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We investigate the quantum mechanical origin of resistive phase transitions in solids driven by a constant
electric field in the vicinity of a metal-insulator transition. We perform a nonequilibrium mean-field analysis of
a driven-dissipative symmetry-broken insulator, which we solve analytically for the most part. We find that the
insulator-to-metal transition (IMT) and the metal-to-insulator transition (MIT) proceed by two distinct electronic
mechanisms: Landau-Zener processes and the destabilization of the metallic state by Joule heating, respectively.
However, we show that both regimes can be unified in a common effective thermal description, where the
effective temperature Teff depends on the state of the system. This explains recent experimental measurements in
which the hot-electron temperature at the IMT was found to match the equilibrium transition temperature. Our
analytic approach enables us to formulate testable predictions on the nonanalytic behavior of I -V relation near
the insulator-to-metal transition. Building on these successes, we propose an effective Ginzburg-Landau theory
which paves the way to incorporating spatial fluctuations and to bringing the theory closer to a realistic description
of the resistive switchings in correlated materials.
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I. INTRODUCTION

Phase transitions driven by out-of-equilibrium conditions
are one of the most fascinating and challenging topics of mod-
ern condensed matter. The phenomenon of resistive switching
(RS) refers to the sudden massive drop of resistivity experi-
enced by many insulating materials when subject to a voltage
bias or to an electric field. RS materials, from semiconductors
to transition-metal compounds with wide-ranging insulating
energy gaps [1], have different physical mechanisms for the
switching, and the physical origin for the phenomena has
been intensely debated. Transition-metal oxides and transition-
metal chalcogenides belong to a group with the insulating gap
of order 1 eV and surprisingly small switching electric field
of 1–10 kV/cm, and the RS transitions are often associated
with metal-insulator transitions in equilibrium. The insulator-
to-metal transition (IMT) on an upsweep of the electric field
and the metal-to-insulator transition (MIT) on the downsweep
take place at much different electric field scales, resulting in
hysteretic I -V characteristics. The growing interest in this
phenomenon over the past decades has been stimulated by the
perspective of designing logic devices for digital computation
[1–4]. In particular, memristor physics has turned into a
full-blown research effort to create novel, reliable, nonvolatile
logic devices such as artificial neural networks out of Mott
insulators [5].

In addition to its appeal for applied physics, resis-
tive switching is a fundamental physics problem, as a
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prototypical nonequilibrium phase transition of quantum
many-body systems. Despite its importance, the theoretical
understanding of RS has remained unsatisfactory. A rather
successful heuristic approach is the resistor network theory
[1,6–8], which models the materials by a classical network of
resistors with empirical electric and thermal properties, and
where an electric filament can percolate across the insulating
matrix. However, the vast diversity of the systems displaying
RS, from intrinsic semiconductors to transition-metal com-
pounds [1], possibly through various microscopic mechanisms,
together with the formidable theoretical difficulty in solving
the nonequilibrium dynamics of quantum many-body systems,
are to be blamed for our current lack of a unifying quantum
theory of RS. It is only recently that the community has started
developing the methodologies to combine strong electronic
interactions and nonequilibrium drives [9].

In the past few decades, the theory of quantum nonequi-
librium dynamics in general has made important progress.
Far-from-equilibrium transport theory has found countless ap-
plications in nanojunctions, based on the Landauer-Büttikker
formalism [10]. Recently, stimulated by progress in ultrafast
measurement techniques [11,12], the relaxation dynamics of
electrons at the femtosecond scale has been extensively studied
in solids and optical lattices [13]. The general idea behind
our work is rather to understand how the electronic state
continuously evolves away from equilibrium when a steady
finite electric field is adiabatically turned on. Our strategy in
this work is to focus on the subclass of RS materials where
the resistive transition is controlled by an order parameter and
to provide a basic theoretical framework for nonequilibrium
phase transitions.
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Quantum phase transitions driven out of nonequilibrium
[14–16] is a fascinating subject. Perturbative studies starting
from a metallic state under a dc field [17–19] have exposed
the importance of Joule heating, whereby the electric field
acts as an effective temperature. This has lead to classification
of RS in the same universality class as the continuous Ising
transition that characterizes the equilibrium paramagnetic-
to-antiferromagnetic transition at the Néel temperature. In
contrast to the previous efforts, we investigate the insulator-
to-metal RS and find a discontinuous nonequilibrium phase
transition, in stark difference with the Ising class.

We study here insulating transition-metal oxides or
transition-metal chalcogenides with a relatively small band
gap, �0 � 1 eV, and for which the measured switching fields
are in the range of EIMT ∼ 1–10 kV/cm. RS in those correlated
insulators poses two major puzzles: (1) the typical switching
field (or voltage drop per unit cell) is sub-meV, much smaller
than the band gap, and therefore incapable of turning the
insulator band structure into a metal, and (2) there is a
controversy over the nature of the underlying mechansim:
electronic [12,20,21] versus thermal [22–25] scenarios.

The electronic scenarios support the idea that the RS is
due to the electric-field-driven acceleration of the electrons,
which triggers a sudden change of the electronic transport
properties. Various ideas such as the formation of in-gap states
[26–29], Landau-Zener tunneling [30,31], avalanches of im-
pact ionization events [8], and multiband interacting model
[21] have been proposed to resolve the aforementioned energy-
scale problem. On the other hand, the thermal scenarios support
the idea that the electronic current created by the electric
field causes an overall temperature increase via Joule heating,
essentially bringing the system to undergo a thermally driven
equilibrium phase transition rather than a truly nonequilibrium
phase transition. Such a mechanism would be effective in
overcoming the large energy gap discussed above, but it is
considered to require a long time to build up the necessary
temperature, in contradiction with the fast switching times of
RS. Altogether, the experimental evidences give partial support
to each scenario and the debates between the two camps have
remained inconclusive for decades.

In this work, we analytically elucidate the above puzzles
and explain how the electronic and thermal scenarios are in fact
different sides of the same coin, by solving explicitly the case
of an ordered insulator driven by an electric field. Our scenario
consists in the electric field E effectively coupling to the
order parameter � via a state-dependent effective temperature,
Teff (�). Ultimately, this sets the small energy scale of the
switching fields and yields testable predictions on the critical
scaling of the I -V curves at the IMT.

We work with a model of a driven-dissipative quantum
antiferromagnet that we have recently identified in Ref. [32]
as a minimal model for RS. A similar model had already been
introduced and studied in the pioneering work of Sugimoto
et al. [33]. The numerical study of the nonequilibrium steady
states in Ref. [32] showed that it reproduced most of the ex-
perimental features of RS, such as the existence of a bistability
region between of the metallic and insulating solutions and
the S-shaped I -V characteristics, the formation of hot metallic
filaments across the sample whose dynamics are responsible
for a negative differential resistance [4,34,35]. Although much

insight could be gained from the numerics, a comprehensive
and unambiguous analytic understanding of the inner workings
of the results was needed.

The paper is organized as follows. In Sec. II, we start off
with a simple single-band metal subject to an electric field
and dissipative medium at zero temperature. We compute the
Keldysh Green’s functions (GFs) in the nonequilibrium steady
state, and we obtain an explicit expression of the nonequilib-
rium distribution function. We then generalize the approach to
a driven dissipative antiferromagnet. The corresponding GFs
are derived by means of a mean-field approximation where the
order parameter is taken to be the charge gap, �. In Sec. III,
we analyze the insulating solutions in both the small and large
gap regimes. In Sec. IV, after a brief review of the equilibrium
case, we derive and solve the self-consistent equation on the
nonequilibrium mean-field order parameter, and we identify
the switching fields of the insulator-to-metal and the metal-
to-insulator transitions, EIMT and EMIT, respectively. Since
most RS experiments are realized at 200–300 K, we later
generalize our results to finite-temperature baths. In Sec. V,
we reformulate the nonequilibrium mean-field theory in terms
of an effective free energy F (�). In Sec. IV, we conclude and
give additional discussions.

II. QUANTUM NONEQUILIBRIUM FORMULATION

We first present our analytical approach, how we incorpo-
rate the nonequilibrium drive and the dissipation, within the
case of a noninteracting single-band metal. We later move
to the more complex case of an ordered insulator. While we
limit our discussions to one-dimensional models, most of our
conclusions are also valid in higher dimensions as long as
low-dimensional correlation effects remain unimportant.

A. Elementary case: Single-band metal

Let us consider a tight-binding model of electrons set in
motion by a dc electric field E. To prevent the sample from
accumulating indefinite amount of excess energy, it is neces-
sary to couple it to a large environment that can effectively
dissipate its excess energy. As a rudimentary mechanism, we
employ a simple thermal bath of fermions which create Ohmic
dissipation and satisfy the basic requirements consistent with
the Boltzmann transport theory [19,36,37]. Besides dissipa-
tion, the baths are also a crucial element because they allow us
to explore the RS in finite temperature environments and thus to
make the connection with experiments. We first introduce the
problem on a one-dimensional lattice and then later linearize
the dispersion relation to work with a continuum version.

