the estimates for a obtained from the fitting of Eqs. (5) and
(7) with the effective temperature Teff given by Eq. (1).

T = 200 K

T = 300 K

F = 0.4 MV/cm

F = 0.05 MV/cm

(a)

(b)

FIG. 5. Results of Eqs. (5) and (7) for εf = 0.3 eV.

Let us discuss the range of temperatures T and fields F ,
in which the Arrhenius model illustrated in Fig. 6 holds. This
range depends on the system parameters: the effective mass m

and the Fermi energy εf . For this reason, it is convenient to
express the range in terms of the “dimensionless temperature”
T ∗ and the “dimensionless field” F ∗ defined as follows:

T ∗ = kT

εf

, F ∗ = eh̄√
mε3

f

F. (9)

FIG. 6. Arrhenius plot for the dependence of the mobility calcu-
lated via Eqs. (5) and (7) vs the effective temperature given by Eq. (1).
The color scheme is the same as in Fig. 4(a) and Fig. 5(a).
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For instance, if m = 0.3m0 and εf = 0.3 eV, then T ∗ ≈
T/(3.5 × 103 K) and F ∗ ≈ F/(3.3MV/cm). In these nota-
tions, the range of applicability becomes independent of the
material parameters.

We have checked that for moderate temperatures and fields,
0.055 < T ∗ < 0.1 and 0.03 < F ∗ < 0.15, the calculated mo-
bility as a function of the effective temperature is well de-
scribed by the Arrhenius law. Deviations of the mobility from
the Arrhenius plot do not exceed 20%, whereas the mobility
itself varies over four orders of magnitude. The parameter a

extracted from the fitting is equal to 1.08 times the localization
length (taking γ = 0.6). At larger electric fields, 0.15 <

F ∗ < 1, and temperatures in the range 0.035 < T ∗ < 0.1,
the Arrhenius approximation also works with an accuracy of
25% for the mobility varied over four orders of magnitude,
though with a somewhat larger parameter a: 1.20 times the
localization length. The even larger fields, when the carriers
leave the traps without thermal activation, are beyond our
consideration. There are deviations from the Arrhenius plots
at small electric fields (F ∗ < 0.03), seen in Fig. 6 on the right
edges of each colored data set. The reason for these deviations
can be understood by considering the low-F approximation of
Eq. (5),

νesc ≈ ν0 exp

(
− ε

kT

)[
1 + 0.59(eh̄)2/3

m1/3

F 2/3

kT

]
. (10)

This expression (valid at low fields) cannot be mimicked by
a function of the effective temperature, which is defined in
Eq. (1).

Although the appearance of a length scale a in the MT
transport regime at finite F is the most intriguing feature of
the fittings by Teff(T ,F ) shown in Fig. 2 and in Fig. 6, we
are not able to present any deeper explanation of this quantity,
but pointing at the only combination of material parameters in
Eq. (8) that can provide a characteristic length in the model
of the MT transport. The argument that a corresponds to
the localization length is thus based on the comparison of
the fitted values with those calculated by Eq. (8) assuming
that γ = 0.6 holds. We use here Teff in the form of Eq. (1)
suggested by Marianer and Shklovskii [11] simply because
our numerical calculations, as well as the fittings in Fig. 2,
do not evidence a deviation from this previously suggested
expression. Furthermore, the estimates for a are based on
γ = 0.6 chosen without much justification. Therefore, one
cannot recommend to use Eq. (8) for estimating the values of
the effective mass m via Eq. (8). If one would insert into Eq. (8)
the fitted data for a and εa from Table I, one would come to the
estimates of the effective mass m ≈ 0.26m0 and m ≈ 0.23m0

for electrons in poly-PlO and a-Se, respectively, and m ≈
0.26m0 for holes in a-Se. These values do not contradict those
reported previously for amorphous inorganic semiconductors
[28,29]. It is nevertheless worth noting that the localization
length usually appears in the theory of hopping transport. In
our analysis of the multiple-trapping transport, hopping does
not play any role, but, remarkably, the localization length seems
to be involved.

