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We elucidate the reduction of the winding number caused by the on-site disorder in a next-nearest-neighbor
XY model. When disorder becomes strong enough, Majorana edge modes become critically extended, beyond
which they collapse into Anderson localized (AL) states in the bulk, resulting in a topological Anderson insulating
state. We identify a resilience threshold Wt for every pair of Majorana fermions (MFs). In response to increasing
disorder, every pair of MFs collapse into AL states in the bulk beyond their resilience threshold. For very strong
disorder, all Majorana fermions collapse, and a topologically trivial state is obtained. We show that the threshold
values are related to the localization length of Majorana fermions, which can be efficiently calculated by an
appropriate modification of the transfer-matrix method. At the topological transition point, the localization length
of the zero modes diverges, and the system becomes scale invariant. The number of peaks in the localization
length as a function of disorder strength determines the number of zero modes in the clean state before disorder
is introduced. This finding elevates the transfer-matrix method to the level of a tool for the determination of the
topological index of both clean and disordered systems.
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I. INTRODUCTION

Generically, topology protects the system against weak
disorder. However, when disorder can close the gap, it can
change topological properties [1]. Therefore when disorder
becomes strong, it can affect the topology and can lead to a
quantum phase transition to the so-called topological Anderson
insulating (TAI) state [2]. The interplay between disorder and
topology has been studied in the past [2]. The change in Hall
conductance as a function of disorder in a two-dimensional
square lattice was numerically investigated in Ref. [3]. In the
presence of a disorder that breaks the symmetries but preserves
them in ensemble averages, the system is still strictly char-
acterized by topological numbers [4], although they may be
different numbers compared to the clean system. In the vicinity
of the topological Anderson transition, the Chern number in
finite-size two-dimensional systems smoothly changes across
the two topological phases. For an infinite system, the change
becomes a sharp step function [5,6]. The Kitaev chain with
a quasiperiodic potential with a Fibonacci sequence shows
an interplay of fractal structure and topology for Fibonacci
potentials in the topological phase diagram [7]. In a two-
dimensional bipartite lattice, the topological number survives
up to a much stronger disorder (one order of magnitude higher)
if only one of the sub-lattices is disordered and the final state
in the strongly disordered system is in the metallic phase [8].

Quadratic Hamiltonians have been classified by Altland and
Zirnbauer into ten classes [9] based on symmetry classes of
random matrices [10]. In every space dimension, five of the ten
symmetry classes of the Altland-Zirnbauer classification have
nontrivial topology [10]. In one-dimensional systems, these
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five topologically nontrivial classes are D and DIII, which are
classified with a Z2 index, and three chiral classes, AIII, BDI,
and CII, which have Z classification. Recently, a generalization
of XY spin chain [11] was proposed which after fermionization
corresponds to the BDI class of topological superconductors
[12]. This model can be classified with an integer winding
number (WN). This extension called nXY in Ref. [12] allows
for engineering a Hamiltonian with any desired WN. Therefore
it provides a playground to study systems with larger WNs
and hence a larger number of Majorana fermions. A similar
extension of the Ising model in the transverse field Hamiltonian
exists [13]. In this work, we study the effect of disorder on the
topological properties of the second-neighbor generalization
of the XY model (2XY model) [12]:

H2XY =
∑

j

(J1 + λ1)σx
j σ x

j+1 + (J1 − λ1)σy

j σ
y

j+1

+ (J2 + λ2)σx
j σ z

j+1σ
x
j+2 + (J2 − λ2)σy

j σ z
j+1σ

y

j+2,

(1)

which after Jordan-Wigner (JW) fermionization becomes

H JW
2XY = 2

∑
s=1,2

∑
j

Jsc
†
j cj+s + λsc

†
j c

†
j+s + H.c. (2)

This Hamiltonian allows for WNs up to 2. In this class, any
short-range correlated disorder is enough to cause Anderson
localization of all quasiparticles [14]. For open boundary con-
ditions, there can exist some symmetry-protected (Majorana)
zero modes which are localized on the boundary [15]. Strong
disorder at transition points will change localized topological
states to Anderson localized states. This transition was dubbed
the topological Anderson transition [2]. The special case for
J1 = λ1 and J2 = λ2 was studied in Refs. [16,17].