1. Lattice model

The total Hamiltonian of a simple metallic chain reads [36]
Ĥtot = Ĥ + Hbath with

Ĥ = −t
∑

�

(d†
�+1d� + H.c.) − E

∑
�

�d
†
�d�, (1)

Ĥbath =
∑
�α

(εα − E�)c†�αc�α− g√
L

∑
�α

(c†�αd� + H.c.), (2)
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where d
†
� is the creation operator of an electron at site � and

c
†
�α is the creation of an electron in the fermion bath coupled to

site �, with the continuum index α. We set the lattice constant
a = 1, the electric charge e = 1, and h̄ = 1. The coupling
between the orbital at site � and its local bath is given by
the coupling constant g, and it yields the local hybridization
function �(ω) = (g2/L)

∑
α (ω − εα ). We assume the baths to

be identical at all sites, and with a structureless spectrum such
that �(ω) = �.

The dc electric field is incorporated in the Coulomb gauge
via the static electric potential −E�. For simplicity, we con-
sider E � 0. In this gauge, the thermal statistics of the bath
degrees of freedom, the c�α’s, is given by the Fermi-Dirac
distribution function where the original zero chemical potential
is shifted by −E� at site �,

f0(ω + �E) = [e(ω+�E)/Tb + 1]−1, (3)

and where Tb is the bath temperature. In the following, we
consider a zero-temperature environment by setting Tb = 0,
except in Sec. IV C. Within the Keldysh Green’s function
formalism, the dissipation by the fermion baths is exactly
incorporated in the retarded and lesser self-energies at site � as

�r
� (ω) = −i�, �<

� (ω) = 2i�f0(ω + �E), (4)

respectively. One defines the retarded and lesser Green’s
functions, Gr

ij (ω) and G<
ij (ω), respectively, as

Gr
ij (t, t ′) = −i�(t − t ′)〈{di (t ), d†

j (t ′)}〉, (5)

G<
ij (t, t ′) = i〈d†

j (t ′)di (t )〉. (6)

Once the steady state has been reached, the Green’s functions
are time translational invariant (though they are not space
translational invariant due to our choice of gauge). Using
Dyson’s equation on the lesser Green’s function, its local
component can then be computed as

G<
loc(ω) =

+∞∑
�=−∞

Gr
0�(ω)�<

� (ω)Gr
0�(ω)∗

= 2i�

+∞∑
�=−∞

∣∣Gr
0�(ω)

∣∣2
f0(ω + �E). (7)

This problem has been solved numerically in Ref. [37],
which led to identification of an effective temperature for the
electrons driven by a small electric field and coupled to a
zero-temperature bath

Teff =
√

6

π

tE

�
. (8)

While a current-carrying steady state cannot be strictly con-
sidered as a thermal state, this simple characterization of the
electronic excitations by a finite temperature proportional to
E/�, i.e., drive over dissipation, nevertheless exposes clearly
the driven-dissipative nature of the electronic steady state.

2. Continuum model

In this paper, we work in the continuum limit where analytic
approaches become more amenable. In the presence of dissi-
pation, the Fermi sea is adiabatically shifted [37] as predicted

in the Boltzmann transport theory, and it is reasonable to focus
on the states near the equilibrium Fermi energy. Therefore, we
linearize the tight-binding dispersion relation for simplicity.
Setting aside the dissipation for a moment, we obtain the
Hamiltonian

Ĥ =
∑
λ=±

∫
dxψ

†
λ(x)hλ(x)ψλ(x), (9)

where ψλ(x) is the electron field operator of right (λ = +) and
left (λ = −) movers evolving according to the Hamiltonian
density

hλ(x) = −iλv0∂x − Ex, (10)

and v0 > 0 is the group velocity. In our numerics, we use
(h̄/a)v0 as the unit of energy by setting it to unity. Reincorpo-
rating the dissipation by using the hybridization to the baths in
Eq. (4), the Dyson equation for the retarded GF reads

(i∂t − hλ(x) + i�)Gr
λ(x, x ′; t ) = δ(t )δ(x − x ′), (11)

whose solution can be expressed in the spectral representation
as

Gr
λ(x, x ′; ω) =

∫
φλ(x, ω′)φ∗

λ (x ′, ω′)
ω − ω′ + i�

dω′

2πv0
, (12)

where φλ(x, ω) is the eigenfunction of the dissipationless
Hamiltonian in Eq. (10) at energy ω, i.e.,

hλ(x)φλ(x, ω) = ω φλ(x, ω). (13)

The continuum version of the local lesser GF given in Eq. (7),
with a bath temperature Tb = 0, now reads

G<
loc(ω) = 2i�

∫ −ω/E

−∞

1

2

∑
λ

∣∣Gr
λ(0, x; ω)

∣∣2
dx. (14)

The local energy distribution function f (ω) can be accessed
via

f (ω) = − G<
loc(ω)

2i Im Gr
loc(ω)

. (15)

In equilibrium (at E = 0), the fluctuation-dissipation theorem
between retarded and lesser GFs ensures that the energy
distribution is governed by the usual zero-temperature Fermi-
Dirac distribution. Out of equilibrium (E > 0), one simple way
to quantify the amount of nonequilibrium excitations around
the chemical potential is to introduce an effective temperature,
Teff . In regimes with relatively few excitations concentrated
around the chemical potential, it is quite convenient to use the
following definition of the effective temperature based on the
Sommerfeld expansion [32],

T 2
eff = 6

π2

∫ ∞

−∞
ω[f (ω) − �(−ω)]dω. (16)

This definition is consistent with the equilibrium temperature
when f (ω) is the Fermi-Dirac distribution.

3. Analytic solution

Owing to the linearized dispersion relation, Gr
λ(x, x ′; ω)

and G<
loc(ω) can be computed explicitly. Indeed, the
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Schrödinger equation in Eq. (13) has a simple solution reading

φλ(x, ω) = exp

[
iλ

v0

(
ωx + 1

2
Ex2

)]
. (17)

After performing a contour integral in Eq. (12), we obtain

Gr
λ(x, x ′; ω) = − i

v0
�[λ(x − x ′)]e− �

v0
|x−x ′ |

eiλϕ, (18)

with the phase ϕ = [ω(x − x ′) + 1
2E(x2 − x ′2)]/v0. The local

retarded GF reads

Gr
loc(ω) = −i/(2v0). (19)

Note that, unlike in the lattice calculations, the spectral function
−π−1Im Gr

loc(ω) = 1/(2πv0) does not feature Bloch-Zener
peaks equally spaced in energy by eEa, due to the lack of a
finite lattice constant in the continuum model.

Using Eqs. (14), (15), and (19), the local lesser GF reads

G<
loc(ω) = i

v0
f (ω), (20)

with the local energy distribution function

f (ω) =
{

1
2e−2�ω/(v0E) for ω > 0

1 − 1
2e2�ω/(v0E) for ω < 0

. (21)

This expression is in agreement with the quantum Boltzmann
theory of Mitra and Millis [18].

The above expression for f (ω) shows that the steady-
state carries nonequilibrium excitations above the chemical
potential, on an energy scale controlled by v0E/�. More
quantitatively, using Eq. (16), it corresponds to an effective
temperature

Teff =
√

3

2

v0E

π�
, (22)

which agrees with the expression in Eq. (8) that was obtained
using linear response theory in the half-filled lattice model with
v0 = 2t [37].

B. Driven-dissipative ordered insulator

We now turn to the case of an ordered insulator with an
example of an antiferromagnet. We consider a staggered phase,
where the one-dimensional lattice is split in two sublattices, A
and B, the energy levels of which are alternating by ±� with
� � 0. While in this section, the value of � is considered
arbitrary, it can be seen as originating from a mean-field
treatment of a local interaction between the electrons. This will
be the topic of the next section, where the value of � will be
set self-consistently and the emergence of antiferromagnetism
will be studied systematically via a mean-field approach.

1. Continuum model

Setting aside the dissipation for a moment, we consider the
continuous Hamiltonian

Ĥ =
∫

dxφ†(x)h(x)φ(x), (23)

with the local fermion degrees of freedom φ(x) ≡
[φA(x), φB (x)]T and the two-band Hamiltonian density

h(x) =
(−� − Ex −iv0∂x

−iv0∂x � − Ex

)
. (24)

We note that the lattice constant in this model is doubled by
the ordering, and the electric field (the voltage drop across a
unit cell) is effectively twice of that in the previous section.

It is useful to work with the rotated wave functions φ± =
1/

√
2(φA ± φB ) by performing a unitary transformation

Û = 1√
2

(
1 1
1 −1

)
. (25)

In this basis, the dissipationless Schrödinger equation reads(
ω + iv0∂x + Ex �

� ω − iv0∂x + Ex

)(
φ+
φ−

)
= 0. (26)

When � = 0, φ± satisfy the same differential equations as in
the previous single electronic band of left and right movers.
Therefore, we parametrize the solutions φλ = (φλ

+, φλ
−)T of

the above equations by the superscript λ = L,R. This problem
can be understood as the Schwinger effect [38] where particle-
antiparticle pairs are created from the one-dimensional massive
Dirac field (with mass �) by a static electric field.