IV. DISCUSSION

The question might arise on why to consider the de-
scription of the field-dependent carrier mobility based on
Eq. (2), proven in this manuscript, as superior in comparison
to the description based on Eqs. (5) and (7). We note that,
for the case of low electric fields, the theoretical description
of the multiple trapping (MT) transport regime has been
previously developed in all details. Our results show that this
theoretical description can be literally used also to account for
the field-dependent mobility at high electric fields with just
replacing the laboratory temperature T by the field-dependent
Teff(T ,F ) in all theoretical expressions derived for the case of
low fields. This recipe to describe the nonlinear effects at high
electric fields by just renormalizing the temperature T is not
at all trivial. There is no general reason that the effect of a
large electric field on the carrier mobility can be reduced to
the renormalization of the temperature T → Teff(T ,F ). In this
work, we present a proof for the capability of a single parameter
Teff(T ,F ) to account for the combined effects of temperature
and of the electric field on the carrier mobility in the MT
transport regime. This conclusion is supported by the analysis
of the experimental data for the dependences of the carrier
mobility μ on temperature T and on the applied electric field
F obtained previously in a-Se [16] and in poly-PbO [5]. We
show that these data can be described by a single parameter,
the field-dependent effective temperature Teff(T ,F ).

Furthermore, the strength of the electric field F can enter
the expression for the effective temperature Teff(T ,F ) only in
the form of the product eLF , where L is some characteristic
length. In the case of band transport, there is an apparent
characteristic length, the mean free path of charge carriers.
Therefore, it is not surprising that it is the mean free path
that relates the effective temperature to the electric field
for the case of the band transport [6,7]. In the case of hopping
transport, there also is an apparent fundamental length scale,
the localization length a responsible for the tunneling of
charge carrier between the localized states. Recently, it has
been proven [31] that a is the length that relates the effective
temperature Teff(T ,F ) to the strength of the electric field F

in the case of hopping transport. In the MT regime, on the
contrary, there is no apparent fundamental length scale that
anyhow affects the charge transport at low electric fields. At
low fields, charge carriers are released from the traps into
conducting states by thermal activation with the rate dependent
solely on the depth of the energy traps ε and on temperature T ,
as described by Eq. (4). Our results show that a characteristic
length appears to affect charge transport in the MT regime at
high electric fields and that this characteristic length is close
to the localization length of charge carriers a.

A question should be addressed on the possibility to
describe by the parameter Teff the charge transport in the
more modern inorganic disordered materials, for instance, in
amorphous oxide semiconductors (AOS), such as InGaZnO
materials used in thin-film transistors [32,33]. The transport
mechanism in such materials is still under debate [34–44].
Band transport with scattering of carriers on potential fluc-
tuations was first suggested as the appropriate transport
mechanism in such materials [34,35,37,38]. The model of
the band transport is supported by the observations of a
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well-developed Hall effect, which points at the essential
occupation of bandlike states [32,38]. A trap-limited band
transport in the spirit of the MT model has also been considered
as a possible transport mechanism in AOS materials [39–
41]. Furthermore, estimates of the DOS in the band tails of
InGaZnO systems point at the exponential DOS in the form
of Eq. (3) in the vicinity of the mobility edges [39,40,42,43].
The results of the current manuscript should be applicable to
describe the mobility dependences on T and F in the case of
the MT regime, particularly in systems with the exponential
DOS. However, Germs et al. recently argued [43] that not the
MT transport, but rather the interplay between the hopping
transport and the band transport should be considered as the
appropriate transport mechanism in InGaZnO materials. The
concept of Teff(T ,F ) can hardly be expected to be valid for
such a combination between the two transport mechanisms,

since the characteristic length that describes the field effect on
the mobility in the band transport is the mean free path [6,7],
while the corresponding length for hopping transport is the
localization length. Apparently, more study of the transport
mechanism in AOS is necessary in order to make conclusions
on the applicability of the concept based on Teff(T ,F ) to such
materials.
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