2469-9950/2018/98(3)/035142(8) 035142-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.035142&domain=pdf&date_stamp=2018-07-26
https://doi.org/10.1103/PhysRevB.98.035142


ALIREZA HABIBI, S. A. JAFARI, AND S. ROUHANI PHYSICAL REVIEW B 98, 035142 (2018)

II. MODEL HAMILTONIAN

The Hamiltonian we study is given by

H = H2XY + Hdis, (3)

where the translation-invariant part H2XY of the model is given
by Eq. (2). The random-field term Hdis has the following form:

Hdis =
∑

j

(εj + μ)σ z
j , (4)

where εj is uniformly distributed in the interval [−W/2,W/2].
The clean system can be solved with JW transformation

[12]:

σ z
j = 2c

†
j cj −1, σ x

j = eiφj (c†j + cj ), σ x
j = ieiφj (c†j − cj ),

(5)

where φj = π
∑

l<j c
†
l cl is the phase string. With this trans-

formation the entire Hamiltonian becomes

H = 2
∑
s=1,r

∑
j

Jsc
†
j cj+s + λsc

†
j c

†
j+s + H.c.

+ 2
∑

j

(εj + μ)

(
c
†
j cj − 1

2

)
. (6)

This makes it clear that μ is the chemical potential of the JW
fermions. This model is an extension of the Kitaev chain model
of a p-wave superconductor where next-nearest-neighbor hop-
pings and pairings along with on-site disorder have been
added.

In terms of Nambu spinors ψ† = (c† c) we have

H = ψ†
(

H̃0 �̃

�̃† −H̃0

)
ψ ≡ ψ†H̃ψ, (7)

or, equivalently, introducing Pauli matrices �τ for the Nambu
space, the matrix representation of the Hamiltonian becomes

H̃ = H̃0 ⊗ τz + i�̃ ⊗ τy, (8)

where H̃0 and �̃ are the following matrices:

H̃0 =
∑
s=1,r

∑
j

(Js |j 〉〈j + s| + H.c.) +
∑

j

(εj + μ)(|j 〉〈j |),

(9)

�̃ =
∑
s=1,r

∑
j

(λs |j 〉e〈j + s|h − λs |j + s〉e〈j |h). (10)

Note that since the matrix �̃ is off diagonal in the Nambu
space, the projection operators used in the definition of �̃ are
indeed of the | 〉e〈 |h form. Apparently, we have �† = −�. The
H̃0 part is diagonal in the Nambu space, and hence an e or h

subscript is not necessary. The operator for the particle-hole
symmetry can be defined as S = 1 ⊗ τx , where 1 acts on the
space of site indices j = 1, . . . , N and τx acts on the Nambu
space, which simply replaces c and c† and can be seen to affect
the Hamiltonian as

S−1HS = −H. (11)

This model belongs to the BDI class of topological supercon-
ductors [12]. This is exactly solvable, and in Sec. III, we obtain

a closed-form formula for the winding number of the clean
system which varies between −2 and +2.

III. EXACT WN FOR CLEAN 2XY MODEL

Let us add an arbitrary chemical potential to Eq. (2)
which gives an extension of the Kitaev model of topological
superconductor [15] as follows:

H = 2
∑

j

∑
s=1,2

Jsc
†
j cj+s + λsc

†
j c

†
j+s + H.c.

+ 2
∑

j

μ

(
c
†
j cj − 1

2

)
. (12)

This Hamiltonian can be rewritten in terms of Majorana
fermions ai = c

†
i + ci and bi = i(c†i − ci ), which obey anti-

commutation rules

{ai, aj } = {bi, bj } = 2δi,j , {ai, bj } = 0 (13)

and furthermore are self-adjoint, a†
i = ai , b

†
i = bi . The Hamil-

tonian in terms of Majorana fermions becomes

H = i
∑
s=1,2

∑
j

(Js − λs )ajbj+s + (−Js − λs )bjaj+s

+ μ

2
(ajbj − bjaj ). (14)

It can be represented in k space as

H =
∑
k∈BZ

(ak bk )

(
0 h(k)

h(k)∗ 0

)(
a−k

b−k

)
, (15)

where

h(k)

2
= i

(
J1 cos k + J2 cos 2k + μ

2

)
+ (λ1 sin k + λ2 sin 2k).