Once these eigenfunctions of the dissipationless Hamilto-
nian are computed (see below), they can be used to construct
the GFs in the presence of dissipation. The retarded GF is given
by (a, b = ±)

Gr
ab(x, x ′; ω) =

∫
ρab(x, x ′; ω′)
ω − ω′ + i�

dω′

2πv0
, (27)

with the dissipationless spectral function

ρab(x, x ′; ω) =
∑

λ=R,L

φλ
a (x, ω)φλ

b (x ′, ω)∗. (28)

Generalizing Eq. (14) to a two-band electronic structure, the
lesser GF at x = x ′ is given by

G<
ab(ω) = 2i�

∑
c=±

∫ −ω/E

−∞
dx Gr

ac(0, x; ω)Gr
bc(0, x; ω)∗,

(29)
where we recall that the bath temperature is set to zero.
We define the local retarded and lesser GFs as equal-weight
averages of the A and B sublattices,

G
r/<

loc (ω) = G
r/<

AA (ω) + G
r/<

BB (ω)

2
= G

r/<
++ (ω) + G

r/<
−− (ω)

2
.

(30)

The energy distribution function f (ω) and the effective tem-
perature Teff are then defined exactly like in the case of the
single-band metal; see Eqs. (15) and (21).

2. Analytic solution

We can solve for the eigenfunction φλ
+ by eliminating

φλ
− in the coupled equations (26) to obtain the second-order

differential equation

v2
0∂

2
xφλ

+ + [(ω + Ex)2 − iv0E − �2]φλ
+ = 0. (31)
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As Zener did in the original paper [39], we use the variables

z ≡ (2E/v0)1/2eiπ/4(x + ω/E) and n ≡ i�2/(2v0E) − 1

(32)

to transform Eq. (31) to the standard form

d2φλ
+(z)

dz2
+

(
n + 1

2
− 1

4
z2

)
φλ

+(z) = 0. (33)

The solutions of this equation can be expressed in terms of the
parabolic cylinder function Dν (z) [40,41] as

φλ
+(x + ω/E) ∝ D−n−1(±iz), (34)

with D−n−1(iz) decaying to zero for z → e−iπ/4 × ∞ and
z → e−i(3π/4) × ∞. We choose the sign in the argument of
the parabolic cylinder function in Eq. (34) according to the
boundary condition of right- or left-incident wave function.
A more detailed discussion is given in Appendix A. The
normalized solution for the right-moving wave function can
be written down as

φR
+(x, ω) = e−3πα/8D−iα/2(2y e−iπ/4), (35)

where we introduced the dimensionless parameters

α ≡ �2

v0E
and y ≡

√
E

2v0

(
x + ω

E

)
. (36)

Similarly, the eigenfunction φλ
−(x, ω) is given by

φR
−(x, ω) = −

√
α

2
e−iπ/4e−3πα/8D−iα/2−1(2y e−iπ/4). (37)

The left-moving solutions are obtained by symmetry:

φL
−(x, ω) = [φR

+(−x,−ω)]∗ = e−3πα/8Diα/2(−2y eiπ/4),

φL
+(x, ω) = −[φR

−(−x,−ω)]∗. (38)

III. LANDAU-ZENER VS IN-GAP TUNNELING REGIMES

We shall now distinguish two regimes: (i) the weakly
gapped case, when α = �2/v0E � 1, for which the nonequi-
librium excitations will be shown to be dominated by Landau-
Zener tunneling events, and (ii) the strongly gapped case, when
α  1, dominated by the excitation of dissipative in-gap states.

The distinct behaviors in these two regimes of (a) the
local density of states and (b) the energy distribution function
are illustrated in Fig. 2, which gives the numerical solutions
computed at a fixed E = 0.05 for increasing values of �. Quite
naturally, the local density of states in Fig. 2(a) continuously
develops an energy gap on the order �. In the small-gap (or
large-field) limit, the gap is filled up by the nonequilibrium-
generated electrons, as shown by the smearing of the gap.
Perhaps less obvious is the presence of a small but finite density
of in-gap states at |ω| � � in the large-gap (or small-field)
limit. We shall see that they are due to the dissipation which, in
our model, broadens the two bands and make them leak inside
the gap. They could also be due to the presence of impurities
in the system. The distribution functions in Fig. 2(b) displays
a gradual crossover between a hot nonequilibrium steady state
at small � and a cooler state where excitations are localized in
|ω| � � at large �.

x

transmitted wave
reflected wave

incoming wave

energy
−Ex

2Δ = AFM gap

FIG. 1. Energy diagram of the antiferromagnet subject to a DC
electric field. A staggered order in lattice develops a band gap given by
the order parameter �. A uniform electric field E is incorporated as a
potential ramp throughout the system. Thus, the gap acts as a potential
barrier for an incident wave approaching with the velocity v0, which
splits into a reflected and transmitted wave. In the small-gap large-field
limit, the amplitude of the transmitted wave is proportional to the
square root of the Landau-Zener factor e−πα/2 with α = �2/v0E.

Below, we elucidate the different mechanisms at stake and
their associated energy scales, by deriving the analytic solu-
tions of the nonequilibrium steady states in the two regimes.

A. Landau-Zener tunneling regime

In the small α = �2/v0E � 1 regime, an asymptotic ex-
pression of the wave function in Eq. (35) can be worked out
when |y| � α, reading

φR
+(y < 0) � eiy2 |2y|−i α

2 +
√

2πe− π
4 (α−i)

�
(

iα
2

) e−iy2 |2y|i α
2 −1

φR
+(y > 0) � e− πα

2 eiy2
(2y)−i α

2 , (39)

where �(x) is the � function. For convenience, let us focus
on ω > 0. The first term in the above expression of φR

+(y <

0) is the incident wave from −∞. Indeed, it becomes the
free propagating wave computed in Eq. (17) in the limit
α → 0. See also Fig. 1 for a brief discussion. The second
term is the reflected wave which is scattered from the gap.
The term in φR

+(y > 0) represents the transmitted wave. For
small α, the amplitude of the reflected wave is small with
|√2πe−πα/4/�(iα/2)|2 � πα2/2 and it can be neglected for
|y|  1. We may then combine the positive and negative y and
approximate the right-moving wave function for all |y| � α by

φR
+(x, ω) � eiy2

(2y e−iπ )−iα/2. (40)

y is analytically continued to the complex plane with its
phase restricted to 0 � arg(y) < π , with the branch cut on the
negative real axis. Then, on the positive real axis y > 0, the
factor (e−iπ )−iα/2 = e−πα/2 gives the Landau-Zener amplitude
reduction while on the negative axis the factor is canceled out.

For ω > 0, and in the small-α limit, the right-moving wave
functions traveling from x < 0 contribute the most to the lesser
GFs in Eq. (29). We may therefore approximate the retarded
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c
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)
f
(ω

)

ω

FIG. 2. (a) Local density of states −Im Gr
loc(ω) at E = 0.05, � =

0.01, with � varying from 0.05 (blue) to 0.5 (red) in steps of 0.05. The
energy unit is set by v0 = 1. While the energy gap rapidly develops
with increasing �, the inset (blown up near zero energy) reveals the
presence of a finite density of in-gap states on the order of �/(2�v0)
(see text for details). (b) Distribution functions f (ω). The inset shows
the agreement with the analytic result f (ω) � 1

2 e−2�ω/v0E (black line)
computed for large �, already at � = 0.25.

GF by

Gr
++(0, x; ω) =

∫ ∞

−∞

ρ++(0, x; ω′)
ω − ω′ + i�

dω′

2πv0
, (41)

with

ρ++(0, x; ω′) � e−παe
−i E

2v0
(x2+2xω′/E)

×ω′−iα/2(ω′ + Ex)iα/2. (42)

As represented in Fig. 3(a), there are two branch cuts: C1 ≡
(−iε,−∞ − iε) for ω′iα/2 and C2 ≡ (−x + iε,−∞ + iε) for
(ω′ + Ex)−iα/2. This choice of branch cuts ensures that the
complex power functions coincide with the integrand every-
where on the real axis. The main contribution to the integral is
the residue at ω′ = ω + i�, and we detail its computation in
Appendix B. The resulting retarded GF for x � −(2v0/E)1/2α

is approximately

Gr
++(0, x; ω) � −i

v0
e
− iEx2

2v0
− (�−iω)|x|

v0

×
∣∣∣∣ ω + i�

ω − E|x| + i�

∣∣∣∣
−iα/2

e−αϕ/2, (43)

where

ϕ = π − tan−1 �

ω
− tan−1 �

E|x| − ω
. (44)

Note that Eq. (43) is invalid at x = 0 and therefore cannot
be used to compute Gr

loc(ω). As shown in Fig. 2(a) for small
α, the spectral function approaches the simple-metal limit,
−ImGr

loc(ω > �) ≈ 1/(2v0), away from the gap.

z = −Ex

z = ω + iΓ

C1

C2

(a) (b)
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0.8

1.0
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f
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)
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FIG. 3. (a) Singularities in the integral of the retarded GF,
Eq. (41), in the Landau-Zener regime using the asymptotic expansion
of the parabolic cylinder function. (b) Nonequilibrium distribution
function f (ω) of the driven-dissipative AF computed numerically
in the Landau-Zener tunneling (LZT) regime, and compared to the
expression derived in Eq. (46), showing a number of nonequilibrium
excitations which is reduced by the factor e−πα compared to the
single-band metal. The dashed line is the Fermi-Dirac function at
the effective temperature given by Eq. (47). Parameters are E = 0.1,
� = 0.01, and � = 0.15.