(16)

This Hamiltonian is invariant under time-reversal symmetry
and particle-hole symmetry and belongs to class BDI [12].
This canonical form allows us to calculate the WN as [18]

nw = 1

2π
Im

∫ π

−π

dkh(k)−1∂kh(k). (17)

For h(k) = rke
iθk one gets nw = 1

2π

∫ π

−π
dk∂kθk = n, where

n ∈ Z and

θk = arctan
J1 cos k + J2 cos 2k + μ

2

λ1 sin k + λ2 sin 2k
. (18)

Observe that θk is not continuous for k in the range [−π, π ].
To correctly count the total phase winding, one has to exclude
such singular points. Therefore we break the integration into

nw =
∑
Pi

1

2π

∫ P −
i+1

P +
i

dk∂kθk = 1

2π

∑
i=0,N−1

θk

∣∣∣∣∣
P −

i+1

P +
i

, (19)

where P0 = −π and PN = π and other Pi, i = 1, . . . , N −
1 are singular points of Eq. (18). In the present model,
we have three singular points θk at P1 = arccos −λ1

2λ2
, P2 =

π − arccos −λ1
2λ2

, and P3 = 0. Obviously, points P1 and P2
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FIG. 1. Map of the WN for the clean 2XY model for various
values of the chemical potential.

are present as long as |λ1| � |2λ2|. With these provisions,
straightforward algebra gives

nw = −1

2
sgn

[(
−J1 + J2 + μ

2

)
(−λ1 + 2λ2)

]

− 1

2
sgn

[(
+J1 + J2 + μ

2

)
(+λ1 + 2λ2)

]

−�

(
1 −

∣∣∣∣ λ1

2λ2

∣∣∣∣
)

sgn

[
− λ2

1

2λ2
+ 2λ2

(
λ2

1

2λ2
2

− 1

)]

× sgn

[
−J1λ1

2λ2
+ J2

(
λ2

1

2λ2
2

− 1

)
+ μ

2

]
. (20)

Here � is the Heaviside function. The allowed WNs in this
model are nw = −2,−1, 0, 1, 2, which are plotted for various
values of the chemical potential μ in Fig. 1. For zero chemical
potential, the phase diagram is given by the top left panel of
Fig. 1. This is in agreement with Ref. [12]. After adding the
disorder term Hdis we will be interested in the μ = 0 case,
which will allow us to compare the phase diagram of the
disordered system with the phase diagram of the clean system
considered in Ref. [12]. Note that the units are chosen such
that J1 = 1. Furthermore, we fix λ1 = 1 and let J2 and λ2

vary. At μ = 0, one can also do exact diagonalization on a
small L = 40 system to see the correspondence between the
winding number and the number of Majorana fermion (MF)
pairs. In Fig. 2 we show the number of zero-energy states
and read the WN from the top left panel of Fig. 1. As can be
seen, the sign of the winding number does not matter, and the
number of Majorana zero modes is given by 2|nw|, meaning
that every WN corresponds to one pair of MFs. The a-type
MF is localized at one end, while the partner MF of the b type
is localized at the other end. Sign reversal of the WN simply
swaps the a and b partners across the chain [12].

IV. INDICATIONS OF RESILIENCE

As shown in Fig. 2, each WN (irrespective of its sign)
corresponds to a pair of zero modes localized at two ends of
the system. The sign of the WN can be changed by simply
renaming a and b MFs that compose a fermion. Now let us

-6
-3
0

3
6

0 20 40 60
-6
-3
0

3
6

0 20 40 60

λ2=−1.4 J2=−1.5
nW=-2E

(a)
λ2=−1.4 J2=1.5
nW=2

(b)

λ2=−1.4 J2=−0.5
nW=-1E

n

(c)
λ2=−0.25 J2=−1.5
nW=0

n

(d)

FIG. 2. Energy eigenvalues for different values of λ2 and J2. For
the open boundary condition, we have four, two, and zero zero-energy
Majorana modes for different values of λ2 and J2.

add the on-site Anderson disorder
∑

i εic
†
i ci , where the on-site

energies are uniformly distributed in a range of width W .
Unless otherwise specified, we will do most of the analysis
for representative parameter values J2 = −1.5, λ2 = −1.4,
corresponding to nw = −2, where there are two pairs of MFs.

A. Spectral manifestations

In Fig. 3 we present the square of zero-energy eigenfunc-
tions for L = 103 sites. We focus on those MFs that for small
values of disorder are localized on the right edge of the system.
By increasing disorder, at the first threshold value, Wt1 ≈ 10.5,
the first pair of MFs is unpinned from the edge, while the second
mode still persists and remains edge localized. Eventually,
beyond a larger threshold, Wt2 ≈ 21, the second pair of MFs
is also Anderson localized into the bulk.

To see what is happening in the Hilbert space, look at
Fig. 4. Here we have plotted the density of states (DOS) for
various values of the disorder. The left panel indicates that
by increasing disorder, the clean superconducting gap of the
spectrum is gradually filled by the level repulsion mechanism.

FIG. 3. Zero-energy wave functions for two types of zero modes.
The first pair of MFs becomes Anderson localized (AL) upon crossing
Wt1 (left), and the second pair is AL after crossing Wt2 (right). This
calculation was done for L = 103 sites.
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FIG. 4. Left: The DOS for the disordered system, denoted by ρ,
is obtained with the kernel polynomial method (Appendix A). Due to
level repulsion, when disorder increases, the gap will be filled. Right:
The DOS at the middle of spectrum, E = 0, denoted by ρ0, is plotted
as a function of disorder strength W . The resilience threshold shows
up as a maximum in the ρ0 versus W curve.

In the right panel, which is obtained with the kernel polynomial
method [19–22], we plot the DOS ρ0 at E = 0 as a function
of disorder strength W . In this method (see Appendix A), we
take the system size L = 105, expanding up to order Nc = 103

in Chebyshev polynomials and average over 102 disorder
realizations. Curiously, the threshold values, Wt1 and Wt2 in
Fig. 3, now show up as enhancements in ρ0. This indicates
that although every pair of MFs is localized at two ends of
the system, the proliferation of states around E = 0 causes an
indirect hybridization. Disorder will eventually displace them
from E = 0. This is the DOS manifestation of the resilience
threshold of MFs against the on-site disorder. Every pair of
MFs is spatially pinned to the edge and energetically pinned
to E = 0. This pinning is protected by topology, as long as
the disorder is not strong enough. But strong enough disorder
causes unpinning and breaks them pair by pair into the bulk
and converts them to Anderson localized states.

B. Effect of disorder on WN

To understand the meaning of the two thresholds beyond
which a pair of MFs is collapsed into the bulk, we need to
study the change in the topological number as a function of
the disorder. As we will see, at the resilience threshold, the
WN of the system changes by 1. We use the method of Prodan
et al. [18,23] to calculate the WN for disordered systems (see
Appendix B). The WN of a system is obtained by summing
over the occupied states. Therefore it crucially depends on
the position of the Fermi level EF that separates filled and
empty single-particle states. As can be seen in the left panel of
Fig. 5, when the Fermi energy crosses either the conduction or
valence band, the WN will not be an integer number. But when
EF is in the middle of the spectrum, it is an integer. The inset
indicates that averaging over disorder sharpens the WN. Our
focus will be on the WN for EF = 0, which is shown in the right
panel of Fig. 5. As we increase W , there are two topological
phase transitions, across which WN changes as −2 → −1 →
0. Averaging over 102 configurations produces smooth steplike
functions. For larger systems, the steps get sharper. At the first
topological phase transition at Wt1 ∼ 10.5, where two MFs
across the ends of the system annihilate each other (see Fig. 3),
the WN changes from −2 to −1. Simultaneously, the spectral
gap collapses entirely. At this point the system is an Anderson
insulator, but still with a nonzero WN, nw = −1. It is therefore

0 10 20
-1

0

1

2

-n
W

W

Wt1=10.5 Wt2=21

-1

0

1

2

ga
p

FIG. 5. Left: The WN as a function of Fermi energy EF for
various values of disorder W . Inset: Sharp pins nw of the half-filled
system averaged to integer values. Right: WN at half filling for L =
1000 sites (blue) and the spectral gap (red) with 100 configurations.
The region between the first and second threshold is a TAI.

qualified to be a TAI. This TAI phase persists until a second
threshold value of Wt2 ∼ 21, at which the remaining Majorana
end modes annihilate each other by critically delocalizing over
the entire system. Beyond this point, the entire system is a
trivial Anderson insulator.

By repeating the above analysis for a range of values (λ2, J2)
we can map the phase diagram of topological phases of the
disordered 2XY model (Fig. 6). In a clean system [12], there are
borders across which the WN changes by 2, as well as borders
across with the WN changes by 1. Note that the WN changes
stepwise by one unit. Thus between each two phases having
WNs of nw and nw ± 2, a nearby region with the WN nw ± 1
penetrates. Eventually, at very large values of disorder, the
region with vanishing WN conquers the entire phase diagram,
and the system will be a trivial Anderson localized insulator.