In the small damping limit, we get ϕ � π , and the local
lesser GF can be approximated as

G<
loc(ω > 0) � i

v0
f (ω). (45)

The energy distribution function then becomes

f (ω > 0) � 1
2e−παe−2�ω/v0E. (46)

The numerical effective distribution in Fig. 3(b) shows an
excellent agreement with the analytic result. The steplike drop
of f (ω) near ω = 0 by the Landau-Zener factor demonstrates
a clear departure from a thermal distribution and highlights
the electronic nature of the population inversion. Compared to
the driven-dissipative single-band metal studied in Sec. II A,
see Eq. (20), the number of excited sates is reduced by the
Landau-Zener factor e−πα . This factorization of the above
distribution function in two independent factors highlights the
two different timescales involved: The LZ transition is instan-
taneous compared to the dissipative process. Once electrons are
promoted to the upper band near the band edge, the subsequent
evolution is nearly free, only subject to the dissipation which
sets the lifetime of the inverted population.

The energy excitation in the inverted population is reflected
in the effective temperature

Teff (α � 1) =
√

3

2

v0E

π�
e−πα/2, (47)

which is also reduced compared to the single-band metal in
Eq. (22). The Fermi-Dirac function (dashed line) with the
temperature given as Eq. (47) shows a poor agreement between
their line shape, and an attempt to fit to a Fermi-Dirac function
would lead to unreliable estimate of Teff .

The numerical calculations in Fig. 4(a) display the total
number of excitations

nex(�, E) = 2
∫ D

0
G<

loc(ω)
dω

2πi
. (48)

The excitation density nex(�, E) is defined as the electron and
hole excitations from the zero-field electron distribution. Here,
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FIG. 4. Number of electronic excitations nex(�, E). (a) In the
small-gap (or large-field) regime, it follows the Landau-Zener theory
(black line). (b) In the large-gap (or small-field) regime, the excitations
are limited inside the gap with nex(�, E) = �E/(4π�2).

we introduced an energy cutoff D (set to 10 v0 throughout the
paper) to regularize the linear dispersion relation. For small
α, the agreement with the Landau-Zener factor (black line) is
excellent, as also previously demonstrated in the lattice model
calculation [32].

Note that in the regime α → 0, the distribution function in
Eq. (46) naturally boils down to the one of the single-band
metal in Sec. II A; see Eq. (21).

B. In-gap tunneling regime

In the opposite regime of large α = �2/v0E  1, i.e. with
a large gap or a small field, the electronic transport proceeds
quite differently. This is illustrated in Fig. 4(a), which shows
a strong deviation of the total number of excitations from the
Landau-Zener theory. The spectral weight inside the gap is
now controlled by the dissipation, bounded from below by
the zero-field spectral weight −Im Gr

loc(0) = �/(2v0�). The
spectral properties deep inside the gap can be approximated
by the zero-field retarded GF, as detailed in Appendix C.
The electronic excitations are most efficient within the gap,
as demonstrated by the energy distribution function f (ω)
displayed in Fig. 2(b). The shape of the distribution function
in this regime can be understood as follows. In the case of
the single-band metal studied in Sec. II A, the damping rate
� was controlling the energy window of the nonequilibrium
excitations. In the presence of a gap, the gap acts as a potential
barrier and provides a decay rate proportional to �. Therefore,
the gap parameter � replaces � in Eq. (21), leading to the
energy distribution function

f (ω > 0) � 1
2e−2�ω/v0E (49)

for large α. It is interesting to note that while dissipation is
essential to create the in-gap states, the distribution function
has negligible dependence on the damping parameter �.
Noteworthy enough, while Fig. 4(a) indicates that the deviation
from the Landau-Zener theory starts around α ∼ 1–2, the inset
of Fig. 2(b) shows that the distribution function in Eq. (49)
computed for α  1 is already valid at � = 0.25.

The corresponding effective temperature can be computed
as

Teff (α  1) =
√

3

2

v0E

π |�| , (50)

that is much smaller than in the LZ regime: Teff (α  1) �
Teff (α � 1). The total number of nonequilibrium charge exci-
tations is then well approximated by

nex(�, E) � 2
∫ ∞

0
dω

�

2πv0�
f (ω) = �E

4π�2
, (51)

which is confirmed by the numerical calculations presented in
Fig. 4(b).

Note that the effective temperature above is seemingly
independent of � with the distribution function in the regime
|ω| � � described by Eq. (49). At large frequencies ω  �,
however, f (ω) is expected to behave as 1

2e−παe−2�ω/v0E . This
tail contributes a correction term proportional to e−πα (�/�)2,
which grows large in the � → 0 limit. This is consistent with
the previous works [42,43] in which the effective temperature
has been shown to diverge in dissipationless driven systems. In
the following section, however, we limit the energy integrals at
the cutoff energy D and, furthermore, the decaying integrand
in the gap equation renders insignificant the effect of the f (ω)
tail, particularly in the large-α limit as shown in the inset of
Fig. 2(b). Therefore, the contribution from |ω|  � does not
affect the following mean-field discussion.

IV. MEAN-FIELD THEORY OF RESISTIVE SWITCHING
IN ORDERED INSULATORS

In the previous section, we discussed how, upon increasing
the electric field and keeping the gap parameter � fixed, the
electrons are initially excited via in-gap tunneling events, and
then undergo Landau-Zener tunneling processes as the field
is further increased. In a recent paper by the authors [32],
it has been shown that an inhomogeneous mean-field (MF)
approach on a two-dimensional Hubbard model could capture
the hysteretic nature of the true resistive switching transition:
sweeping up and down the voltage bias applied on a finite-
size two-dimensional lattice resulted in an insulator-to-metal
transition (IMT) and a metal-to-insulator transition (MIT),
separated by a region of bistability. Importantly, this nonequi-
librium bistability was found to be crucial to explain the abrupt
nature of the resistive switching, independent of whether the
equilibrium counterpart is continuous or discontinuous.

Below, we develop the mean-field theory for a driven-
dissipative antiferromagnet (AF). This approach may be ex-
tended to other types of order without much difficulty. We
start with the standard single-orbital Hubbard model, with
on-site repulsive Coulombic interaction V̂ = U

∑
i (n̂i↑ −

n̄)(n̂i↓ − n̄) with the electron number operator n̂iσ = d
†
iσ diσ ,

the Coulomb parameter U , and the on-site occupation ex-
pectation value (averaged over spin) n̄. The emergence of
an AF phase corresponds to the breaking of the translational
invariance of the lattice into a staggered order. The energy
levels of the two resulting sublattices A and B get shifted
alternately by ±�, the AF order parameter which opens a
charge gap. The corresponding mean-field decoupling of the
Hubbard interaction consists in replacing

V̂ �→ V̂MF = �
∑

m=A/B,im,σ

(−1)mσ n̂im,σ , (52)
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with the sublattice index m and (−1)m = ±1 for m = A

and B, respectively. n̂im is the electron occupation on the
imth site within the m sublattice. The resulting theory is
invariant under � �→ −�, and we may work with � � 0.
Since the MF Hamiltonian is diagonal in the spins, we may also
afford to ignore the spin degrees of freedom in what follows.
The nonequilibrium self-consistent equation on the AF order
parameter, often referred as the gap equation, reads

� = U

2
(〈nA〉 − 〈nB〉) (53)

= U

∫ D

−D

[G<
−+(ω) + G<

+−(ω)]
dω

2πi
. (54)

A. Equilibrium phase transition

For reference, let us briefly review the conditions for
the equilibrium, temperature-driven, phase transition. The
mean-field approach predicts a second-order phase transition
[44]. As described in Appendix C, for |ω| > �0 and at zero
temperature, the gap equation (54) becomes

2πv0

U
=

∫ −�0

−D

dω√
ω2 − �2

0

� ln

(
2D

�0

)
, (55)

in the small gap limit, �0 � D. This yields the familiar
expression for the order parameter at zero temperature and
zero-field

�0 � 2D exp

(
−2πv0

U

)
. (56)

The transition temperature TN is set by the finite-temperature
gap equation

2πv0

U
= −

∫ D

−D

ωf0(ω)

ω2 + �2
dω � ln

(
2D

πTN

)
+ γ, (57)

where f0(ω) is the Fermi-Dirac distribution at the temperature
TN and γ ≈ 0.577 is the Euler constant. This allows to relate
the Néel temperature to the zero-temperature gap via

TN ≈ eγ

π
�0 ≈ 0.57 �0. (58)

B. Nonequilibrium phase transitions

1. Numerical results

The numerical solutions of the nonequilibrium mean-field
self-consistent gap equation are presented in Fig. 5, where
the right-hand-side (RHS) of Eq. (54) divided by U� is
plotted as a function of �. � = 0 is always a trivial solution,
marked by crosses in the figure. It corresponds to an ungapped,
metallic, phase. The intersections of the curves with 1/U at
finite values of � are nontrivial solutions that correspond to
antiferromagnetic states. In equilibrium (E = 0), the curve
(dotted line) is monotonic in � and thus supports a single AF
solution. As U is varied, the single-valued order parameter
� evolves continuously from a vanishing to a finite value.
This is the second-order equilibrium phase transition [44].
However, as E is turned on, the curve becomes nonmonotonic
and allows two AF solutions at small enough E. A stability
analysis indicates that the solution with the smaller � is

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

1/U with U = 1.5

E = 0.02 0.03 0.05
0.1 0.2 0.3

(n
A
−

n
B

) /
(2

Δ
)

Δ
E

=
0

FIG. 5. Nonequilibrium mean-field self-consistent condition on
the order parameter �. The solutions correspond to the intersection
of the curves at different E field with the 1/U line. The finite-�
solutions with a negative slope are the stable solutions. The solution at
� ≈ 0.25 abruptly disappears at EIMT = 0.044. The crosses at � = 0
are calculated as discussed in Appendix E. The damping parameter
� is 0.01.

unstable while the other one is stable. When E becomes
larger than a critical value (EIMT = 0.044 in the figure with
U = 1.5), the two AF solutions suddenly disappear, leaving
� = 0 as the only solution. This is the IMT: a strongly
discontinuous nonequilibrium phase transition which emerges
out of a continuous transition in equilibrium [32].

Below, we discuss the quantitative criteria for the switching
electric fields at the IMT and MIT.

2. Insulator-to-metal transition

As discussed above, the IMT occurs when the stable finite-�
solution abruptly ceases to exist, at the field EIMT. We first
determine in which of the regimes, Landau-Zener or in-gap
tunneling, the IMT occurs. In Fig. 5, the IMT occurs at
αIMT ≈ 1.25, thus in the crossover region between the two
limiting regimes. However, as shown in the inset of Fig. 2(b),
the distribution function in Eq. (49) describes the numerical
solution fairly well. We use it, together with the approximation
that the off-diagonal components of the GFs can be replaced
by their equilibrium components (see Appendix D), to rewrite
the gap equation as

2πv0

U
=

∫ −�

−D

dω√
ω2 − �2

−
∫ ∞

�

e−2�ω/v0E

√
ω2 − �2

dω, (59)

or, equivalently,

0 = ln

(
�

�0

)
+ K0

(
2�2

v0E

)
. (60)

See the derivation of Eq. (C8) in Appendix C for more details.
Kn(x) is the modified Bessel function of the second kind. The
first term of the RHS in Eqs. (59) and (60) is the equilibrium
contribution, and the second term is the reduction of the order
parameter due to the nonequilibrium excitations where the
main contribution originates from the edge of the gap ω � �.

Threshold field. The condition for the IMT is that the
derivative of the RHS of the above equation with respect
to � vanishes at the solution, i.e., 1 + 4αK ′

0(2α) = 0. This
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yields αIMT ≈ 0.63. Note the relative discrepancy with the
numerical result given above, αIMT ≈ 1.25. It shows that the
analytic derivation underestimates �IMT and overestimates
EIMT, due the piece of integral that was neglected inside the
gap. Substituting the analytic result αIMT ≈ 0.63 into Eq. (60),
we obtain

�IMT � e−K0(2αIMT )�0 ≈ 0.74 �0 (61)

and

EIMT = �2
IMT

αIMTv0
≈ 0.88

�2
0

v0
. (62)

From the numerical calculations with U = 1.5, we have �0 =
0.30, EIMT = 0.044, and �IMT = 0.23, yielding the ratios
�IMT ≈ 0.76 �0 and EIMT ≈ 0.49 (�2

0/v0), which are in rea-
sonable agreement with the analytic estimates. As previously
noted in Sec. II B, these estimates of EIMT should be further
reduced by half due to the unit-cell doubling.

Importantly, these results elucidate a long-standing prob-
lem: the puzzling small values of the electric field that are
needed to achieve the IMT. Indeed, our solution shows that

EIMT/�0 ∼ �0/v0 � 1, (63)

i.e., that the energy scale of the switching field can be up to one
order of magnitude smaller than the energy gap. However, with
a typical �0 ∼ 0.1 eV and h̄v0/a ∼ 1 eV, this corresponds to
switching fields on the order of EIMT ∼ 102 kV/cm, which
are still one to two orders of magnitude larger than what
is observed experimentally. We have seen in the previous
work [32] that nucleation of conducting filament in spatially
inhomogeneous systems reduces EIMT significantly. We shall
also argue in Sec. IV C that the remaining discrepancy can
be much reduced by working with an environment at a finite
temperature, Tb � TN rather than Tb = 0, i.e., by bringing the
equilibrium system closer to its Néel transition, which is the
case in most experiments.

Effective temperature at the transition. Another crucial
test for the theory is the ability to predict that the effective
electronic temperature at the IMT matches the equilibrium
transition temperature TN, as has recently been demonstrated
experimentally [22]. From Eqs. (16) and (49), we obtain the
analytic estimate

TIMT =
√

6

2π

v0EIMT

�IMT
≈ 0.46 �0 ≈ 0.81 × TN. (64)

The numerical results give TIMT = 0.163 = 0.54 �0 ≈ 0.95 ×
TN, in very good agreement with the previous numerical
work [32] on discrete lattices. This proves that the effective
temperature at which the IMT occurs is simply controlled by
TN, the equilibrium transition temperature. This is one of the
main result of this work, which justifies recent experimental
observations made in Ref. [22].

The IMT condition can be roughly understood as the
situation when the tail of the electron distribution in Eq. (49)
begins to overlap with density of states at the edge of
the gap, v0E/(2�) ∼ �,i.e., α ∼ 0.5, and the number of
nonequilibrium excitations is about to proliferate. It is re-
markable that, despite the IMT occurring in the crossover
region between the Landau-Zener and the in-gap tunneling
regimes, the IMT conditions do not depend sensitively on the

dissipation parameter �. This clearly indicates that the IMT
is fundamentally an electronic process, while it also permits a
thermal interpretation.

I -V scaling near the IMT. Based on the gap equation in
Eq. (60), we can analyze the limiting behavior near the IMT.
Writing � = �IMT + δ� and E = EIMT + δE and expanding
the gap equation to the lowest orders, we obtain

0 = 1.86
(δ�)2

2�2
IMT

+ δE

2EIMT
, (65)

which can be massaged to the typical MF scaling relation

δ� � αIMT(−v0 δE)1/2 for δ� > 0, δE < 0. (66)

Furthermore, the GFs do not have any singularities when �

and E pass through �IMT and EIMT, as can be seen in Fig. 2.
Therefore, we may expand the electric current J around its
value right before the IMT in powers of δ� and δE,

J (E,�) � JIMT + aE δE + a� δ�

� JIMT − αIMT|a�|(−v0 δE)1/2, (67)

where aE and a� are expansion coefficients. Since the current is
reduced when the gap increases, we must have a� < 0. While
the precise value of the above critical exponent in the current
characteristic is the result of a mean-field approach and might
therefore get final-dimensional corrections, such a nonanalytic
and rapid increase of the current close to the IMT is a universal
prediction of the theory. As a matter of fact, it has already been
observed in our previous numerical lattice simulation [32] and
in recent experiments [22,45], and deserves closer scrutiny.

3. Metal-to-insulator transition

Threshold field. The MIT is determined by the loss of
stability of the � = 0 solution. In Fig. 5, the threshold EMIT

corresponds to when the curve at � = 0 (black cross) matches
1/U . The stability of the metal is given by the condition

1

U
� lim

�→0

1

2�
(nA − nB ). (68)

We can easily and accurately pinpoint the MIT by using
perturbation theory in the small � limit. The details are given
in Appendix E. Equation (68) can be estimated as

1

U
� 1

2πv0
ln

(
2eγ �D

v0E

)
, (69)

which typically overestimates the exact numerical integrals by
less than 5%. It yields a switching field

EMIT = 1.78
�

v0
�0. (70)

From the numerical calculations with U = 1.5 and � =
0.01, we obtained EMIT = 0.0044, yielding the ratio EMIT =
1.46 (�/v0)�0, which is again in good agreement with the
analytic estimate. Equation (70) reveals that, unlike the IMT,
the MIT crucially depends on the dissipation, which is not
surprising since the transition is initiated from a metallic
phase where Joule heating is dominant. Most importantly, this
also shows that EMIT ∼ (�/�0)EIMT, therefore predicting the
hierarchy

EMIT � EIMT � �0. (71)
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Effective temperature at the transition. Coming from a
metallic regime, the effective temperature corresponds to the
one computed in Eq. (22). We obtain the following analytic
estimate

TMIT ≈ 1.22 × TN, (72)

where TN is the equilibrium Néel temperature. Once again,
this validates the idea that the resistive transitions can be
interpreted in the language of thermal transitions where the
temperature is replaced by an effective temperature accounting
for the number of excitations above the chemical potential.
While our homogeneous mean-field approach cannot capture
it, the bistability region has already been shown to support
the formation of metallic filaments (and insulating domains)
at lower effective temperatures [32], i.e., at threshold fields
lower than the above mean-field prediction (72).