Although the ultimate fate of the model is to end up in the
topologically trivial state, there are certain topologically trivial
regions in the clean system, e.g., the region near (λ2, J2) ≈
(−1, 2), which acquire a disorder-induced topology, as can be
seen in the W = 5 panel of Fig. 6. In the disordered system, the
WN changes by 1 across all borders. The regions of nw = ±1
inserted by disorder between nw = ±2 and nw = 0 are TAI.

FIG. 6. Topological phases of the disordered 2XY model. The
data are obtained for the system size L = 103 with an average over
100 configurations.
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FIG. 7. Left: Tower of low-lying states as a function of disorder.
The vertical axis is the absolute value of energy |E|. The color code
indicates the IPRs. Right: Intensity map of the average IPRs for the
whole spectrum as a function of disorder strength.

V. RESILIENCE AND LOCALIZATION

To investigate how the resilience thresholds show up in vari-
ous indicators of Anderson localization, we start by discussing
inverse participation ratios (IPRs), which require exact diago-
nalization and are numerically very costly. After establishing
the resilience threshold with this method, we shall suggest an
efficient and very fast algorithm to precisely determine how
disorder induces a change in topology. This will provide an
alternative way of determining the topological number. This
method applies equally well to clean and disordered systems.
For a wave function ψi,λ at energy eigenvalue Eλ, the IPR is
defined by P (λ) = ∑

i (ψ2
i,λ)

2
/(

∑
i ψ

2
i,λ)

2
, where i denotes the

lattice site. For extended states, it vanishes like 1/N for large
N . A plane wave is an extreme example of this sort. The other
extreme is a state sharply localized in one site for which P = 1.
Therefore for more localized states, P is closer to 1, and for
fully extended states, it is zero within O(1/N ) accuracy.

The left panel of Fig. 7 shows IPRs for low-lying parts of the
tower of states as a function of disorder W . The vertical axis
denotes the absolute value of energy |E|. As can be seen for
large disorder strength, states are pushed from both positive
and negative sides (due to particle-hole symmetry) towards
E = 0 and develop a dip at two threshold values. The energy
of MFs is zero within machine precision of ∼10−16. Near the
threshold values Wt1 and Wt2 the MFs cannot remain pinned
to E = 0 anymore. This unpinning is signaled in the gradual
reduction of IPRs, which is, in turn, encoded into the color
code. The right panel of Fig. 7 shows the intensity map of
IPRs for the entire spectrum of eigenvalues as a function of
disorder. By increasing the disorder, the spectral gap closes,
and generically, the IPRs increase, meaning that the states tend
to localize on fewer and fewer sites. The smallest amount of
disorder is enough to localize the entire spectrum. However,
the E = 0 states, when facing disorder, become extended at
some threshold values.

The left panel of Fig. 8 shows constant disorder cuts of the
IPRs. For the clean system, the IPRs of the whole spectrum
are O(1/N ), except for the MFs that live at E = 0. By adding
disorder, they all become Anderson localized in the bulk. To
understand the localization behavior of the Majorana zero
modes, we pick four MFs (two pairs) and study their IPRs
as a function of disorder. This is the content of the right panel
of Fig. 8; blue and black symbols correspond to one pair of
MFs, while red and green symbols correspond to the other
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FIG. 8. Left: Constant disorder IPRs vs E. MFs at zero energy are
localized even for a clean system. Right: IPRs for E = 0 Majorana
end modes. The resilience threshold is the turning point in the IPRs.

pair. For small values of disorder, the IPRs for both pairs
are a fraction of 1, which indicates extreme localization. By
increasing disorder, the IPRs tend to decrease, meaning that
MFs tend to become less localized. At the first threshold, the
IPRs of the first pair reach a minimum, meaning that they
are stretched as much as possible. At the first threshold value,
the first pair of MFs whose IPRs have become small enough are
drown into the bulk. This is signaled by the upturn in their IPRs.
Such a monotonic increase in IPRs as a function of disorder
is typical behavior of Anderson localized states. Therefore at
the first threshold, the blue and black pair of MFs merges
into the bulk of AL. The second pair (red and green curves)
is, however, more resilient and refuses to delocalize further
by approaching the first threshold. Beyond the first threshold
Wt1, due to their Majorana character, their IPRs, unlike the
Anderson localized states, decrease with increasing W . Finally,
at the second threshold Wt2 the resilience of the last pair of MFs
is exhausted, and they surrender to disorder and merge into the
bulk of Anderson localized states, which is signaled by the
upturn in this curve. Beyond the second threshold, there are no
more MF pairs left, and hence all the knots of the wave function
are opened to give a zero-WN state. For disorder stronger than
Wt2 all states show a generic Anderson localization behavior
of increasing IPRs as a function of the disorder.