C. RS at finite bath temperature

So far, we have limited our theoretical analysis to the case
of a zero-temperature bath, Tb = 0, and found switching fields
one to two orders of magnitude larger than what is typically
observed in experiments (see the discussion in Sec. IV B).
However, the experimental measurements of the RS are often
conducted close to room temperature. Indeed, at low tempera-
ture the switching fields tend to be fairly large, which is difficult
to realize and can damage the samples. Moreover, two exper-
imental observations are worth mentioning. First, as reported
previously [25,46], the switching fields EIMT and EMIT show
a significant temperature dependence, for instance, with EIMT

varying by a factor of 2 over 30 K interval near the equilibrium
transition temperature in VO2 [25]. Second, it has recently been
reported in the superconductor-insulator switching [45] that
the nonequilibrium phase transition displays critical behaviors
similar to the equilibrium liquid-gas transition close to its crit-
ical temperature, with a strong temperature dependence of the
switching electric field. All these considerations motivate us
to investigate the case of a finite-temperature bath, Tb > 0. We
shall show that increasing Tb naturally corresponds to a higher
effective temperature Teff (Tb), bringing the system closer to
its transition, therefore reducing the threshold fields and the
intensity of the nonequilibrium effects. As the bath temperature
reaches the Néel temperature, Tb → TN, the threshold fields
must vanish, EIMT/IMT → 0, and the nonequilibrium RS is
expected to progressively evolve into the continuous Ising
transition of the equilibrium Néel transition.

1. Single-band metal

We first discuss the impact of a finite temperature of the
environment in the case of the single-band metal studied in
Sec. II A. The equation (14) is generalized to

G<
loc(ω) = 2i�

∫ ∞

−∞
dx

1

2

∑
λ

∣∣Gr
λ(0, x; ω)

∣∣2
f0(ω + Ex),

(73)

where f0(ω) is the Fermi-Dirac distribution function at tem-
perature Tb. Using the definition of the effective temperature
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FIG. 6. Phase diagram in (electric field)-(bath temperature) space.
Numerically computed switching fields are shown as circles at the
bath temperature Tb for the IMT (black) and MIT (red). The dashed
line is the analytic result Eq. (77) and the red solid line is Eq. (79).
TN is the Néel temperature at equilibrium, and EIMT(0) ≈ 0.044 the
numerically estimated value at zero bath temperature.

in Eq. (16) and the following identity [47]∫ ∞

0
ω[f0(ω+ Ex)+ f0(ω − Ex)]dω= 1

2
(Ex)2 + 1

6
(πTb)2

(74)

for an arbitrary bath temperature Tb, we obtain the follow-
ing effective temperature for the electric-field-driven one-
dimensional electron gas coupled to a finite-temperature bath

Teff (Tb)2 = 3

2

(
v0E

π�

)2

+ T 2
b = Teff (0)2 + T 2

b . (75)

Note that this relation can also be obtained by using the energy
balance between the Joule heating and the heat dissipation that
compensate each other in the steady state [48].

2. Finite-temperature IMT

We now turn to the case of the driven-dissipative anti-
ferromagnet. To compute the temperature dependence of the
threshold field, EIMT(Tb), we use perturbation theory in Tb

around the previous results obtained at Tb = 0. Using the
small-field approximations developed in Appendix C, we can
generalize the gap equation in Eq. (60) to

0 = ln

(
�

�0

)
+

[
1 + 2

3

(
πTb�

v0E

)2
]
K0

(
2�2

v0E

)
, (76)

where we assumed Tb � Teff (0) ∼ v0E/�. Using the same
criteria as Sec. IV B, the IMT can be parametrically solved as

v0EIMT

�2
0

= 2

u
e−h(u),

πTb

�0
=

[
3(1 − 2uK1)

u2(uK1 − K0)

]1/2

e−h(u)/2, (77)

with K0 = K0(u), K1 = K1(u), and h(u) = (1 −
2K0)K0/(uK1 − K0). The solution is plotted with a black
dashed line in Fig. 6. By expanding the relations around
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Tb = 0, we obtain the following expression for the EIMT:

EIMT(Tb) � EIMT(0)

[
1 − 0.88

(
Tb

TN

)2
]

for Tb � TN. (78)

A numerical evaluation of EIMT(Tb), represented by black
circles in Fig. 6, confirms its relatively slow decrease as the bath
temperature is increased. At higher temperatures, Tb ∼ TN, the
parametric solution in Eq. (78) ceases to be valid, and the
numerical calculations are very hard to converge, preventing
us from resolving how EIMT(Tb) approaches 0 when Tb → TN.
However, measurements in Ref. [46] reported that the relation
EIMT(Tb) displays an exponential dependence with the bath
temperature close to TN, and therefore a rapid decrease of
EIMT(Tb) near Tb ≈ TN is expected.

3. Finite-temperature MIT

The temperature dependence of the MIT is easier to analyze.
Since the MIT concerns the stability of the metallic phase, the
effective temperature relation derived in Eq. (75) holds at the
MIT. This yields

EMIT(Tb) =
√

2

3

π�

v0

√
T 2

N − T 2
b , (79)

and at high temperatures close to TN, it yields the scaling
relation

EMIT(Tb) � EMIT(0)

√
TN − Tb

TN
. (80)

Our theory thus successfully reproduces the square-root be-
havior EMIT(Tb) near TN, which had been observed experi-
mentally [46]. Numerically, the same procedure as described
in Appendix E can be used, computing the off-diagonal GF in
Eq. (54) as

−
∫ ∞

−∞

2��ω

v4
0

(
k2

1 + k2
2

)e−2k2|x|f0(ω + Ex)dx, (81)

with k1,2 given in Eq. (C3) and the Fermi-Dirac function f0(ω)
at temperature Tb. The oscillatory parts of the off-diagonal
GF are ignored in this calculation. The numerical results for
EMIT(Tb) are shown with red circles, validating furthermore
the above square-root scaling relation.

The mean-field theory seems to predict a very slow decrease
of EIMT(Tb � TN), as depicted in Fig. 6. Consequently, it
predicts a wide bistability region where both metallic and
insulating phases can coexist. One has to keep in mind that
a mean-field approach typically exaggerates the domain of
stability of ordered states, and only a more sophisticated
diagrammatic theory could resolve this issue. We emphasize
that the bath-temperature dependence at the RS is significant
even when the underlying mechanism is electronic, and a large
reduction of the switching field over an order of �/�0 should
be carefully taken into interpretation when the energy scale of
switching field is examined.

V. TOWARD AN EFFECTIVE FIELD THEORY OF
RESISTIVE SWITCHING

In this section, we leverage the teachings of the previous
mean-field analysis to propose a low-energy effective theory
description of the local order parameter � at both the MIT
and the IMT. This could provide a practical path to developing
an effective field theory capturing the spatial fluctuations of
the order parameter, which are critical to the understanding
of realistic resistive switching phenomena. The problem being
far from equilibrium, such an effective theory should not only
determine the gap � (a spectral quantity obtained from Gr ),
but also the nonequilibrium excitations (such as the quantity
Teff , obtained from the ratio of G< and Gr ). In principle,
only a fully nonequilibrium approach such as the quantum
Schwinger-Keldsyh formalism or the classical Martin-Siggia-
Rose formalism [49,50] can tackle both order parameters, �

and Teff , on an equal footing. However, we aim at a simpler
description by constructing an effective Ginzburg-Landau free
energy for � alone, F (�), under a finite electric field. Instead
of being a dynamical quantity, the effective temperature will be
fixed by using an educated ansatz, Teff (�), based on the results
of the previous sections. Although certainly less rigorous than
a Schwinger-Keldsyh or Martin-Siggia-Rose approach, this
static approach does not require solving time dynamics, giving
a huge computational advantage when extending the theory
to large heterogeneous systems including phase segregation
[32].

The functional form ofF (�) is dictated by theZ2 symmetry
of the order parameter, i.e., F (�) = F (−�), and its minima
and their stability should match the one obtained with the self-
consistent mean-field gap equation. The latter requirements
can be formally expressed as

zeros

{
dF (�)

d�

}

= zeros

{
� − U

∫ D

−D

dω

2π i
[G<

−+(ω) + G<
+−(ω)]

}
, (82)

sgn

{
d2F (�)

d�2

∣∣∣∣
zeros

}

= sgn

{
1 − U

∫ D

−D

dω

2π i

d

d�
[G<

−+(ω) + G<
+−(ω)]

∣∣∣∣
zeros

}
.

(83)

Another constraint on F (�) comes from the equilibrium limit
(E = 0) for which the Ginzburg-Landau free energy is an Ising
φ4 theory reading

Feq(�) = (T − TN) �2 + λ �4 + · · · , (84)

where T is the temperature of the system and TN is the
Néel temperature at which the equilibrium transition occurs.
The interaction parameter λ > 0 can be set by requiring
that � = �0 at zero temperature, yielding λ ≈ TN/2�2

0. All
these constraints lead us to propose the following effective
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FIG. 7. (a) Shape of the effective free energy F (�) proposed
in Eq. (85) when varying the electric field E. (b) Corresponding
spontaneous order parameter �, when varying E. The hysteresis and
the bistability region between the MIT and the IMT, emerge naturally
from the two regimes of effective temperature given in Eq. (86). Local
minima of the free-energy in panel (a) are marked on the � − E curves
in the forward and backward sweeps of the electric field in panel (b).

Ginzburg-Landau free energy

F (�) = (Teff (�) − TN)�2 + λ �4 + · · · (85)

with the state-dependent effective temperature given, at zero
bath temperature, by the expressions in Eqs. (22) and (50),

Teff (�) ∼
{
v0E/� in the small � regime,
v0E/|�| in the large � regime. (86)

Importantly, the electric field now enters the problem solely
through the renormalization of the temperature to a gap-
dependent effective temperature Teff (�). This constitutive
relation is the only remainder of the nonequilibrium nature of
the problem. The distance to the Néel temperature TN in the �2

term controls the stability of the metallic phase at � = 0. In the
spirit of an effective field-theory description, the coefficients
of the higher order terms are expected to play an irrelevant
role near the transitions, merely renormalizing the transition
temperatures.

Interestingly enough, in the large-� regime, the electric
field couples to the order parameter linearly via the nonanalytic
term E|�|, which transforms the continuous equilibrium phase
transition into a discontinuous resistive switching. In this
Ginzburg-Landau language, the MIT and IMT correspond
to the destabilization of a metastable solution, i.e., to the
disappearance of a local minimum of F (�) to the profit of
a global minimum. For example, at the IMT the insulating
solution at � ≈ �0/

√
3 is destabilized when the effective

temperature reaches

TIMT ≈ 4

3
TN, (87)

which is naturally consistent with our previous findings, see
Eq. (64), up to small differences in the numerical factors due
to the truncation of the free energy to lowest orders. The
conclusion that TIMT is controlled by TN is valid regardless
of the precise E-field dependence in Eq. (86) as long as
Teff (�) ∝ 1/� at large �.

Figure 7 sketches the evolution of the shape of F (�), when
increasing E starting from a stable insulating state (� > 0),
rapidly developing a second stable minimum at � = 0, which
becomes the only stable minimum at EIMT, when the insulating
state becomes unstable. When decreasing the electric field from

this metallic state, the stability of the latter is lost at a much
lower electric field EMIT ∼ (�/�0)EIMT.

VI. CONCLUSIONS

We have worked out an analytic window into the inner
workings of RS in correlated insulators close to an equilibrium
phase transition by means of a mean-field (MF) treatment
of a minimal driven-dissipative model of an ordered insula-
tor. This allowed us to unambiguously resolve the age-old
debate on whether the RS is mainly electronically driven
or thermally driven: Both scenarios were reconciled in a
unified picture where the nonequilibrium electronic excitations
were characterized by a state-dependent effective temperature
Teff . While the underlying physical mechanism is different
between the insulating state (mostly electronic Landau-Zener
events) and the metallic state (mostly thermal heating caused
by the dissipative mechanisms), both the IMT and the IMT
were shown to occur when Teff reaches Teq, the equilibrium
phase transition temperature. Concomitantly, our analytics
also provided an elegant resolution to the puzzle posed by
the disconcertingly small threshold fields when compared to
the typical spectral energy scales: The electric field does not
affect substantially the spectrum of the materials but enters the
problem through the effective temperature Teff .

While the analytic MF approach makes the theory trans-
parent, the range of validity of the MF approximation in
nonequilibrium situations is largely untested. Although the
agreement with many salient experimental features is very
encouraging [32], our theoretical approach can only be taken
as an initial reference point in the construction of a more com-
prehensive theory of RS. Given the existence of a bistability
region between the IMT and the MIT, the possibility for the
system to develop spatial inhomogeneities is a crucial element
of the resistive-switching transition [32]. Experimental and
numerical studies revealed that the electron conduction is
often carried through metallic filaments and the details of the
I -V characteristic strongly depends on the filament dynamics.
Therefore, the next step of this program should be to question
the influence of spatial fluctuations on the critical points
by upgrading the above Ginzburg-Landau free energy to a
full-fledged functional of the order parameter field �(x) and
perform a renormalization-group treatment. Another important
step should be to investigate the role of the fluctuations around
the mean-field solution, classically and quantum mechanically.
Finally, exploring diverse RS phenomena to guide the design
of possible devices will require improving the numerical
methodologies in order to perform realistic calculations of
material-specific models.
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APPENDIX A: NUMERICAL CALCULATION
OF WAVE FUNCTION

The parabolic cylinder function [40,41] in Eq. (34) can be
expressed as

Dp(z) = 2p/2e−z2/4

[ √
π

�
( 1−p

2

)�

(
−p

2
,

1

2
;
z2

2

)

−
√

2πz

�
(−p

2

)�

(
1 − p

2
,

3

2
;
z2

2

)]
, (A1)

with the confluent hypergeometric function �(a, b; z). The
equality �(a, b; 0) = 1 is useful. Directly computing the
parabolic cylinder function numerically from the hypergeo-
metric function, however, turns out very unreliable, especially
with a complex index iα/2. Instead, we obtain the solution
to the Hamiltonian by integrating the differential equation,
Eq. (26). Since we expect rapid oscillations due to the elec-
trostatic potential, we absorb the fast oscillation as

φR
+(x) = a(x)ei(ωx+ 1

2 Ex2 ) and φR
−(x) = b(x)e−i(ωx+ 1

2 Ex2 ),

(A2)

with the differential equations

−ia′(x) = �b(x)e−2i(ωx+ 1
2 Ex2 ), (A3)

ib′(x) = �a(x)e2i(ωx+ 1
2 Ex2 ). (A4)

Since x and ω always appear as x + ω/E, one only needs
to compute for ω = 0 and later translate x → x + ω/E at
any nonzero ω. Setting the boundary condition is crucial to
produce the physical solution and avoid any divergent results.
The best method is to set the wave-function values at x = 0 by
Eqs. (35), (37), and Dp(0) = 2p/2√π/�( 1−p

2 ) from Eq. (A1),
and integrate the equations outward to ±∞.

The local spectral weight in the limit � → 0 can be
evaluated from Eq. (27) as ρ++(0, 0; ω) + ρ−−(0, 0; ω).
At ω = 0, only the imaginary part is nonzero for Gr

loc(0) and
Im Gr

loc(0) = −(4v0)−1[|φR
+(0)|2 + |φL

+(0)|2 + |φR
−(0)|2+

|φL
−(0)|2] = −(2v0)−1[|φR

+(0)|2+|φL
+(0)|2]. Using

the definition of the parabolic cylinder function
[40,41], −Im Gr

loc(0) = (2v0)−1e−3πα/4[|D−iα/2(0)|2 +
α
2 |D−iα/2−1(0)|2] = (2v0)−1e−πα/2. As shown in the inset of
Fig. 2(a), the spectral weight at ω = 0 decays exponentially
with α until the damping-induced in-gap weight becomes
more dominant.

APPENDIX B: INTEGRALS FOR RETARDED GF IN
THE LANDAU-ZENER REGIME

From Eq. (29), x < 0 has finite contribution for ω > 0,
and with this the first exponential factor decays as we enclose
the ω′ contour in the upper half-plane. To obtain the integral
(43), we organize the integral contour as shown in Fig. 8. The
desired integral is I1 + I2. The integral I2 can be rotated to I ′
which converges much faster than I2 due to the exponentially
decaying factor in e−iE/(2v0 )(x2+2xω′/E) for x < 0 and ω′ = iy

(y > 0). The integral above the contour C2 with the contri-
bution I1e

πα combines with I ′ to give the residue integral at

I1

I

I2

I1e
−πα

FIG. 8. Contour for the integral Eq. (41).

ω′ = ω + i�,

I1e
−πα + I ′ = −(i/v0)ρ++(0, x; ω + i�). (B1)

Therefore, Gr
++(0, x; ω) can be expressed as

eπα[−(i/v0)ρ++(0, x; ω + i�) − I ′] + I ′. (B2)

The term proportional to the residue becomes

− i

v0
e
− iE

2v0
(x2+ 2x(ω+i�)

E
)
∣∣∣∣ ω + i�

ω − E|x|+
∣∣∣∣
−iα/2

e−αϕ/2. (B3)

The remaining term (eπα − 1)I ′ can be easily evaluated due to
the contour rotation in I ′,

∫ ∞

0

e−|x|y∣∣E|x|+iy

iy

∣∣−iα/2
eα/2(tan−1(y/E|x|)−π/2)

ω − E|x| + iy + i�

idy

2π
, (B4)

whose integral range is set by |x|−1 and the integral is then
well approximated by

−ie−πα/4

2π (E|x| − ω)|x| (Ex2)−iα/2�
(

1 + i
α

2

)
. (B5)

In the small damping and α limit, the residue contribution
dominates (eπα − 1)I ′ and we arrive at Eq. (43).