The unusual (non-AL) decrease in IPRs of MFs gives
them enough delocalization that allows them hybridize through
higher-order processes within a nearly zero energy subspace of
the Hilbert space. Increasing disorder enhances the density of
nearly zero energy states, and hence there will be a large enough
density of very low energy (localized) states that can mediate
hybridization between the two Majorana partners at the two
ends of the chain. In an empty lattice an IPR of O(1/N ) would
be needed to qualify MFs for critical delocalization over the
entire system. In the disordered case, although the minimum
IPR is an order of magnitude larger than a fully extended state,
the enhancement of the density of low-energy states (Fig. 4)
allows them to efficiently hybridize and therefore unpins them
from E = 0, ending their topological protection by saturating
their resilience threshold. It is curious to note in the right panel
of Fig. 8 that at the threshold values of disorder, not only do the
average IPRs develop a minimum, but also the fluctuations of
the IPRs are minimized. Understanding the fluctuations of IPRs
for topological and nontopological states deserves a separate
investigation [24].

So far we have found that the resilience threshold of
Majorana fermions goes hand in hand with (i) a change in
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2i-1 2i 2i+1

FIG. 9. Transfer matrix for our Hamiltonian. Each slice contains
two atoms. Blue and red circles represent ψe and ψh, respectively.
Green lines and orange lines show nearest- and next-nearest-neighbor
couplings, respectively.

the absolute value of WN, which is accompanied by wild
spatial fluctuations of the WN, (ii) a maximum in the density
of zero-energy states as a function of disorder, (iii) minimal
IPR fluctuations, and (iv) maximal extension of zero modes.
The last fact allows us to use one of the powerful, precise, and
fast techniques of Anderson localization physics, namely, the
transfer-matrix (TM) method, not only as a way to determine
the resilience threshold but also, by the above equivalence,
as an alternative tool to diagnose the topological index of the
system. This is the subject of the next section.

VI. RESILIENCE AND TRANSFER-MATRIX METHOD

So far we have identified the resilience threshold Wt of
MFs in various quantities. The TM method, when appropriately
modified to guarantee the convergence of the TM procedure,
becomes a very cheap method to sharply determine Wt . This
is the subject of the present section.

To calculate the localization length, we can use the quasi-
one-dimensional Schrödinger equation H�i = E�i [25,26].
In our model, we need to calculate the localization length for
the wave functions in the Nambu space. When we have the
next-nearest neighbor, we are led to organize the sites into the
blocks depicted in Fig. 9 such that in the newly arranged form,
the transfer of the amplitude of the wave function takes place
only between neighboring blocks. In this basis, every block will
have two sites, labeled by indices 1,2, and the wave function �i

in the Nambu space will be �T
i = (ψe

i,1, ψ
h
i,1, ψ

e
i,2, ψ

h
i,2). This

is effectively a four-channel quasi-one-dimensional problem.
Within this representation, the wave equation becomes

ti,i−1�i−1 + Hi,i�i + ti,i+1�i+1 = E�i , (21)

which can be rearranged to(
�i+1

�i

)
= Ti+1,i

(
�i

�i−1

)
, (22)

where

Ti+1,i =
(

t−1
i,i+1(E − Hi,i ) −t−1

i,i+1ti,i−1

1 0

)
. (23)

As can be seen in Fig. 9, we have two types of slices, labeled
2i and 2i + 1. The transfer matrix and on-site matrix for each
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FIG. 10. Localization length versus energy for various W for the
entire energy spectrum (left) and only E = 0 (i.e., MFs; right) as a
function of disorder strength. The inset in the left panel indicates
that for W ≈ 10 and W ≈ 20 the localization length diverges at
E = 0. At topological transition points Wt1 = 10.5 and Wt2 = 21 the
localization length of zero-energy states will diverge.

slice are given by

t2i,2i+1 = tT2i+1,2i =

⎛
⎜⎝

0 0 J2 λ2

0 0 −λ2 −J2

J2 λ2 J1 λ1

−λ2 −J2 −λ1 −J1

⎞
⎟⎠, (24a)

t2i+1,2i+2 = tT2i+2,2i+1 =

⎛
⎜⎝

J1 λ1 J2 λ2

−λ1 −J1 −λ2 −J2

J2 λ2 0 0
−λ2 −J2 0 0

⎞
⎟⎠,

(24b)

H2i,2i =

⎛
⎜⎝

εi,1 0 J1 λ1

0 −εi,1 −λ1 −J1

J1 −λ1 εi,2 0
λ1 −J1 0 −εi,2

⎞
⎟⎠, (24c)

H2i+1,2i+1 =

⎛
⎜⎝

εi,1 0 J1 −λ1

0 −εi,1 λ1 −J1

J1 λ1 εi,2 0
−λ1 −J1 0 −εi,2

⎞
⎟⎠. (24d)

To calculate the localization length at the end of the lattice,
one needs to multiply the transfer matrices to form

� = lim
N→∞

[ ∏
i=N,1

T
†
i+1,i

∏
i=1,N

Ti+1,i

]1/2N

. (25)

Diagonalizing the above matrix gives i = 1–8 eigenvalues of
the form eγiL, where L = N is the length of the system. Due
to the symplectic form of the transfer matrix, the eigenvalues
come in e±γL pairs. The (largest) localization length λ is then
calculated by

λ = 1

|γmin| . (26)

The details of obtaining the smallest positive Lyapunov expo-
nent precisely can be found in Ref. [25,26]. In our calculation,
we choose N large enough to guarantee the convergence of the
localization length.

In the left panel of Fig. 10 we plot the localization length
λ as a function of energy E of the states for various values
of disorder W . For W = 0 all one-dimensional states, except
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FIG. 11. Topological phase transitions from the localization
length calculated by the transfer matrix. The localization length
diverges at transition points.

the zero-energy Majorana modes, are extended. By adding the
smallest amount of disorder, all bulk states become Anderson
localized. By further increasing disorder (see the inset) the
localization length at zero energy tends to develop a peak near
the threshold values of W ≈ 10, 20.

To see the critical delocalization of MFs at Wt , in the right
panel of Fig. 10 we focus on the calculation of localization
length for E = 0 Majorana modes. This shows a very clear
indication of a divergence of the localization length of Majo-
rana zero modes at the two threshold values indicated. The
topological index (WN) is indicated. After each peak, the
absolute value of the WN decreases by 1, and the system
ultimately ends in a topologically trivial state with nw = 0
at the strongest disorder regime. Viewing this sequence of
one-by-one change in the WN in reverse elevates the TM
method as a very quick method for the determination of nw:
The winding number can be determined by assigning zero to
the most strongly disordered phase and increasing the absolute
value by 1 upon crossing each divergence in λ of E = 0
Majorana modes. The sign of the winding number is a matter of
convention and can be constructed from the symmetries of the
Hamiltonian. Using the localization length λ of Majorana zero
modes to map the phase diagram of the disordered 2XY model,
we can sharply determine the phase boundaries. The phase
boundaries are given in Fig. 11. Figure 11 agrees with Fig. 6,
but Fig. 11 is more accurate, and moreover in Fig. 11, it is much
easier to determine phase boundaries with the transfer-matrix
method. Without knowledge of Fig. 6 the WN can be assigned
to Fig. 11 up to an overall sign ambiguity, as explained above.

The localization length as calculated from the Lyapunov
exponent in the TM method provides not only a very precise
but also numerically very economic (as it requires the TM pro-
cedure for only E = 0 energy) determination of the resilience
threshold of Majorana zero modes which also coincides
with the onset of the change in the WN. The divergence
of localization length at the resilience threshold further-
more identifies the threshold of resilience with the maximal
stretchability of MFs and hence substantiates the claim of
critical delocalization of MFs at the threshold values. Since

the transfer-matrix method is essentially free from finite-size
errors, as the amplitude of the wave function can be transferred
up to arbitrarily long distances, the system at the threshold
values of the disorder must be scale invariant. This entitles
the disorder-induced topological phase transitions to some sort
of order parameter which can be encoded into an appropriate
nonlinear-σ model in supersymmetry approaches [1].

Note that the diverging length scale is a peculiar feature of
MF zero modes. All other states are Anderson localized for
the smallest disorder and therefore are left with no sense of the
length scale of the entire system.