APPENDIX C: SMALL-FIELD APPROXIMATION

In the limit of large α with E � �, approximating the
retarded GF by that of zero-field limit may be a reasonable
approximation. The justification of this idea is discussed
further in the next section. The calculation of the lesser GF,
however, is done with the full nonequilibrium Dyson’s equation
(29). The zero-field retarded GF can be written down in the
A/B sublattice basis as

Gr (ω,p) =
(

ω + � + i� −v0p

−v0p ω − � + i�

)−1

, (C1)

with the momentum p. Therefore, the retarded GF on the A

sublattice is given as

Gr
AA(x, ω) =

∫ ∞

−∞

(ω − � + i�)eipx

(ω + i�)2 − �2 − v2
0p

2

dp

2π

= − i

2v2
0

ω − � + i�

k1 + ik2
eik1x−k2|x|,

Gr
AB (x, ω) = i

2v0
eik1x−k2|x|, (C2)
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with

v0k2 = [(u2 + ω2�2)1/2 − u]1/2,

v2
0k1k2 = ω� and u = (ω2 − �2 − �2)/2. (C3)

Then, the local lesser GF at x = 0, Eq. (29), is rewritten a

G<
AA(ω) = 2i�

∫ −ω/E

−∞

[∣∣Gr
AA(x, ω)

∣∣2 + ∣∣Gr
AB (x, ω)

∣∣2]
dx.

(C4)

After straightforward calculations, one obtains

G<
AA(ω) = i

(ω − �)k1 + �k2

v2
0

(
k2

1 + k2
2

) f (ω)

= 2iπ

[
− 1

π
Im Gr

AA(0, ω)

]
f (ω) (C5)

with the distribution function

f (ω) = 1

2
exp

[
−2k2(ω)ω

E

]
�(ω)

+
{

1 − 1

2
exp

[
2k2(ω)ω

E

]}
�(−ω). (C6)

The distribution function assumes the same form as the free
1-d model, Eq. (15) with the inverse penetration depth k2(ω)
replacing �. In the � → 0 limit, k2 becomes �. With a finite
field with |ω| < �, the gap acts like a potential barrier and the
wave function decays under the gap with the rate proportional
to �, leading to k2(ω) � �/v0. Therefore, the distribution
function and the retarded GF are expected to behave as

f (ω) � 1

2
e−2�ω/v0E

− 1

π
Im Gr

AA(0) = 1

2πv2
0

�

k2
= �

2πv0�
(C7)

for 0 < ω � � in the large α limit, as verified in Fig. 2.
For the gap equation, the order parameter is calculated self-

consistently as

� = U

2
(nA − nB )

= U

2

∫
[G<

AA(ω; �) − G<
AA(ω; −�)]

dω

2πi

= −�
U

2πv0

∫
k1f (ω)

v0
(
k2

1 + k2
2

)dω. (C8)

APPENDIX D: OFF-DIAGONAL GREEN’S FUNCTIONS

The spectral function of the off-diagonal retarded GFs
Gr

+−(0, 0; ω) + Gr
−+(0, 0; ω), responsible for the gap equa-

tion, is given from Eq. (28) in the small-� limit as

2Re{φR
+(0, ω)[φR

−(0, ω)]∗ − φR
+(0,−ω)[φR

−(0,−ω)]∗} (D1)

after using the symmetry relations Eq. (38). This spectral
function is purely real and odd in ω. In the small-ω limit,
the exact definition of the wave functions (35) and (37) with
Eq. (A1) can be used to expand the spectral function in the
lowest order of ω as

−2
√

2

3

�e−πα

(v0E)2
ω3 for ω � 0, (D2)

-3
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-1
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3
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ω/Δ

1
2

ImG<

-ImGr
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FIG. 9. Off-diagonal GFs G
r,<
+−(ω) + G

r,<
−+(ω) at � = �IMT, E =

EIMT, and � = 0.01. Fully numerical calculations for the lesser (red)
and retarded (green) GFs show strong oscillation in frequency. The
center of oscillation is well described by the analytic evaluation (blue)
of the nonoscillatory part in the zero-field GF.

with the spectral weight suppressed by the LZ factor inside the
gap.

In the large-ω limit, the asymptotic expansion (39) can be
used to evaluate the GF. The wave function φR

± (0, ω) consists of
three contributions away from ω = 0: incoming, transmitted,
and reflected waves. For instance, for ω > 0 φR

+(0, ω) has
the transmitted wave. Due to the oscillation e±iy2

in Eq. (39)
induced by the external field, the product between the wave-
function components may have cancelled or strong phase
oscillations. For example, a product of incoming waves in
φR

+(0,−ω) and φR
−(0,−ω) of Eq. (D1) has the most domi-

nant contribution that has canceled phases. Cross-component
products have uncancelled phases as e±iω2/v0E . The oscillations
become more rapid for smaller electric field. Such strong
oscillation present in both frequency ω and position x makes
the numerical calculations quite challenging at small fields.

Analytic calculation for the nonoscillatory contribution at
|ω| � � gives the approximate expression [41]

−�

ω

(
1 + �2

2ω2

)
for |ω| � � and

�2

v0E
� 1, (D3)

which is, except for the prefactor �, the same as the large-
ω expansion of (ω2 − �2)−1/2 in the gap equation (60). It
is remarkable that the nonoscillatory part of the integral is
independent of the electric field. Figure 9 shows the the
zero-field retarded GF (blue) threads the center of oscillation
of the numerically accurate retarded GF (green). Although the
integration of the oscillatory part is nonzero, especially with
the important contribution close to |ω| ∼ �, the approximation
by the zero-field retarded GF is reasonable.

APPENDIX E: SWITCHING FIELD AT THE MIT

The onset of the MIT is determined by the stability of the
� = 0 solution in Eq. (54), the condition that the slope of the
RHS remains below 1. Therefore, the condition for the MIT is

1

U
= lim

�→0

1

�

∫
[G<

−+(ω) + G<
+−(ω)]

dω

2πi
. (E1)
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We can evaluate this exactly by using the first-order expansion
of the GF out of the noninteracting GF considered in Sec. II A.
The retarded GF satisfies

(ω + i� − Ĥ0)Gr (x, x ′) = δ(x − x ′)I, (E2)

with the GF matrix (Gr )ab = Gr
ab. Ĥ0 acts on the x. Taking

the first-order expansion gives

�G
r,0
++(x, x ′) + (ω + i� − iv0∂ + Ex)Gr

−+(x, x ′) = 0.

(E3)

Here, we suppressed ω in the expression for brevity. The
unperturbed GF G

r,0
++(x, x ′) is given in Eq. (18) with λ = +.

Defining g(x, x ′) = eiϕ(x,x ′ )−(�/v0 )|x−x ′ |Gr
−+(x, x ′), one solves

the differential equation to obtain for x > x ′ as

g(x, x ′) = g0(x ′) − �

v2
0

∫ x

x ′
e2iϕ(y,x ′ )−2(�/v0 )(y−x ′ )dy (E4)

with an arbitrary function g0(x ′). Since g(x, x ′) → 0 as |x −
x ′| → ∞, one sets the boundary condition as

g(x, x ′) = �

v2
0

∫ ∞

x

e−2(�/v0 )(y−x ′ )+2iϕ(y,x ′ )dy. (E5)

This gives us for x < 0

Gr
−+(0, x) = �

v2
0

e(�/v0 )x+eϕ(0,x)
∫ ∞

0
e−2(�/v0 )y+2iϕ(y,0)dy

(E6)

and

Gr
−+(0, x)Gr,0

++(0, x)∗ = i
�

v3
0

�(−x)e2(�/v0 )xI (ω,�, E),

(E7)

with the integral denoted as I (ω,�, E). Performing an integral
over x in Eq. (29), we get

v2
0G

<
−+(ω)/� = −I (ω,�, E) ×

{
e−2�ω/v0E ω > 0
1 ω < 0

.

Similarly one obtains

v2
0G

<
+−(ω)/�=−I (ω,�,−E) ×

{
0 ω > 0
1 − e−2�ω/v0E ω < 0

.

The integral I (ω,�, E) can be transformed to the parabolic
cylinder function D−1(z) with z = √

2/v0Ee−iπ/4(ω + i�) by
rotating the integration contour and then approximated by the
asymptotic expansion as

iv0

2(ω + i�)
+ �(−ω)

eiπ/4

√
E/πv0

exp

[−i(ω + i�)2

v0E

]
. (E8)

I (ω,�,−E) can be obtained by replacing E → eiπE and
�(−ω) → �(ω). The second term is highly oscillatory and
we ignore its integral in the analytic estimate. It also shows
that the oscillation goes like e−iω2/v0E for large ω and why
the numerical calculation becomes problematic in the small-E
limit. Then the first term is nothing but the zero-field retarded
GF. Combining the results, we arrive at the MIT condition

2πv0

U
= −

∫ D

−D

ωf 0
eff (ω)

ω2 + �2
dω (E9)

with the noninteracting distribution function Eq. (15). Perform-
ing this integral in a similar manner as considered in the main
text, we obtain the integral∫ D

0

ωdω

ω2 + �2
−

∫ ∞

0

ωe−2�ω/v0Edω

ω2 + �2
� ln

(
2eγ �D

v0E

)
(E10)

in the limit � � Teff ∼ v0E/� � D. This analytic expression
agrees very well with the exact value by numerically evaluating
I (ω,�, E) within 5% for the parameters considered. We then
have the MIT condition at the switching field EMIT as

EMIT � eγ �

v0
�0 ≈ 1.78

�

v0
�0, (E11)

which gives, with the parameters used in this work, the analytic
estimate EMIT = 0.0053 at about 20% overestimate from the
numerical value.
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