VII. CONCLUSION

We investigated the mechanism of change in the WN by the
disorder in an extension of the Kitaev chain, dubbed the 2XY
model [12]. Possible realizations of longer-range hopping can
be achieved by an array of magnetic nanoparticles placed on
a superconductor [27]. We established that every pair of MFs
has a threshold resilience at which they critically delocalize and
hence hybridize and unpin from E = 0. This is how they lose
their topological protection and become part of the Anderson
localized bulk states. This explains why, in the presence of
disorder, across every boundary the WN changes by only 1.
After corroborating with costly and established methods of
calculation of the topological index based on the polarization,
we showed that the above resilience threshold can easily and
precisely be determined by simply looking at the divergence of
the localization length of only the E = 0 states (corresponding
to MFs). We curiously observed that at the threshold values,
not only do the IPRs of E = 0 states reach a minimum, but the
fluctuations of the IPRs are also suppressed. We furthermore
showed that the resilience threshold is precisely where the WN
changes by 1. Given this, the localization length can be
employed to sharply determine the winding number in the BDI
class of topological insulators. Note that this method makes no
reference to the polarization (related to the Berry phase).

It is desirable to incorporate the above observations to
construct an effective order parameter theory to address the
interplay between the p-wave superconductivity and disorder
[28]. The analogy with plateau-to-plateau transitions in the
quantum Hall effect and possible effective theories with the θ

term [29] or possible renormalization group interpretation [30]
is worth exploring.
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APPENDIX A: KERNEL POLYNOMIAL METHOD

In the kernel polynomial method [19–22] one expands the
spectral functions in a set of orthonormal polynomials. The
coefficients of expansion will be appropriate matrix elements
or traces. Then the traces can be stochastically calculated.
Consider a Hamiltonian H with energy eigenvalues E in the
range [Emin, Emax]. To expand in Chebyshev polynomials,
which are defined for arguments whose magnitude does not
exceed 1, one should first rescale the Hamiltonian from
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H (E) to Ĥ (ε), where Ĥ = (H − b)/a, ε = (E − b)/a, b =
(Emax + Emin)/2, and a = (Emax − Emin)/2. The normalized
density of states can be expanded for the range ε ∈ [−1, 1] into
Chebyshev polynomials as

ρ̂(ε) = 1

π
√

1 − ε2

(
μ0g0 + 2

Nc∑
m=1

μmgmTm(ε)

)
, (A1)

where Tm(ε) = cos[m arccos(ε)] are the mth Chebyshev poly-
nomials, μm are Chebyshev moments, and gm are the so-called
attenuation factors to minimize the Gibbs oscillations. Nc is a
cutoff on the order of polynomials used in the expansion. μm

is given by a trace formula, μm = 1/M
∑M

r=1〈φr |Tm(Ĥ )|φr〉.
Since the trace does not depend on the basis, we can choose φr

as random single-particle states, and we should use M as the
number of random states used in the evaluation of the trace.
To obtain matrix elements of Tm(Ĥ ) we can use the recurrence
relation of Chebyshev polynomials, Tm(Ĥ ) = 2ĤTm−1(Ĥ ) −
Tm−2(Ĥ ) with initial conditions T1(Ĥ ) = Ĥ and T0(Ĥ ) = 1.
This enables the computation of spectral functions without
explicit diagonalization of the Hamiltonian.

APPENDIX B: WINDING NUMBER

This Appendix is based entirely on the work of Proden
and colleagues [18,23]. The idea is to homotopically deform a

given Hamiltonian H to its flat band equivalent given by

H → Q = P+ − P−, (B1)

where P− and P+ are projection operators of filled and empty
bands, respectively, and are given by

P+ =
∑

En>Ef

|n〉〈n|, P− = 1 − P+. (B2)

Since in our model the chiral symmetry operator satisfies
S = S† and S2 = 1, the eigenvalues of S are ±1. Defin-
ing S± as the projection operator to the space of these
eigenvalues, it can be represented as S = S+ − S−. Every
chiral symmetric operator, including Q, can be represented
as Q = S+QS− + S−QS+, where (S±QS∓)† = S∓QS± and
(S±QS∓)−1 = S∓QS±. Then the WN can be calculated from
the above canonical form using Q+− = S+QS−, (Q+−)−1 =
S−QS+ = Q−+. Replacing ∂k with −i[X, ·], where X is the
position operator, and denoting the summation over k space
degrees of freedom (per volume) by tr, the WN in real space
is given by

nw = −tr{Q−+[X,Q+−]}. (B3)

For a given realization of disorder, this formula allows the
calculation of the WN in a single diagonalization procedure.
Further averaging over disorder smoothens the variations of
the above WN.
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